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Abstract.The paper reviews recent developments in local porosity theory, and discusses
its application to the analysis of stochastic reconstruction models for sedimentary rocks.
Special emphasis is placed on the geometric observables in local porosity theory and
their relation with the Hadwiger theorem from stochastic geometry. In addition recent
results for the exact calculation of effective physical transport properties are given for
a Fontainebleau sandstone. The calculations pertain to potential type problems such
as electrical conduction, dielectric relaxation, diffusion or Darcy flow. The exact results
are compared to the approximate parameterfree predictions from local porosity, and are
found to be in good agreement.
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[page 203, §1]

1. Introduction

[203.1.1] An important subclass of heterogeneous and disordered systems are porous ma-
terials which can be loosely defined as mixtures of solids and fluids [20, 1, 55, 30].
[203.1.2] Despite a long history of scientific study the theory of porous media or, more
generally, heterogeneous mixturesa continues to be of central interest for many areas of
fundamental and applied research ranging from geophysics [26], hydrology [43, 7], petro-
physics [36] and civil engineering [21, 19] to the materials science of composites [17].

[203.2.1] My primary objective in this article is to review briefly the application of local
porosity theory, introduced in [27, 28, 30], to the geometric characterization of porous
or heterogeneous media. [203.2.2] A functional theorem of Hadwiger [23, p. 39] empha-
sizes the importance of four set-theoretic functionals for the geometric characterization
porous media (see also the paper by Mecke in this volume). [203.2.3] In contrast here-
with local porosity theory has emphasized geometric observables, that are not covered by
Hadwigers theorem [29, 31, 25]. [203.2.4] Other theories have stressed the importance
of correlation functions [63, 60] or contact distributions [38, 46, 61] for characteriza-
tion purposes. [203.2.5] Recently advances in computer and imaging technology have
made threedimensional microtomographic images more readily available. [203.2.6] Exact
microscopic solutions are thereby becoming possible and have recently been calculated
[66, 68, 11]. [203.2.7] Moreover, the availability of threedimensional microstructures
allows to test approximate theories and geometric models and to distinguish them quan-
titatively.

[203.3.1] Distinguishing porous microstructures in a quantitative fashion is important
for reliable predictions and it requires apt geometric observables. [203.3.2] Examples of
important geometric observables are porosity and specific internal surface area [page 204,

§0] [6, 20]. [204.0.1] It is clear however, that porosity and specific internal surface area
alone are not sufficient to distinguish the infinite variety of porous microstructures.

aincluding solid-solid and fluid-fluid mixtures
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[204.1.1] Geometrical models for porous media may be roughly subdivided into the clas-
sical capillary tube and slit models [20], grain models [61], network models [22, 15],
percolation models [16, 54], fractal models [34, 53], stochastic reconstruction models
[49, 1] and diagenetic models [51, 4]. [204.1.2] Little attention is usually paid to match
the geometric characteristics of a model geometry to those of the experimental sample,
as witnessed by the undiminished popularity of capillary tube models. [204.1.3] Usually
the matching of geometric observables is limited to the porosity alone. [204.1.4] Recently
the idea of stochastic reconstruction models has found renewed interest [1, 50, 70].
[204.1.5] In stochastic reconstruction models one tries to match not only the porosity but
also other geometric quantities such as specific internal surface, correlation functions, or
linear and spherical contact distributions. [204.1.6] Similar ideas have been proposed in
spatial statistics [61]. [204.1.7] As the number of matched quantities increases one ex-
pects that also the model approximates better the given sample. [204.1.8] My secondary
objective in this review will be to compare simple stochastic reconstruction models and
physically inspired diagenesis models with the experimental microstructure obtained from
computer tomography [11].

2. Problems in the Theory of Porous Media

2.1. Physical Problems

[204.1.9] Many physical problems in porous and heterogeneous media can be formulated
mathematically as a set of partial differential equations

F P(r, t,u, ∂u/∂t, . . . ,∇ · u,∇× u, . . .) = 0, r ∈ P ⊂ R3, t ∈ R (1a)

FM(r, t,u, ∂u/∂t, . . . ,∇ · u,∇× u, . . .) = 0, r ∈M ⊂ R3, t ∈ R (1b)

for a vector of unknown fields u(r, t) as function of position and time coordinates.
[204.1.10] Here the two-component porous sample S = P ∪ M is defined as the union
of two closed subsets P ⊂ R3 and M ⊂ R3 where P denotes the pore space (or com-
ponent 1 in a heterogeneous medium) and M denotes the matrix space (or component
2). [204.1.11] In (1) the vector functionals F P and FM may depend on the vector u of
unknowns and its derivatives as well as on position r and time t. [204.1.12] A simple
example for (1) is the time independent potential problem

