Index
- additivity 2.2.1.9
- adjoint operators 2.2.1.7
- analysis of singularities 2.2.2.8
- anomalous subdiffusion 2.3.1
- Banach space Appendix B, 2.2.2.6, 2.2.2.9, 2.3.3.2
- Bernstein function 2.3.3.6
- Bessel function 2.3.4.2
- binomial formula 2.1.1, 2.2.2.6
- Bochner-Levy diffusion 2.2.2.9, 2.3.4.1
- Borel measure 2.3.3.6
- Cauchy problem 2.3.3.1
- causality 2.3.3.5
- classification of phase transitions 2.2.2.8
- conjugate Riesz potential Definition 2.3
- continuity in time 2.3.3.3
- continuous time random walk 2.3.4.3
- convolution
- critical phenomena 2.2.2.8
- CTRW 2.3.4.3
- difference quotient 2.1.4, 2.1.4, 2.1.6, 2.2.2.6, 2.2.2.6
- diffusion 2.2.2.9, 2.3.1, 2.3.2, 2.3.2, 2.3.4, 2.3.4.1, 2.3.4.2, 2.3.4.2, 2.3.4.2, 2.3.4.2, 2.3.4.3
- Dirac δ function Appendix C, Appendix C, Appendix C, 2.2.1.3, 2.2.1.5
- Dirac-measure 2.3.3.6
- distribution(s) Appendix C
- Ehrenfest classification 2.2.2.8
- eigenfunction(s)
- fractional derivatives 2.2.3
- ergodicity breaking 2.3.3.1
- essential range Appendix B
- Euler 2.1.2, 2.1.3
- Euler Beta function 2.2.1.9
- exponential series 2.1.3, 2.1.4
- Fokker-Planck equation 2.3.4.1
- Fourier 2.1.5
- Fourier series 2.2.1.3
- Fourier transformation 2.2.1.6, 2.2.2.5
- fractional derivative
- fractional difference quotient 2.2.2.6
- fractional differential equation 2.2.3, 2.2.3, 2.3.1
- fractional diffusion 2.3.4, 2.3.4.1, 2.3.4.2, 2.3.4.3
- fractional integral 2.2.1
- fractional integration
- fractional master equation 2.3.4.3, 2.3.4.3
- fractional powers 2.2.2.9
- fractional stationarity 2.3.3.8
- fractional time 2.3.3
- fractional time evolution 2.3.3.6
- function(s)
- Gamma function 2.1.2, 2.2.1.2
- Grünwald 2.1.6
- Grünwald-Letnikov derivative 2.2.2.6
- Hardy-Littlewood theorem 2.2.1.8
- Heaviside step function 2.2.1.3
- H-function 2.3.3.6, 2.3.4.2
- Hilbert space Appendix B, 2.2.2.9
- Hölder space Appendix B
- homogeneity of time 2.3.3.4
- homogenous divisibilty 2.3.3.4, 2.3.3.6, 2.3.3.8
- Hörmander symbol class Definition 2.19
- identity operator 2.2.2.3, 2.2.2.6
- infinitesimal generator 2.2.2.9, 2.3.3.7
- integral transforms 2.2.1.6
- integration
- integroderivatives 2.1.6
- irreversibility problem
- iterated integrals 2.2.1.1
- Kohn-Nirenberg pseudodifferential operator Definition 2.19
- Laplace transformation 2.2.1.6
- Laplacian 2.2.2.9, 2.3.4.1
- Lebesgue space Appendix B
- Leibniz 2.1.1, 2.1.3
- Leibniz’ paradox 2.1.1, 2.1.2, 2.1.3
- Leibniz’ product rule 2.1.1
- Liouville 2.1.4
- Lizorkin space 2.2.1.6
- local fractional derivative 2.2.2.8
- locality 2.3.2, 2.3.4.2
- locally integrable function Appendix B
- Marchaud fractional derivative 2.2.2.3
- master equation 2.3.4.3
- Mellin transformation 2.3.3.6
- Mittag-Leffler function 2.2.3
- Montroll-Weiss diffusion 2.3.4.2
- nonlocality 2.3.2, 2.3.2, 2.3.3.1, 2.3.3.1
- operator(s)
- p-integrable function Appendix B
- principal value Appendix C
- pseudodifferential operators 2.2.2.10
- random walk
- rapidly decreasing function Appendix B
- regularly varying function 2.2.2.8
- Riemann 2.1.7
- Riemann-Liouville derivatives 2.2.2.1
- Riemann-Liouville fractional integrals 2.2.1.2
- Riesz-Feller kernel 2.2.1.4
- Riesz fractional derivatives 2.2.2.5
- Riesz fractional integrals 2.2.1.4
- Riesz kernel 2.2.1.4
- Riesz potential 2.2.1.4
- Schwartz space Appendix B, Appendix C
- semigroup 2.2.1.9, 2.2.2.9, 2.2.2.9, 2.3.3.1, 2.3.3.2, 2.3.3.6, 2.3.3.6, 2.3.3.7
- singularities 2.2.2.8
- slowly varying function 2.2.2.8
- Sobolev space Appendix B
- space
- stationarity 2.3.3.1, 2.3.3.8
- subdiffusion 2.3.1
- test functions Appendix C
- time
- time evolution 2.3.3.2
- translation invariance 2.3.3.1, 2.3.3.4, 2.3.3.6
- translation operator 2.2.2.3, 2.2.2.6
- types of fractional derivative 2.2.2.2
- unit step function 2.2.1.3
- Weyl fractional integrals 2.2.1.3
- Youngs inequality 2.2.1.8