1 |
R. Bagley and P. Torvik,
A theoretical basis for the application of fractional calculus to
viscoelasticity.
J. Rheology 27 (1983), 201–210.
|
2 |
S. Bochner,
Harmonic Analysis and the Theory of Probability.
University of California Press, Berkeley (1955).
|
3 |
J. Cushman and M. Moroni,
Statistical mechanics with three-dimensional particle tracking
velocimetry in the study of anomalous dispersion, I: Theory.
Phys. Fluids 13 (2001), 75–80.
|
4 |
D. del-Castillo-Negrete,
Fractional diffusion models of anomalous transport.
In: R. Klages, G. Radons, and I. Sokolov (Eds.), Anomalous
Transport: Foundations and Applications. Wiley-VCH, Weinheim (2008), 163–212. |
5 |
M. Fukushima, Y. Oshima, and M. Takeda,
Dirichlet Forms and Symmetric Markov Processes.
DeGruyter, Berlin, 2nd Ed. (2011).
|
6 |
R. Haag,
Local Quantum Physics.
Springer Verlag, Berlin (1992).
|
7 |
R. Hilfer,
Classification theory for anequilibrium phase transitions.
Phys. Rev. E 48 (1993), 2466–2475.
|
8 |
R. Hilfer,
Foundations of fractional dynamics.
Fractals 3 (1995), 549–556.
|
9 |
R. Hilfer,
On fractional diffusion and its relation with continuous time random
walks.
In: A. P. R. Kutner and K. Sznajd-Weron (Eds.), Anomalous
Diffusion: From Basis to Applications. Springer, Berlin (1999), 77–82.
|
10 |
R. Hilfer,
Applications of Fractional Calculus in Physics.
World Scientific Publ. Co., Singapore (2000).
|
11 |
R. Hilfer,
Fractional time evolution.
In: R. Hilfer (Ed.), Applications of Fractional Calculus in
Physics. World Scientific, Singapore (2000), 87–130.
|
12 |
R. Hilfer,
Threefold introduction to fractional derivatives.
In: R. Klages, G. Radons, and I. Sokolov (Eds.), Anomalous
Transport: Foundations and Applications, Wiley-VCH, Weinheim (2008), 17–74. |
13 |
R. Hilfer and L. Anton,
Fractional master equations and fractal time random walks.
Phys. Rev. E, Rapid Commun. 51 (1995), R848–R851.
|
14 |
J. Klafter, S.C. Lim, R. Metzler (Eds.), Fractional Dynamics. Recent Advances.
World Scientific, Singapore (2011).
|
15 |
R. Klages G. Radons, and I. Sokolov (Eds.), Anomalous Transport: Foundations and Applications, Wiley-VCH, Weinheim (2008).
|
16 |
N. Landkof,
Foundations of Modern Potential Theory.
Springer, Berlin (1972).
|
17 |
N. Laskin,
Principles of fractional quantum mechanics.
In: R. Klages, G. Radons, and I. Sokolov (Eds.), Anomalous
Transport: Foundations and Applications, Wiley-VCH, Weinheim (2008), 393–427;
DOI: 10.1142/9789814340595_0017.
|
18 |
P. Levy,
Theorie de l’addition des variables aleatoires.
Gauthier-Villars, Paris (1937).
|
19 |
J. Liouville,
Mémoire sur quelques questions de geometrie et de mecanique, et
sur un nouveau genre de calcul pour resoudre ces questions.
Journal de l’Ecole Polytechnique XIII (1832), 1–69.
|
20 |
E. Montroll and G. Weiss,
Random walks on lattices, II.
J. Math. Phys. 6 (1965), 167–181.
|
21 |
R. Nigmatullin.
The realization of the generalized transfer equation in a medium with
fractal geometry.
Phys. Stat. Sol. B 133 (1986), 425–430.
|
22 |
M. Riesz,
Integrales de Riemann-Liouville et potentiels.
Acta Sci. Math. (Szeged) 9 (1938), 1–42.
|
23 |
M. Riesz,
L’integrale de Riemann-Liouville et le probleme de Cauchy.
Acta Mathematica 81 (1949), 1–222.
|
24 |
Y. Rossikhin and M. Shitikova.
Application of fractional calculus for analysis of nonlinear damped
vibrations of suspension bridges.
J. Eng. Mech. 124 (1998), 1029–1036.
|
25 |
I. Schäfer and K. Krüger.
Modelling of coils using fractional derivatives.
J. of Magnetism and Magnetic Materials 307 (2006), 91–98.
|
26 |
W. Schneider and W. Wyss,
Fractional diffusion and wave equations.
J. Math. Phys. 30 (1989), 134–144.
|
27 |
R. Schumer, D. Benson, M. Meerschaert, and S. Wheatcraft,
Eulerian derivation of the fractional advection-dispersion equation.
J. Contaminant Hydrol. 48 (2001), 69–86.
|
28 |
V. Uchaikin,
Fractional Derivatives for Physicists and Engineers, I.
Springer, Berlin (2012).
|
29 |
V. Uchaikin,
Fractional Derivatives for Physicists and Engineers, II.
Springer, Berlin (2013).
|