∇ · j(r) = 0, r ∈ S (2)
j(r) + C(r)∇u(r) = 0, r ∈ S (3)

for a scalar field u(r). [204.1.13] The coefficients

C(r) = CPχP(r) + CMχM(r) (4)

contain the material constants CP 6= CM. [204.1.14] Here the characteristic (or indicator)
function χG(r) of a set G is defined as

χG(r) =

{
1 for r ∈ G
0 for r /∈ G.

(5)
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[page 205, §0] [205.0.1] Hence C(r) is not differentiable at the internal boundary ∂P = ∂M,
and this requires to specify boundary conditions

lim
s↘0

n · j(r + sn) = lim
s↘0

n · j(r − sn), r ∈ ∂P (6)

lim
s↘0

n×∇u(r + sn) = lim
s↘0

n×∇u(r − sn), r ∈ ∂P (7)

at the internal boundary. [205.0.2] In addition, boundary conditions on the sample bound-
ary ∂S need to be given to complete the formulation of the problem. [205.0.3] Inital
conditions may also be required. [205.0.4] Several concrete applications can be subsumed
under this formulation depending upon the physical interpretation of the field u and the
current j. [205.0.5] An overview for possible interpretations of u and j is given in Table
6. [205.0.6] It contains hydrodynamical flow, electrical conduction, heat conduction and
diffusion as well as cross effects such as thermoelectric or electrokinetic phenomena.

Table 1. Overview of possible interpretations for the field u and the
current j produced by its gradient according to (3).

j \ u pressure el. potential temperature concentration
volume Darcy’s law electroosmosis thermal osmosis chemical osmosis
el. charge streaming pot. Ohm’s law Seebeck effect sedim. electricity
heat thermal filtration Peltier effect Fourier’s law Dufour effect
particles ultrafiltration electrophoresis Soret effect Fick’s law

[205.1.1] The physical problems in the theory of porous media may be divided into two
categories: direct problems and inverse problems. [205.1.2] In direct problems one is
given partial information about the pore space configuration P. [205.1.3] The problem
is to deduce information about the solution u(r, t) of the boundary and/or initial value
problem that can be compared to experiment. [205.1.4] In inverse problems one is given
partial information about the solutions u(r, t). [205.1.5] Typically this information comes
from various experiments or observations of physical processes. [205.1.6] The problem is
to deduce information about the pore space configuration P from these data.

[205.2.1] Inverse problems are those of greatest practical interest. [205.2.2] All attempts to
visualize the internal interface or fluid content of nontransparent heterogeneous media lead
to inverse problems. [205.2.3] Examples occur in computer tomography. [205.2.4] Inverse
problems are often ill-posed due to lack of data [52, 39]. [205.2.5] Reliable solution of
inverse problems requires a predictive theory for the direct problem.

2.2. Geometrical Problems

[205.2.6] The geometrical problems arise because in practice the pore space configuration
χP(r) is usually not known in detail. [205.2.7] The direct problem, i.e. the solution of a
physical boundary value problem, requires detailed knowledge of the internal boundary,
and hence of χP(r).
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[page 206, §1] [206.1.1] While it is becoming feasible to digitize samples of several m3 with
a resolution of a few µm this is not possible for larger samples. [206.1.2] For this rea-
son the true pore space P is often replaced by a geometric model P̃. [206.1.3] One then
solves the problem for the model geometry and hopes that its solution ũ obeys ũ ≈ u in
some sense. [206.1.4] Such an approach requires quantitative methods for the comparison
of P and the model P̃. [206.1.5] This raises the problem of finding generally applicable
quantitative geometric characterization methods that allow to evaluate the accuracy of
geometric models for porous microstructues. [206.1.6] The problem of quantitative geo-
metric characterization arises also when one asks which geometrical characteristics of the
microsctructure P have the greatest influence on the properties of the solution u of a given
boundary value problem.

[206.2.1] Some authors introduce more than one geometrical model for one and the same
microstructure when calculating different physical properties (e.g. diffusion and conduc-
tion). [206.2.2] It should be clear that such models make it difficult to extract reliable
physical or geometrical information.

