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Abstract. The generalized Mittag-Leffler function Eα,β(z) has been studied for ar-

bitrary complex argument z ∈ C and parameters α ∈ R+ and β ∈ R. This function

plays a fundamental role in the theory of fractional differential equations and numerous
applications in physics. The Mittag-Leffler function interpolates smoothly between ex-

ponential and algebraic functional behaviour. A numerical algorithm for its evaluation

has been developed. The algorithm is based on integral representations and exponen-
tial asymptotics. Results of extensive numerical calculations for Eα,β(z) in the complex

z-plane are reported here. We find that all complex zeros emerge from the point z = 1

for small α. They diverge towards −∞+(2k−1)πi for α→ 1− and towards −∞+2kπi
for α → 1+ (k ∈ Z). All complex zeros collapse pairwise onto the negative real axis

for α→ 2. We introduce and study also the inverse generalized Mittag-Leffler function
Lα,β(z) defined as the solution of the equation Lα,β(Eα,β(z)) = z. We determine its

principal branch numerically.
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1. Introduction

[637.1.1] A special function of growing importance is the generalized Mittag-Leffler function
defined by the power series [2, p. 210]

Eα,β(z) =

∞∑
k=0

zk

Γ(αk + β)
(1)

for complex argument z ∈ C and parameters α, β ∈ C with Reα > 0. [637.1.2] Despite the
fact that Eα,β was introduced roughly 100 years ago [3, 4, 5, 6, 7, 8] its mapping properties
in the complex plane are largely unknown.

[637.2.1] Mittag-Leffler functions are important in mathematical as well as in theoretical
and applied physics [9, 10, 11, 12, 13, 14, 15, 16, 17, 18]. [637.2.2] A primary reason for
the recent surge of interest in these functions [page 638, §0] is their appearance when solving
the fractional differential equation

Dα,γ
a+ f(x) = λf(x) 0 < α ≤ 1, 0 ≤ γ ≤ 1, λ ∈ R (2)

where Dα,γ
a+ is a fractional derivative of order α and type γ with lower limit a [18]. [638.0.1] In

eq. (2) the symbol Dα,γ
a+ stands for [18, p. 115]

Dα,γ
a+ f(x) =

[
I
γ(1−α)
a+

d

dx
I
(1−γ)(1−α)
a+ f

]
(x) 0 < α ≤ 1, 0 ≤ γ ≤ 1 (3)

for functions for which the expression on the right hand side exists. [638.0.2] Of course, the
notation Iαa+f(x) stands for the right sided fractional Riemann-Liouville integral of order
α ∈ R+ defined by

Iαa+f(x) =
1

Γ(α)

x∫
a

(x− t)α−1f(t)dt with a ≤ x ≤ b, α ∈ R+ (4)

for locally integrable functions f ∈ L1[a, b]. [638.0.3] Recall from Ref. [18, p. 115] that
equation (2) is solved for a = 0 by

f(x) = x(1−γ)(α−1)Eα,α+γ(1−α)(λx
α), (5)

where Eα,β(z) is the generalized Mittag-Leffler function. [638.0.4] Equation (2) shows that
the Mittag-Leffler function plays the same role for fractional calculus that the exponential
function plays for conventional calculus. [638.0.5] Mittag-Leffler functions and fractional
calculus have in recent years become a powerful tool to investigate anomalous dynamics
and strange kinetics [13, 18, 19, 20].

[638.1.1] Despite the growing importance of Eα,β(z) in physics, and despite a wealth of
analytical information about Eα,β(z) its behaviour as a holomorphic function and depen-
dence upon the parameters are largely unexplored, because there seem to be no numerical
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algorithms available to compute the function accurately for all α, β, z. [638.1.2] Easy
numerical evaluation and a thorough understanding of Eα,β(z) as a function of α, β, z is,
however, a key prerequisite for extending its applications to other disciplines. [638.1.3] It
is therefore desirable to explore the behaviour of Eα,β(z) for large sets of the parameters
α, β and complex argument z.

[638.2.1] Given this objective the present paper reports a newly developed numerical al-
gorithm as well as extensive computations for the generalized Mittag-Leffler function.
[638.2.2] Little will be said in this paper about the algorithm apart from giving its complete
definition a. [638.2.3] One should note that the algorithm works not only on the real axis,
but in the full complex plane. [638.2.4] Rather than discussing details of the algorithm we
concentrate here on exploring the functional behaviour of Eα,β(z). [638.2.5] In particular
we study its complex zeros and illustrate its behaviour as an entire function. [638.2.6] As
an example we find that the zeros of Eα,β coalesce to form a simple pole in the limit α→ 0.
[638.2.7] Moreover, the zeros diverge in a complicated fashion to −∞ as α approaches unity
from above as well as from below.

