Sie sind hier: ICP » R. Hilfer » Publikationen

4 H-Functions

4.1 Definition

[120.1.1] The H-function of order m,n,p,qN4 and with parameters AiR+(i=1,,p), BiR+(i=1,,q), aiC(i=1,,p), and biC(i=1,,q) is defined for zC,z0 by the contour integral [55, 56, 57, 58, 59]

Hp,qm,n(z|a1,A1,,ap,Apb1,B1,,bq,Bq)=12πiLη(s)z-sds(153)

where the integrand is

ηs=i=1mΓbi+Bisi=1nΓ1-ai-Aisi=n+1pΓai+Aisi=m+1qΓ1-bi-Bis.(154)

[page 121, §0]    [121.0.1] In (153) z-s=exp-slogz-iargz and argz is not necessarily the principal value. [121.0.2] The integers m,n,p,q must satisfy

0mq,0np,(155)

and empty products are interpreted as being unity. [121.0.3] The parameters are restricted by the condition

PaPb=(156)

where

Pa={poles of Γ(1-ai-Ais)}={1-ai+kAiC:i=1,,n;kN0}
Pb={poles of Γ(bi+Bis)}={-bi-kBiC:i=1,,m;kN0}(157)

are the poles of the numerator in (154). [121.0.4] The integral converges if one of the following conditions holds [59]

L=L(c-i,c+i;Pa,Pb);    |argz|<Cπ/2;    C>0(158a)
L=L(c-i,c+i;Pa,Pb);    |argz|=Cπ/2;    C0;    cD<-ReF(158b)
L=L(-+iγ1,-+iγ2;Pa,Pb);    D>0;    0<|z|<(159a)
L=L(-+iγ1,-+iγ2;Pa,Pb);    D=0;    0<|z|<E-1(159b)
L=L(-+iγ1,-+iγ2;Pa,Pb);    D=0;    |z|=E-1; C0; ReF<0(159c)
L=L(+iγ1,+iγ2;Pa,Pb);    D<0;    0<|z|<(160a)
L=L(+iγ1,+iγ2;Pa,Pb);    D=0;    |z|>E-1(160b)
L=L(+iγ1,+iγ2;Pa,Pb);    D=0;    |z|=E-1; C0; ReF<0(160c)

where γ1<γ2. [121.0.5] Here Lz1,z2;G1,G2 denotes a contour in the complex plane starting at z1 and ending at z2 and separating the points in G1 from those

[page 122, §0]    in G2, and the notation

C=i=1nAi-i=n+1pAi+i=1mBi-i=m+1qBi(161)
D=i=1qBi-i=1pAi(162)
E=i=1pAiAii=1qBi-Bi(163)
F=i=1qbi-i=1paj+p-q/2+1(164)

was employed. [122.0.1] The H-functions are analytic for z0 and multivalued (single valued on the Riemann surface of logz).

4.2 Basic Properties

[122.1.1] From the definition of the H-functions follow some basic properties. [122.1.2] Let Sn(n1) denote the symmetric group of n elements, and let πn denote a permutation in Sn. [122.1.3] Then the product structure of (154) implies that for all πnSn,πmSm,πp-nSp-n and πq-mSq-m

Hp,qm,n(z|a1,A1,,ap,Apb1,B1,,bq,Bq)=Hp,qm,n(z|Pn,Pp-nPm,Pq-m)(165)

where the parameter permutations

Pn=aπn1,Aπn1,,aπnn,Aπnn
Pp-n=aπp-nn+1,Aπp-nn+1,,aπp-np,Aπp-np
Pm=bπm1,Bπm1,,bπmm,Bπmm(166)
Pq-m=bπq-mm+1,Bπq-mm+1,,bπq-mq,Bπq-mq

have to be inserted on the right hand side. [122.1.4] If any of n,m,p-n or q-m vanishes the corresponding permutation is absent.

[122.2.1] The order reduction formula

Hp,qm,n(z|a1,A1,a2,A2,ap,Apb1,B1,b2,B2,bq-1,Bq-1a1,A1)=Hp-1,q-1m,n-1(z|a2,A2,,ap,Apb1,B1,,bq-1,Bq-1)(167)

[page 123, §0]    holds for n1 and q>m, and similarly

Hp,qm,n(z|a1,A1,a2,A2,ap-1,Ap-1b1,B1b1,B1,b2,B2,bq,Bq)=Hp-1,q-1m-1,n(z|a1,A1,,ap-1,Ap-1b2,B2,,bq,Bq)(168)

for m1 and p>n. [123.0.1] The formula

Hp,qm,n(z|a,0,a2,A2,ap,Apb1,B1,,bq,Bq)=Γ(1-a)Hp-1,qm,n-1(z|a2,A2,,ap,Apb1,B1,,bq,Bq)(169)

holds for n1 and Re1-a>0. [123.0.2] Analogous formulae are readily found if a parameter pair a,0 or b,0 appears in one of the other groups.