3. Geometric Characterizations

3.1. General Considerations

[206.2.3] A general geometric characterization of stochastic media should provide macro-
scopic geometric observables that allow to distinguish media with different microstructures
quantitatively. [206.2.4] In general, a stochastic medium is defined as a probability distri-
bution on a space of geometries or configurations. [206.2.5] Distributions and expectation
values of geometric observables are candidates for a general geometric characterization.

[206.3.1] A general geometric characterization should fulfill four criteria to be useful in
applications. [206.3.2] These four criteria were advanced in [30]. [206.3.3] First, it must
be well defined. [206.3.4] This obvious requirement is sometimes violated. [206.3.5] The
so called “pore size distributions” measured in mercury porosimetry are not geometrical
observables in the sense that they cannot be determined from knowledge of the geometry
alone. [206.3.6] Instead they are capillary pressure curves whose calculation involves phys-
ical quantities such as surface tension, viscosity or flooding history [30]. [206.3.7] Second,
the geometric characterization should be directly accessible in experiments. [206.3.8] The
experiments should be independent of the quantities to be predicted. [206.3.9] Thirdly, the
numerical implementation should not require excessive amounts of data. [206.3.10] This
means that the amount of data should be manageable by contemporary data processing
technology. [206.3.11] Finally, a useful geometric characterization should be helpful in the
exact or approximate theoretical calculations.

[206.4.1] For simplicity only two-component media will be considered throughout this
paper, but most concepts can be generalized to media with an arbitrary finite number of
components.
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3.2. Geometric Observables

[206.4.2] Well defined geometric observables are the basis for the geometric characteri-
zation of porous media. [206.4.3] A perennial problem in all applications is to identify
those [page 207, §0] macroscopic geometric observables that are relevant for distinguishing
between classes of microstructures. [207.0.1] One is interested in those properties of the
microstructure that influence the macroscopic physical behaviour. [207.0.2] In general
this depends on the details of the physical problem, but some general properties of the
microstructure such as volume fraction or porosity are known to be relevant in many
situations. [207.0.3] Hadwigers theorem [23] is an example of a mathematical result that
helps to identify an important class of such general geometric properties of porous media.
[207.0.4] It will be seen later, however, that there exist important geometric properties
that are not members of this class.

[207.1.1] A two component porous (or heterogenous) sample S ⊂ Rd consists of two closed
subsets P ⊂ Rd and M ⊂ Rd called pore space P and matrix M such that S = P ∪M.
[207.1.2] Its internal boundary is denoted as ∂P = ∂M = P ∩M [207.1.3] The boundary
∂G of a set is defined as the difference between the closure and the interior of G where the
closure is the intersection of all closed sets containing G and the interior is the union of
all open sets contained in G. [207.1.4] A geometric observable f is a mapping (functional)
that assigns to each admissible P a real number f(P) = f(P ∩ S) that can be calculated
from P without solving a physical boundary value problem. [207.1.5] A functional whose
evaluation requires the solution of a physical boundary value problem will be called a
physical observable.

[207.2.1] Before discussing examples for geometric observables it is necessary to specify
the admissible geometries P. [207.2.2] The set R of admissible P is defined as the set
of all finite unions of compact convex sets [23, 61, 58, 57, 44](see also the papers by
M. Kerscher and K. Mecke in this volume). [207.2.3] Because R is closed under unions
and intersections it is called the convex ring. [207.2.4] The choice of R is convenient for
applications because digitized porous media can be considered as elements from R and
because continuous observables defined for convex compact sets can be continued to all of
R. [207.2.5] The set of all compact and convex subsets of Rd is denoted as K. [207.2.6] For
subsequent discussions the Minkowski addition of two sets A,B ⊂ Rd is defined as

A + B = {x + y : x ∈ A,y ∈ B}. (8)

[207.2.7] Multiplication of A with a scalar is defined by aA = {ax : x ∈ A} for a ∈ R.

[207.3.1] Examples of geometric observables are the volume of P or the surface area of its
boundary ∂P. [207.3.2] Let

Vd(K) =

∫
Rd

χP(r)ddr (9)

denote the d-dimensional Lebesgue volume of the compact convex set K. [207.3.3] The
volume is hence a functional Vd : K → R on K. [207.3.4] An example of a compact convex
set is the unit ball Bd = {x ∈ Rd : |x| ≤ 1} = Bd(0, 1) centered at the origin 0 whose
volume is

κd = Vd(Bd) =
πd/2

Γ(1 + (d/2))
. (10)
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[207.3.5] Other functionals on K can be constructed from the volume by virtue of the
following fact. [207.3.6] For every compact convex K ∈ K and every ε ≥ 0 there are [page