[page 639, §1]

2. Method of Calculation

2.1. Recursion Relation

[639.1.1] In the rest of this paper α and β are real numbers with α > 0. [639.1.2] Calculating
Eα,β(z) for the case α > 1 can be reduced to the case 0 < α ≤ 1 by virtue of the recursion
relation [2, 21]

Eα,β(z) =
1

2m+ 1

m∑
h=−m

Eα/(2m+1),β(z1/(2m+1)e2πih/(2m+1)) (6)

valid for all β ∈ R, z ∈ C where m = [(α − 1)/2] + 1. [639.1.3] Here [x] denotes the
largest integer smaller than x. [639.1.4] Because of the recursion we consider only the case
0 < α ≤ 1 in the following.

2.2. Regions

[639.2.1] For 0 < α ≤ 1 the complex z-plane is partitioned into four regions G0, G1, G2, G3.
[639.2.2] In each region a different method is used for the calculation of the Mittag-Leffler
function. [639.2.3] The central region

G0 = D(r0) = {z ∈ C : |z| ≤ r0} (7)

is the closure of the open disk D(r0) = {z ∈ C : |z| < r0} of radius r0 < 1 centered at
the origin. [639.2.4] In our numerical calculations we have chosen r0 = 0.9 throughout.

aWhile this work was in progress a simpler algorithm appeared in [24]. A detailed comparison between

the two algorithms can be found in [25].



4 R. HILFER AND H.J. SEYBOLD

[639.2.5] The regions G1,G2 are defined by

G1 = W+(5πα/6) \G0 (8)

G2 = C \ (G1 ∪G0) (9)

where

W+(φ) = {z ∈ C : | arg(z)| < φ} (10)

is the open wedge with opening angle φ, (0 < φ < π). [639.2.6] For future reference we
define also the (left) wedge

W−(φ) = {z ∈ C : φ < | arg(z)| ≤ π} (11)

[639.2.7] Finally the region G3 is defined as

G3 = C \ D(r1) = {z ∈ C : |z| > r1} (12)

where r1 > r0 will be defined below.

2.3. Taylor series

[639.3.1] For z ∈ G0, i.e. for the central disk region (with r0 = 0.9), the Mittag-Leffler
function is computed from truncating its Taylor series (1). [639.3.2] For given z ∈ G0 and
accuracy ε we choose [page 640, §0] N such that∣∣∣∣∣Eα,β(z)−

N∑
k=0

zk

Γ(αk + β)

∣∣∣∣∣ ≤ ε (13)

holds. [640.0.1] The dependence of N on the accuracy ε and other parameters is found as

N ≥ max
{

[(2− β)/α] + 1,

[
ln(ε(1− |z|))

ln(|z|)

]
+ 1
}
. (14)

2.4. Integral Representations

[640.1.1] We start from the basic integral representation [2, p. 210]

Eα,β(z) =
1

2πi

∫
C

yα−βey

yα − z
dy (15)

where the path of integration C in the complex plane starts and ends at −∞ and encircles
the circular disc |y| ≤ |z|1/α in the positive sense. [640.1.2] When this integral is evaluated
several cases arise. [640.1.3] For z ∈ G1 we distinguish the cases β ≤ 1 and β > 1 and
compute the Mittag-Leffler function from the integral representations [22]

Eα,β(z) = A (z;α, β, 0) +

∞∫
0

B(r;α, β, z, πα)dr , β ≤ 1 (16)

Eα,β(z) = A (z;α, β, 0) +

∞∫
1/2

B(r;α, β, z, πα)dr +

πα∫
−πα

C(ϕ;α, β, z, 1/2)dϕ , β > 1 (17)
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where

A(z;α, β, x) =
1

α
z(1−β)/α exp

[
z1/α cos(x/α)

]
(18)

B(r;α, β, z, φ) =
1

π
A(r;α, β, φ)

r sin[ω(r, φ, α, β)− φ]− z sin[ω(r, φ, α, β)]

r2 − 2rz cosφ+ z2
(19)