[123.1.1] A change of variables in (153) shows

Hp,qm,n(z|a1,A1,,ap,Apb1,B1,,bq,Bq)=Hq,pn,m(1z|1-b1,B1,,1-bq,Bq1-a1,A1,,1-ap,Ap)(170)

which allows to transform an H-function with D>0 and argz to one with D<0 and arg1/z. [123.1.2] For γ>0

1γHp,qm,n(z|a1,A1,,ap,Apb1,B1,,bq,Bq)=Hp,qm,n(zγ|a1,γA1,,ap,γApb1,γB1,,bq,γBq)(171)

while for γR

zγHp,qm,n(z|a1,A1,,ap,Apb1,B1,,bq,Bq)=Hp,qm,n(z|a1+γA1,A1,,ap+γAp,Apb1+γB1,B1,,bq+γBq,Bq)(172)

[page 124, §0]    holds.

[124.1.1] For m=0 with conditions (159) the integrand is analytic and thus

Hp,q0,n(z|a1,A1,,ap,Apb1,B1,,bq,Bq)=0.(173)

4.3 Integral Transformations

[124.2.1] The definition of an H-function in eq. (153) becomes an inverse Mellin transform if L is chosen parallel to the imaginary axis inside the strip

max1imRe-biBi<s<min1imRe1-aiAi(174)

by the Mellin inversion theorem [60]. [124.2.2] Therefore

MHp,qm,nzs=ηs=i=1mΓbi+Bisi=1nΓ1-ai-Aisi=n+1pΓai+Aisi=m+1qΓ1-bi-Bis(175)

whenever the inequality

max1imRe-biBi<min1imRe1-aiAi(176)

is fulfilled.

[124.3.1] The Laplace transform of an H-function is obtained from eq. (175) by using eq. (78). [124.3.2] One finds

L{Hp,qm,n(z)}(u)=0e-uxHp,qm,n(x|a1,A1,,ap,Apb1,B1,,bq,Bq)dx
=Hq,p+1n+1,m(u|1-b1-B1,B1,,1-bq-Bq,Bq0,11-a1-A1,A1,,1-ap-Ap,Ap)
=1uHp+1,qm,n+1(1u|0,1a1,A1,,ap,Apb1,B1,,bq,Bq)(177)

valid for Res>0, C>0, argz<12Cπ and min1jmRebj/Bj>-1.

[page 125, §1]   
[125.1.1] The definite integral found in [59, 2.25.2.2.]

0yxβ-1(y-x)γ-1Hp,qm,n(Cxδ(y-x)η|a1,A1,,ap,Apb1,B1,,bq,Bq)dx
=yβ+γ-1Hp+2,q+1m,n+2(Cyδ+η|1-β,δ,1-γ,η,a1,A1,,ap,Apb1,B1,,bq,Bq,1-β-γ,δ+η)(178)

contains as a special case the fractional Riemann-Liouville integral [58, (2.7.13)]

I0+αHp,qm,ny=1Γα0y(y-x)α-1Hp,qm,n(x|a1,A1,,ap,Apb1,B1,,bq,Bq)dx
=yαHp+1,q+1m,n+1(y|0,1,a1,A1,,ap,Apb1,B1,,bq,Bq,-α,1)(179)

valid if min1jmRebj/Bj>0. [125.1.2] The fractional Riemann-Liouville derivative is obtained from this formula by analytic continuation to α<0.

4.4 Series Expansions

[125.2.1] The H-functions may be represented as the series [56, 57, 58, 59]

Hp,qm,n(z|a1,A1,,ap,Apb1,B1,,bq,Bq)=i=1mk=0cik-1kk!Bizbi+k/Bi(180a)
where
cik=mj=1jiΓbj-bi+kBj/Binj=1Γ1-aj+bi+kAj/Biqj=m+1Γ1-bj+bi+kBj/Bipj=n+1Γaj-bi+kAj/Bi(180b)

whenever D0, L is as in (158) or (159) and the poles in Pb are simple. [125.2.2] Similarly

Hp,qm,n(z|a1,A1,,ap,Apb1,B1,,bq,Bq)=i=1nk=0cik-1kk!Aiz-1-ai+k/Ai(181a)
[page 126, §0]    where
cik=nj=1jiΓ1-aj-1-ai+kAj/Aimj=1Γbj+1-ai+kBj/Aipj=n+1Γaj+1-ai+kAj/Aiqj=m+1Γ1-bj-1-ai+kBj/Ai(181b)

whenever D0, L is as in (158) or (160) and the poles in Pa are simple.