208, §0] numbers Vj(K), j = 0, . . . , d depending only on K such that

Vd(K + εBd) =

d∑
j=0

Vj(K)εd−jκd−j (11)

is a polynomial in ε. [208.0.1] This result is known as Steiners formula [23, 61]. [208.0.2]
The numbers Vj(K), j = 0 . . . , d define functionals on K similar to the volume Vd(K).
[208.0.3] The quantities

Wi(K) =
κiVd−i(K)(

d
i

) (12)

are called quermassintegrals [57]. [208.0.4] From (11) one sees that

lim
ε→0

1

ε
(Vd(K + εBd)− Vd(K)) = κ1Vd−1(K), (13)

and from (10) that κ1 = 2. [208.0.5] Hence Vd−1(K) may be viewed as half the surface
area. [208.0.6] The functional V1(K) is related to the mean width w(K) defined as the
mean value of the distance between a pair of parallel support planes of K. [208.0.7] The
relation is

V1(K) =
dκd

2κd−1
w(K) (14)

which reduces to V1(K) = w(K)/2 for d = 3. [208.0.8] Finally the functional V0(K) is
evaluated from (11) by dividing with εd and taking the limit ε→∞. [208.0.9] It follows
that V0(K) = 1 for all K ∈ K \ {∅}. [208.0.10] One extends V0 to all of K by defining
V0(∅) = 0. [208.0.11] The geometric observable V0 is called Euler characteristic.

[208.1.1] The geometric observables Vi have several important properties. [208.1.2] They
are Euclidean invariant (i.e. invariant under rigid motions), additive and monotone.
[208.1.3] Let Td ∼= (Rd,+) denote the group of translations with vector addition as group
operation and let SO(d) be the matrix group of rotations in d dimensions [5]. [208.1.4] The
semidirect product Ed = Td � SO(d) is the Euclidean group of rigid motions in Rd.
[208.1.5] It is defined as the set of pairs (a, A) with a ∈ Td and A ∈ SO(d) and group
operation

(a, A) ◦ (b, B) = (a +Ab, AB). (15)

[208.1.6] An observable f : K → R is called euclidean invariant or invariant under rigid
motions if

f(a +AK) = f(K) (16)

holds for all (a, A) ∈ Ed and all K ∈ K. [208.1.7] Here AK = {Ax : x ∈ K} denotes the
rotation of K and a + K = {a}+ K its translation. [208.1.8] A geometric observable f is
called additive if

f(∅) = 0 (17a)
f(K1 ∪K2) + f(K1 ∩K2) = f(K1) + f(K2) (17b)

holds for all K1,K2 ∈ K with K1 ∪ K2 ∈ K. [208.1.9] Finally a functional is called
monotone if for K1,K2 ∈ K with K1 ⊂ K2 follows f(K1) ≤ f(K2).
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[page 209, §1] [209.1.1] The special importance of the functionals Vi(K) arises from the
following theorem of Hadwiger [23]. [209.1.2] A functional f : K → R is euclidean
invariant, additive and monotone if and only if it is a linear combination

f =

d∑
i=0

ciVi (18)

with nonnegative constants c0, . . . , cd. [209.1.3] The condition of monotonicity can be
replaced with continuity and the theorem remains valid [23]. [209.1.4] If f is continuous
on K, additive and euclidean invariant it can be additively extended to the convex ring
R [58]. [209.1.5] The additive extension is unique and given by the inclusion-exclusion
formula

f

(
m⋃
i=1

Ki

)
=

∑
I∈P(m)

(−1)|I|−1f

(⋂
i∈I

Ki

)
(19)

where P(m) denotes the family of nonempty subsets of {1, . . . ,m} and |I| is the number
of elements of I ∈ P(m). [209.1.6] In particular, the functionals Vi have a unique additive
extension to the convex ring R[58], which is again be denoted by Vi.

[209.2.1] For a threedimensional porous sample with P ∈ R the extended functionals Vi
lead to two frequently used geometric observables. [209.2.2] The first is the porosity of a
porous sample S defined as

φ(P ∩ S) = φ3(P ∩ S) =
V3(P ∩ S)

V3(S)
, (20)

and the second its specific internal surface area which may be defined in view of (13) as

φ2(P ∩ S) =
2V2(P ∩ S)

V3(S)
. (21)

[209.2.3] The two remaining observables φ1(P) = V1(P ∩ S)/V3(S) and φ0(P) = V0(P ∩
S)/V3(S) have received less attention in the porous media literature. [209.2.4] The Eu-
ler characteristic V0 on R coincides with the identically named topological invariant.
[209.2.5] For d = 2 and G ∈ R one has V0(G) = c(G) − c′(G) where c(G) is the number
of connectedness components of G, and c′(G) denotes the number of holes (i.e. bounded
connectedness components of the complement).