C(ϕ;α, β, z, ρ) =
ρ

2π
A(ρ;α, β, ϕ)

cos[ω(ρ, ϕ, α, β)] + i sin[ω(ρ, ϕ, α, β)]

ρ(cosϕ+ i sinϕ)− z
(20)

ω(x, y, α, β) = x1/α sin(y/α) + y(1 + (1− β)/α). (21)

[640.1.4] For z ∈ G2 the integral representations read

Eα,β(z) =

∞∫
0

B(r;α, β, z, 2πα/3)dr , β ≤ 1 (22)

Eα,β(z) =

∞∫
1/2

B(r;α, β, z, 2πα/3)dr +

2πα/3∫
−2πα/3

C(ϕ;α, β, z, 1/2)dϕ , β > 1 (23)

where the integrands have been defined in eq. (18)–(21) above.

[page 641, §1] [641.1.1] The integrand C(ϕ;α, β, z, ρ) is oscillatory but bounded over the
integration interval. [641.1.2] Thus the integrals over C can be evaluated numerically using
any appropriate quadrature formula. [641.1.3] We use a robust Gauss-Lobatto quadrature.

[641.2.1] The integrals over B(r;α, β, z, φ) involve infinite intervals. [641.2.2] For given z ∈
G1 (resp. z ∈ G2) and accuracy ε we approximate the integrals by truncation. [641.2.3] The
error ∣∣∣∣∣∣

∞∫
Rmax

B(r;α, β, z, φ)dr

∣∣∣∣∣∣ < ε (24)

depends on the truncation point Rmax. [641.2.4] For φ = πα we find

Rmax ≥


max

{
1, 2|z|,

(
− ln πε6

)α}
, β ≥ 0

max

{
(|β|+ 1)α, 2|z|,

(
−2 ln

(
πε

6(|β|+ 2)(2|β|)|β|

))α}
, β < 0,

(25)

while for φ = 2πα/3 we have

Rmax ≥


max

{
2α, 2|z|,

(
−2 ln π2βε

12

)α}
, β ≥ 0

max

{
[2(|β|+ 1)]α, 2|z|,

[
−4 ln π2βε

12 (|β|+ 2) (4|β|)|β|

]α}
, β < 0.

(26)
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2.5. Exponential Asymptotics

[641.3.1] The asymptotic expansions given in eqs. (21) and (22) on page 210 in Ref. [2]
indicate that the Mittag-Leffler function exhibits a Stokes phenomenon. [641.3.2] The
Stokes lines are the rays arg(z) = ±απ and it was recently shown in [23] that a Berry-type
smoothing applies. [641.3.3] The exponentially improved asymptotic expansions will be
used here for computing Eα,β(z) for z ∈ G3. [641.3.4] More precisely for 0 < α < 1 we use
the following exponentially improved uniform asymptotic expansions [23] :

Eα,β(z) = −
M∑
k=1

z−k

Γ(β − αk)
+O

(
|z|(1/2−β)/αe−|z|

1/α
)

(27)

for z ∈ G3 ∩W−(απ + δ)

Eα,β(z) =
1

α
z(1−β)/αez

1/α

−
M∑
k=1

z−k

Γ(β − αk)
+O

(
|z|(1/2−β)/αe−|z|

1/α
)

(28)

for z ∈ G3 ∩W+(απ − δ),

Eα,β(z) =
1

2α
z(1−β)/αez

1/α

erfc

(
(c3/36− ic2/6− c)

√
|z|1/α/2

)
−

M∑
k=1

z−k

Γ(β − αk)
+O

(
|z|(1/2−β)/αe−|z|

1/α
)

(29)

[page 642, §0] for z ∈ G3 with −απ − δ ≤ arg(z) ≤ −απ + δ and c = arg(z1/α) + π, and

Eα,β(z) =
1

2α
z(1−β)/αez

1/α

erfc

(
(c+ ic2/6− c3/36)

√
|z|1/α/2

)
−

M∑
k=1

z−k

Γ(β − αk)
+O

(
|z|(1/2−β)/αe−|z|

1/α
)

(30)

for z ∈ G3 with απ − δ ≤ arg(z) ≤ απ + δ and c = arg(z1/α)− π. [642.0.1] Here δ > 0 is a
small number, in practice we use δ = 0.01. [642.0.2] In eqs. (29) and (30)

erfc(z) =
2√
π

∞∫
z

ey
2/2dy (31)

denotes the complex complementary error function. [642.0.3] Note the difference between
eqs. (27)–(30) and the expansions in [2, p. 210]. [642.0.4] We take

