Sie sind hier: ICP » R. Hilfer » Publikationen

Appendix B Derivation of equation (7.5)

[76.3.1.1] By virtue of the symmetry relation (6.5) the integral in (7.4) may be written as

-xσhx;ϖ,ζ,0,1dx=0xσhx;ϖ,ζ,0,1dx+0xσhx;ϖ,-ζ,0,1dx(B.1)

The definition (A.1) implies the general formula [32]

0xs-1HPQmn(ax|a1,A1aP,APb1,B1bQ,BQ)dx=a-sj=1mΓbj+Bjsj=1nΓ1-aj-Ajsj=m+1QΓ1-bj-Bjsj=n+1PΓaj+Ajs(B.2)

by virtue of the Mellin inversion theorem. [76.3.1.2] Specializing to the case at hand

0xσhx;ϖ,ζ,0,1dx=1ϖ0xσH2211(x|1-1/ϖ,1/ϖ1-ϱ,ϱ0,11-ϱ,ϱ)dx(B.3)
=Γσ+1Γ-σ/ϖϖΓ1+ϱσΓ-ϱσ(B.4)

where ϱ=12-ζϖ+ζ2. [76.3.1.3] Using ΓxΓ-x=-π/xsinπx and the functional equation for the Γ-function gives

0xσhx;ϖ,ζ,0,1dx=1πsinπϱσΓσΓ1-σϖ(B.5)

which inserted into (B.1) readily yields the desired result (7.5).