Sie sind hier: ICP » R. Hilfer » Publikationen

2 Method of Calculation

[page 639, §1]   

2.1 Recursion Relation

[639.1.1] In the rest of this paper α and β are real numbers with α>0. [639.1.2] Calculating Eα,βz for the case α>1 can be reduced to the case 0<α1 by virtue of the recursion relation [2, 21]

Eα,βz=12m+1h=-mmEα/2m+1,βz1/2m+1e2πih/2m+1(6)

valid for all βR, zC where m=α-1/2+1. [639.1.3] Here x denotes the largest integer smaller than x. [639.1.4] Because of the recursion we consider only the case 0<α1 in the following.

2.2 Regions

[639.2.1] For 0<α1 the complex z-plane is partitioned into four regions G0, G1, G2, G3. [639.2.2] In each region a different method is used for the calculation of the Mittag-Leffler function. [639.2.3] The central region

G0=Dr0¯=zC:zr0(7)

is the closure of the open disk Dr0=zC:z<r0 of radius r0<1 centered at the origin. [639.2.4] In our numerical calculations we have chosen r0=0.9 throughout. [639.2.5] The regions G1,G2 are defined by

G1=W+5πα/6G0(8)
G2=CG1G0(9)

where

W+ϕ=zC:argz<ϕ(10)

is the open wedge with opening angle ϕ,(0<ϕ<π). [639.2.6] For future reference we define also the (left) wedge

W-ϕ=zC:ϕ<argzπ(11)

[639.2.7] Finally the region G3 is defined as

G3=CDr1=zC:z>r1(12)

where r1>r0 will be defined below.

2.3 Taylor series

[639.3.1] For zG0, i.e. for the central disk region (with r0=0.9), the Mittag-Leffler function is computed from truncating its Taylor series (1). [639.3.2] For given zG0 and accuracy ϵ we choose [page 640, §0]    N such that

Eα,βz-k=0NzkΓαk+βϵ(13)

holds. [640.0.1] The dependence of N on the accuracy ϵ and other parameters is found as

Nmax2-β/α+1,lnϵ1-zlnz+1.(14)

2.4 Integral Representations

[640.1.1] We start from the basic integral representation [2, p. 210]

Eα,βz=12πiCyα-βeyyα-zdy(15)

where the path of integration C in the complex plane starts and ends at - and encircles the circular disc yz1/α in the positive sense. [640.1.2] When this integral is evaluated several cases arise. [640.1.3] For zG1 we distinguish the cases β1 and β>1 and compute the Mittag-Leffler function from the integral representations [22]

Eα,βz=Az;α,β,0+0Br;α,β,z,παdr,β1(16)
Eα,βz=Az;α,β,0+1/2Br;α,β,z,παdr+-παπαCφ;α,β,z,1/2dφ,β>1(17)

where

Az;α,β,x=1αz1-β/αexpz1/αcosx/α(18)
Br;α,β,z,ϕ=1πAr;α,β,ϕrsinωr,ϕ,α,β-ϕ-zsinωr,ϕ,α,βr2-2rzcosϕ+z2(19)
Cφ;α,β,z,ρ=ρ2πAρ;α,β,φcosωρ,φ,α,β+isinωρ,φ,α,βρcosφ+isinφ-z(20)
ωx,y,α,β=x1/αsiny/α+y1+1-β/α.(21)

[640.1.4] For zG2 the integral representations read

Eα,βz=0Br;α,β,z,2πα/3dr,β1(22)
Eα,βz=1/2Br;α,β,z,2πα/3dr+-2πα/32πα/3Cφ;α,β,z,1/2dφ,β>1(23)

where the integrands have been defined in eq. (18)–(21) above.

[page 641, §1]   
[641.1.1] The integrand Cφ;α,β,z,ρ is oscillatory but bounded over the integration interval. [641.1.2] Thus the integrals over C can be evaluated numerically using any appropriate quadrature formula. [641.1.3] We use a robust Gauss-Lobatto quadrature.

[641.2.1] The integrals over Br;α,β,z,ϕ involve infinite intervals. [641.2.2] For given zG1 (resp. zG2) and accuracy ϵ we approximate the integrals by truncation. [641.2.3] The error

RmaxBr;α,β,z,ϕdr<ϵ(24)

depends on the truncation point Rmax. [641.2.4] For ϕ=πα we find

Rmaxmax1, 2z,-lnπϵ6α,β0maxβ+1α, 2z,-2lnπϵ6β+22ββα,β<0,(25)

while for ϕ=2πα/3 we have

Rmaxmax2α, 2z,-2lnπ2βϵ12α,β0max2β+1α, 2z,-4lnπ2βϵ12β+24ββα,β<0.(26)

2.5 Exponential Asymptotics

[641.3.1] The asymptotic expansions given in eqs. (21) and (22) on page 210 in Ref. [2] indicate that the Mittag-Leffler function exhibits a Stokes phenomenon. [641.3.2] The Stokes lines are the rays argz=±απ and it was recently shown in [23] that a Berry-type smoothing applies. [641.3.3] The exponentially improved asymptotic expansions will be used here for computing Eα,βz for zG3. [641.3.4] More precisely for 0<α<1 we use the following exponentially improved uniform asymptotic expansions [23] :

Eα,βz=-k=1Mz-kΓβ-αk+Oz1/2-β/αe-z1/α(27)

for zG3W-απ+δ

Eα,βz=1αz1-β/αez1/α-k=1Mz-kΓβ-αk+Oz1/2-β/αe-z1/α(28)

for zG3W+απ-δ,

Eα,βz=12αz1-β/αez1/αerfcc3/36-ic2/6-cz1/α/2
-k=1Mz-kΓβ-αk+Oz1/2-β/αe-z1/α(29)

[page 642, §0]    for zG3 with -απ-δargz-απ+δ and c=argz1/α+π, and

Eα,βz=12αz1-β/αez1/αerfcc+ic2/6-c3/36z1/α/2
-k=1Mz-kΓβ-αk+Oz1/2-β/αe-z1/α(30)

for zG3 with απ-δargzαπ+δ and c=argz1/α-π. [642.0.1] Here δ>0 is a small number, in practice we use δ=0.01. [642.0.2] In eqs. (2.5) and (2.5)

erfcz=2πzey2/2dy(31)

denotes the complex complementary error function. [642.0.3] Note the difference between eqs. (27)–(2.5) and the expansions in [2, p. 210]. [642.0.4] We take

M=min50,z1/α/α(32)

to truncate the asymptotic series. [642.0.5] Choosing for ϵ the machine precision we fix the radius r1 in G3 at

r1=1ϵΓβ-αM1/M.(33)

[642.0.6] The remainder estimates in eqs. (27)–(2.5) are only valid for a value of M that is chosen in an optimal sense as in eqs. (32) and (33).