M = min{50, [|z|1/α/α]} (32)

to truncate the asymptotic series. [642.0.5] Choosing for ε the machine precision we fix the
radius r1 in G3 at

r1 =
1

[εΓ(β − αM)]1/M
. (33)

[642.0.6] The remainder estimates in eqs. (27)–(30) are only valid for a value of M that is
chosen in an optimal sense as in eqs. (32) and (33).
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3. Results

[642.1.1] In this section we present the results of extensive numerical calculations using an
algorithm that is based on the error estimates developed above. [642.1.2] Our results give
a comprehensive picture of the behaviour of Eα,β(z) in the complex z-plane for all values
of the parameters α > 0, β ∈ R.

3.1. Complex Zeros

[642.2.1] Contrary to the exponential function the Mittag-Leffler functions exhibit complex
zeros denoted as z0. [642.2.2] The complex zeros were studied by Wiman [8] who found the
asymptotic curve along which the zeros are located for 0 < α < 2 and showed that they fall
on the negative real axis for all α ≥ 2. [642.2.3] For real α, β these zeros come in complex
conjugate pairs. [642.2.4] The pairs are denoted as z0k(α) with integers k ∈ Z where k > 0
(resp. k ≤ 0) labels zeros in the upper (resp. lower) half plane. [642.2.5] Figure 1 shows
lines that the complex zeros z0k(α), k = −5, ..., 6 of Eα,1(z) trace out as functions of α for
0.1 ≤ α ≤ 0.99995. [642.2.6] Figure 1 gives strong numerical evidence that the distance
between zeros diminishes as α→ 0. [642.2.7] Moreover all zeros approach the point z = 1
as α→ 0. [642.2.8] This fact seems to have been overlooked until now. [642.2.9] Of course,
for every fixed α > 0 the point z = 1 is neither a zero nor an accumulation point of zeros
because the zeros of an entire function must remain isolated. [642.2.10] The numerical
evidence is confirmed analytically.

−12.5 −10 −7.5 −5 −2.5 0 2.5 5
−40

−30

−20

−10

0

10

20

30

40

Re z

Im
 z

Figure 1. The lines trace out the locus of complex zeros z0k(α) as functions of
α for k = −5, ..., 6 for the the Mittag-Leffler function Eα,1(z) in the range 0.1 ≤
α ≤ 0.99995. The line styles consecutively label k = 0, 1 (solid) k = −1, 2 (dashed)
k = −2, 3 (dash-dotted), k = −3, 4 (solid) k = −4, 5 (dashed) and k = −5, 6 (dash-
dotted). The symbols mark α = 0.5 (plus), α = 0.7 (triangle right), α = 0.8 (triangle
left), α = 0.9 (circle), α = 0.95 (square), α = 0.99 (asterisk), α = 0.999 (diamond),
and α = 0.9999 (cross).
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[page 643, §1]

Theorem 3.1. The zeros z0k(α) of Eα,1(z) obey

lim
α→0

z0k(α) = 1 (34)

for all k ∈ Z.

[643.0.1] For the proof we note that Wiman showed [8, p. 226]

lim
k→∞

arg z0±k(α) = ±απ
2

(35)

and further that the number of zeros with z0k < r is given by r1/α/π− 1 + (α/2) [8, p. 228].
[643.0.2] From this follows that(

1− α

2

)α
πα < |z0k(α)| <

(
2k + 1− α

2

)α
πα (36)

for all k ∈ Z. [643.0.3] Taking the limit α → 0 in (35) and (36) gives |zk(0)| = 1 and
arg zk(0) = 0 for all k ∈ Z.

[page 644, §1] [644.1.1] The theorem states that in the limit α → 0 all zeros collapse into a
singularity at z = 1. [644.1.2] Next we turn to the limit α → 1. [644.1.3] Of course for
α = 1 we have E1,1(z) = exp z which is free from zeros. [644.1.4] Figure 1 shows that this
is indeed the case because, as α→ 1, the zeros approach −∞ along straight lines parallel
to the negative real axis. [644.1.5] In fact we find

Theorem 3.2. Let ε > 0. Then the zeros z0k(α) of Eα,1(z) obey

lim
ε→0

Im z0k(1− ε) = (2k − 1)π (37)

lim
ε→0

Im z0k(1 + ε) = 2kπ (38)

for all k ∈ Z.

[644.1.6] The theorem shows that the phase switches as α crosses the value α = 1 in the
sense that minima (valleys) and maxima (hills) of the Mittag-Leffler function are exchanged
(see also Figures 7 and 8 below).

[644.2.1] The location of zeros as function of α for the case 1 < α < 2 is illustrated in
Figure 2. [644.2.2] Note that with increasing α more and more pairs of zeros collapse onto
the negative real axis. [644.2.3] The collapse appears to happen in a continuous manner
(see also Figures 9 and 10 below). [644.2.4] It is interesting to note that after two conjugate
zeros merge to become a single zero on the negative real axis this merged zero first moves to
the right towards zero and only afterwards starts to move left towards −∞. [644.2.5] This
effect can also be seen in Figure 2. [644.2.6] For α = 2 the zeros −(k − (1/2))2π2 all fall
on the negative real axis as can be seen in Figure 11 below. [644.2.7] For α > 2 all zeros
lie on the negative real axis.



APPROXIMATIONS FOR Eα,β IN THE COMPLEX PLANE 9

−125 −100 −75 −50 −25 0
−60
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 z

Figure 2. Locus of complex zeros z0k(α) as functions of α for k = ±1,±2,±3,±4
for the the Mittag-Leffler function Eα,1(z) in the range 1.00001 ≤ α ≤ 1.9. The line
styles consecutively label k = ±1 (solid) k = ±2 (dashed) k = ±3 (dash-dotted),
k = ±4 (solid). The symbols mark α = 1.00001 (triangle left filled) α = 1.001
(triangle right) α = 1.1 (plus) α = 1.3 (circle) α = 1.5 (square), and α = 1.7
(diamond) α = 1.9 (cross). The arrows on the left indicate the asymptotic locations
z0k(1) = 2kπ in the limit α→ 1 from above.

3.2. Contour Lines

[644.3.1] Next we present contour plots for Re Eα,β(z). [644.3.2] We use the notation

CRe
α,β(v) = {z ∈ C : Re Eα,β(z) = v} (39)

CImα,β(v) = {z ∈ C : Im Eα,β(z) = v} (40)

for the contour lines of the real and imaginary part. [644.3.3] The region {z ∈ C :
Re Eα,β(z) > 1} will be coloured white. [644.3.4] The region {z ∈ C : Re Eα,β(z) < −1}
will be coloured black. [644.3.5] The region {z ∈ C : 0 ≤ Re Eα,β(z) ≤ 1} is light gray.
[644.3.6] The region {z ∈ C : −1 ≤ Re Eα,β(z) ≤ 0} is dark gray. [644.3.7] Thus the
contour line CRe

α,β(0) separates the light gray from dark gray, the contour CRe
α,β(1) separates

white from light gray, and CRe
α,β(−1) dark gray from black. [644.3.8] Because Re Eα,β(z) is

continuous there exists in all figures light and dark gray regions between white and black
regions even if the gray regions cannot be discerned on a figure.

[page 645, §1] [645.1.1] We begin our discussion with the case α→ 0. Setting α = 0 the series
(1) defines the function

E0,β(z) =
1

Γ(β)(1− z)
(41)

for all |z| < 1. [645.1.2] This function is not entire, but can be analytically continued to all
of C \ {1}, and has then a simple pole at z = 1 for all β. [645.1.3] In Figure 3 we show the
contour plot for the case α = 0, β = 1. [645.1.4] The contour line CRe

0,1(0) is the straight

line Re z = 1 separating the left and right half plane. [645.1.5] The contour line CRe
0,1(1)
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Re z

Im
 z

α=0.000  β=1.000

−1 −0.5 0 0.5 1 1.5 2
−1.5

−1

−0.5

0

0.5

1

1.5

Figure 3. Contour plot for Re E0,1(z). The region {z ∈ C : Re Eα,β(z) > 1} is
white, {z ∈ C : Re Eα,β(z) < −1} is black, {z ∈ C : 0 ≤ Re Eα,β(z) ≤ 1} is light
gray, and {z ∈ C : −1 ≤ Re Eα,β(z) ≤ 0} is dark gray.

is the boundary circle of the white disc on the left, while the contour line CRe
0,1(−1) is the

boundary of the black disc on the right.

[645.2.1] Having discussed the case α = 0 we turn to the case α > 0 and note that the
limit α → 0 is not continuous. [645.2.2] For α > 0 the Mittag-Leffler function is an entire
function. [645.2.3] As an example we show the contour plot for α = 0.2, β = 1 in Figure 4.
[645.2.4] The central white circular lobe extending [page 646, §0] to the origin appears to be a
remnant of the white disc in Figure 3. [646.0.1] They evolve continuously from each other
upon changing α between 0 and 0.2. [646.0.2] It seems as if the singularity at z = 1 for
α = 0 had moved along the real axis through the black circle to ∞ thereby producing an
infinite number of secondary white and black lobes (or fingers) confined to a wedge shaped
region with opening angle απ/2.

[646.1.1] The behaviour of Eα,β(z) for 0 < α < 2 is generally dominated by the wedge
W+(απ/2) indicated by dashed lines in Figure 4. [646.1.2] For z ∈W+(απ/2) the Mittag-
Leffler function grows to infinity as |z| → ∞. [646.1.3] Inside this wedge the function
oscillates as a function of Im z. [646.1.4] For z ∈ W−(απ/2) the function decays to zero
as |z| → ∞. [646.1.5] Along the delimiting rays, i.e. for arg(z) = ±απ/2, the function
approaches 1/α in an oscillatory fashion.

[646.2.1] The oscillations inside the wedge are seen as black and white lobes (or fingers) in
Figure 4. [646.2.2] Each white finger is surrounded by a light gray region. [646.2.3] Near
the tip of the light gray region surrounding a white finger lie complex zeros of the Mittag-
Leffler function. [646.2.4] The real part Re Eα,β(z) is symmetric with respect to the real
axis.
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Re z

Im
 z

α=0.200  β=1.000

−1 −0.5 0 0.5 1 1.5 2
−1.5

−1

−0.5

0

0.5

1

Figure 4. Contour plot for Re E0.2,1(z). The dashed lines mark the wedge
W+(απ/2). (The gray level coding is the same as in Figure 3)

[646.3.1] Contrary to CRe
0,1(0) the contour line CRe

0.2,1(0) consists of infinitely many pieces.

[646.3.2] These pieces will be denoted as CRe
0.2,1(0;±k) with k = 1, 2, 3, ... located in the

upper (+) resp. lower (−) half plane. [646.3.3] The numbering is chosen from left to right,
so that CRe

0.2,1(0;±1) separates the light gray region in the left half plane from the dark gray

in the right half plane. [646.3.4] The line CRe
0.2,1(0; +2) is the boundary of the light gray

region surrounding the first white “finger” (lobe) in the upper half plane and CRe
0.2,1(0;−2)

is its reflection on the real axis. [646.3.5] Similarly for k = 3, 4, .... [646.3.6] Note that
CRe
0.2,1(0;±1) seem to encircle the central white lobe (“bubble”) by going to ±i∞ parallel

to the imaginary axis.

Figure 5. Truncated surface plot for Re E0.333,1(z). Only the surface for
−1 ≤ Re E0.333,1(z) ≤ 1 is shown. The contour lines CRe

0.333,1(0) are shown as thick

solid lines. The contour lines CIm0.333,1(0) are shown as thick dashed lines. Their
intersections are zeros.
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Figure 6. Contour plot for Re E0.731,1(z) and Re E0.737,1(z), before and after the
first osculation estimated to occurr at α ≈ 0.734375 ± 0.000015. The dashed lines
mark the wedge W+(απ/2). (The gray level coding is the same as in Figure 3)

[646.4.1] With increasing α the wedge W+(απ/2) opens, the central lobe becomes smaller,
the side fingers (or lobes) grow thicker and begin to extend towards the left half plane.
[646.4.2] At the same time the contour line CRe

α,1(0;±1) moves to the left. [646.4.3] This is
illustrated in a threedimensional plot of Re E0.333,1(z) in Figure 5. [646.4.4] In this Figure
we have indicated also the complex zeros as the intersection of CRe

0.333,1(0) (shown as thick

solid lines) and CIm0.333,1(0) (shown as thick dashed lines). [646.4.5] At α = 1/2 the contours

CRe
0.5,1(0;±1) cross the imaginary axis.

[page 647, §1] [647.1.1] Around α ≈ 0.73 the contours CRe
α,1(0;±2) osculate the contours

CRe
α,1(0;±1). [647.1.2] The osculation eliminates a light gray finger and creates a dark

gray finger. [647.1.3] In Figure 6 we show the situation before and after the oscula-
tion. [647.1.4] This is the first of an infinity of similar osculations between CRe

α,1(0;±1)

and CRe
α,1(0;±k) for k = 2, 3, 4, .... [647.1.5] We estimate the value of α for the first oscula-

tion at α ≈ 0.734375± 0.000015.

[647.2.1] For α → 1 the dark gray fingers (where Re Eα,β < 0) extend more and more
into the left half plane. [647.2.2] For α = 1 the wedge W+(π/2) becomes the right half
plane and the lobes or fingers run parallel to the real axis. [647.2.3] The dark gray fingers,
and therefore the oscillations, now extend to −∞. [647.2.4] The contour lines CRe

1,1(0;±k)
degenerate into

CRe
1,1(0;±k) = {z ∈ C : Im z = ±kπ/2}, k = 1, 2, 3, ... (42)

i.e. into straight lines parallel to the real axis. [647.2.5] This case is shown in Figure 7.
[647.2.6] For α = 1 + ε with ε > 0 the gray fingers are again finite. [647.2.7] This is shown
in Figure 8.
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Figure 7. Contour plots for Re E0.966,1(z) and
Re E1,1(z). The dashed lines mark the wedge
W+(απ/2). (The gray level coding is the same
as in Figure 3)
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Figure 8. Contour plot for
Re E1.02,1(z). The dashed lines
mark the wedge W+(απ/2).
(The gray level coding is the
same as in Figure 3)
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Figure 9. Contour plot for Re E1.420,1(z) and
Re E1.425,1(z) before and after the osculation esti-
mated to occurr at α ≈ 1.42215 ± 0.00005. The
dashed lines mark the wedge W+(απ/2). (The
gray level coding is the same as in Figure 3)
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Figure 10. Contour plot for
Re E1.96,1(z). The dashed lines
mark the wedge W+(απ/2).
(The gray level coding is the
same as in Figure 3)

[647.3.1] As α is increased further the fingers grow thicker and approach each other near
the negative real axis. [647.3.2] For α ≈ 1.42215 ± 0.00005 the first of an infinite cascade
of osculations appears. [647.3.3] This is shown in Figure 9. [647.3.4] The limit α → 2 is
illustrated in Figures 10 and 11. [647.3.5] Note that the background colour changes from
light gray in Figure 10 to dark gray in 11 in agreement with the discussion of complex
zeros above.
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Figure 11. Contour plot for
Re E2,1(z). The dashed lines mark the
wedge W+(απ/2). (The gray level cod-
ing is the same as in Figure 3)
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Figure 12. Contour plot for
Re E3,1(z). The dashed lines mark the
wedge W+(απ/2). (The gray level cod-
ing is the same as in Figure 3)

[647.4.1] For α > 2 the behaviour changes drastically. [647.4.2] Figure 12 shows the contour
plot for α = 3, β = 1. [647.4.3] Note the scale of the axes and hence there are no visible
dark or light gray regions. [647.4.4] The wedge shaped region is absent. [647.4.5] The rays
delimiting the wedge may still be viewed as if the fingers were following them in the same
way as for α < 2. [647.4.6] Thus the fingers are more strongly bent as they approach the
negative real axis.

[647.5.1] Now we turn to the cases β 6= 1 choosing α = 1/3 for illustration. [647.5.2] For
β > 1 equation (41) implies that the central lobe first grows (because Γ(β) diminishes) and
then shrinks as β →∞ for small values of α. [647.5.3] This is illustrated in the upper left
subfigure of Figure 13. [647.5.4] For reference the case β = 1 is also shown in the upper
right subfigure of Figure 13.

[647.6.1] More interesting behaviour is obtained for β < 1. [647.6.2] In this case the contours
CRe
1/3,β(0;±1) stop to run to infinity parallel to the imaginary axis. [647.6.3] Instead they

seem to approach infinity along rays extending into the negative half axis as illustrated in
the lower left subfigure of Figure 13. [647.6.4] At the same time a sequence of osculations
between CRe

1/3,β(0;±k) and CRe
1/3,β(0;±(k+ 1)) begins starting from k =∞. [647.6.5] One of

the last of these osculations can be seen for β = 1/3 on the lower right subfigure of Figure
13. [647.6.6] As β falls below 1/3 the contour CRe

1/3,β(0; +1) coalesces with CRe
1/3,β(0;−1)

to form a new large finite central lobe. [647.6.7] This new second lobe becomes smaller
and retracts towards the origin for β → 0. [647.6.8] This can be seen from the upper left
subfigure of Figure 14 where the case β = 0 is shown. [647.6.9] As β falls below zero the
same process of formation of a new central lobe accompanied by a cascade of osculations
starts again. [647.6.10] This occurs iteratively whenever β crosses a negative integer and is
a consequence of the poles in Γ(β).
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Figure 13. Contour plot for Re E0.333,β(z) with β = 3, 1, 2/3, 1/3. The dashed
lines mark the wedge W+(απ/2). (The gray level coding is the same as in Figure 3)
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Figure 14. Contour plot for Re E1/3,β(z) for β = 0,−2/3,−1,−4/3. The dashed

lines mark the wedge W+(απ/2). (The gray level coding is the same as in Figure 3)
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4. Inverse Mittag-Leffler functions

[647.7.1] We introduce the inverse generalized Mittag-Leffler functions Lα,β(z) as the solu-
tions of the equation

Lα,β(Eα,β(z)) = z. (43)

[647.7.2] Our ability to calculate Eα,β(z) allows us to evaluate also Lα,β(z) by solving this
functional equation numerically. [647.7.3] We have succeeded to determine the principal
branch of Lα,β(z) in such a way that three conditions are fulfilled. [647.7.4] 1. The function
Lα,β(z) is single valued and well defined on its principal branch. [647.7.5] 2. Its principal
branch reduces to the principal branch of the logarithm for α→ 1. [647.7.6] 3. Its principal
branch is a simply connected subset of the complex plane. [647.7.7] Figure 15 shows the
principal branch for the case α = 0.95, β = 1.
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Figure 15. The dark region corresponds to the principal branch of the inverse
generalized Mittag-Leffler function Lα,β(z) for α = 0.95, β = 1.



18 R. HILFER AND H.J. SEYBOLD

References

[1] P. Adler , Porous Media, Butterworth-Heinemann, Boston. (1992)

[2] Erdelyi et al., Higher Transcendental Functions, vol. III, Mc Graw Hill Book Co. (1955)

[3] G. Mittag-Leffler, C.R. Acad. Sciences Paris, 136, p. 537 (1903)
[4] G. Mittag-Leffler, C.R. Acad. Sciences Paris, 137, p. 554 (1903)

[5] G. Mittag-Leffler, Rendiconti della reale Accademia dei Lincei, 13, p. 3 (1904)

[6] G. Mittag-Leffler, Acta Math., 29, p. 101 (1905)
[7] A. Wiman, Acta Math., 29, p. 191 (1905)

[8] A. Wiman, Acta Math., 29, p. 217 (1905)

[9] R. Nigmatullin, phys. stat. sol. b, 133, p. 425 (1986)
[10] W. Wyss, J. Math. Phys., 27, p. 2782, (1986)

[11] L. Gaul, P. Klein and S. Kempfle, Mechanical Systems and Signal Processing, 5, p. 81 (1991)

[12] G. Jumarie, J. Math. Phys., 33, p. 3536 (1992)
[13] R. Hilfer and L. Anton, Phys. Rev. E, Rapid Commun., 51, R848 (1995)

[14] R. Hilfer, Fractals 3(1), p. 211 (1995)
[15] R. Hilfer, Chaos, Solitons & Fractals, 5, p. 1475 (1995)

[16] H. Beyer and S. Kempfle, Z. angew. Math. Mech., 75, p. 623 (1995)

[17] W. Schneider and W. Wyss, J. Math. Phys., 30, p. 134 (1989)
[18] R. Hilfer, Applications of Fractional Calculus in Physics, World Scientific Publ. Co., Singapore, (2000)

[19] R. Hilfer, R. Metzler, A. Blumen and J. Klafter(eds), Chemical Physics, 284 (2002)

[20] R. Hilfer, Physica A, 329, p. 35 (2003)
[21] I. Podlubny, Fractional Differential Equations, Academic Press, London (1999)

[22] H. Seybold, Diplomarbeit, Universität Stuttgart, (2003)

[23] R. Wong and Y. Zhao, Constr. Approx., 18, p. 355 (2002)
[24] R. Gorenflo, J. Loutchko and Y. Luchko, FCAA, 5, p. 491 (2002)

[25] H. Seybold and R. Hilfer (2005), to be published

(R. Hilfer, H.J. Seybold) Institut für Computerphysik, Universität Stuttgart, 70569 Stuttgart

(R. Hilfer) Institut für Physik, Universität Mainz, 55099 Mainz, Germany