3.3. Definition of Stochastic Porous Media

[209.2.6] For theoretical purposes the pore space P is frequently viewed as a random set
[61, 30]. [209.2.7] In practical applications the pore space is usually discretized because
of measurement limitations and finite resolution. [209.2.8] For the data discussed below
the set S ⊂ R3 is a rectangular parallelepiped whose sidelengths are M1,M2 and M3 in
units of the lattice constant a (resolution) of a simple cubic lattice. [209.2.9] The position
vectors ri = ri1...id = (ai1, . . . , aid) with integers 1 ≤ ij ≤Mj are
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[page 210, §0] used to label the lattice points, and ri is a shorthand notation for ri1...id .
[210.0.1] Let Vi denote a cubic volume element (voxel) centered at the lattice site ri.
[210.0.2] Then the discretized sample may be represented as S =

⋃N
i=1 Vi. [210.0.3] The

discretized pore space P̃ defined as

P̃ =
⋃

{i:χ
P
(ri)=1}

Vi (22)

is an approximation to the true pore space P. [210.0.4] For simplicity it will be assumed
that the discretization does not introduce errors, i.e. that P̃ = P, and that each voxel
is either fully pore or fully matrix. [210.0.5] This assumption may be relaxed to allow
voxel attributes such as internal surface or other quermassintegral densities. [210.0.6] The
discretization into voxels reflects the limitations arising from the experimental resolution
of the porous structure. [210.0.7] A discretized pore space for a bounded sample belongs
to the convex ring R if the voxels are convex and compact. [210.0.8] Hence, for a simple
cubic discretization the pore space belongs to the convex ring. [210.0.9] A configuration
(or microstructure) Z of a 2-component medium may then be represented in the simplest
case by a sequence

Z = (Z1, . . . , ZN ) = (χP(r1), . . . , χP(rN )) (23)

where ri runs through the lattice points and N = M1M2M3. [210.0.10] This represen-
tation corresponds to the simplest discretization in which there are only two states for
each voxel indicating whether it belongs to pore space or not. [210.0.11] In general a
voxel could be characterized by more states reflecting the microsctructure within the re-
gion Vi. [210.0.12] In the simplest case there is a one-to-one correspondence between P
and Z given by (23). [210.0.13] Geometric observables f(P) then correspond to functions
f(Z) = f(z1, . . . , zN ).

[210.1.1] As a convenient theoretical idealization it is frequently assumed that porous
media are random realizations drawn from an underlying statistical ensemble. [210.1.2] A
discretized stochastic porous medium is defined through the discrete probability density

p(z1, . . . , zN ) = Prob{(Z1 = z1) ∧ . . . ∧ (ZN = zN )} (24)

where zi ∈ {0, 1} in the simplest case. [210.1.3] It should be emphasized that the prob-
ability density p is mainly of theoretical interest. [210.1.4] In practice it is usually not
known. [210.1.5] An infinitely extended medium or microstructure is called stationary or
statistically homogeneous if p is invariant under spatial translations. [210.1.6] It is called
isotropic if p is invariant under rotations.

3.4. Moment Functions and Correlation Functions

[210.1.7] A stochastic medium was defined through its probability distribution p. [210.1.8]
In practice p will be even less accessible than the microstructure P = Z itself. [210.1.9] Par-
tial information about p can be obtained by measuring or calculating expectation values
of a geometric observable f . [210.1.10] These are defined as

〈f(z1, . . . , zN )〉 =

1∑
z1=0

. . .

1∑
zN=0

f(z1, . . . , zN )p(z1, . . . , zN ) (25)
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[page 211, §0] where the summations indicate a summation over all configurations. [211.0.1]
Consider for example the porosity φ(S) defined in (20). [211.0.2] For a stochastic medium
φ(S) becomes a random variable. [211.0.3] Its expectation is

〈φ〉 =
〈V3(P)〉
V3(S)

=
1

V3(S)

∫
S

〈
χP(r)

〉
d3r

=
1

V3(S)

N∑
i=1

〈zi〉V3(Vi) =
1

N

N∑
i=1

〈zi〉

=
1

N

N∑
i=1

Prob{zi = 1} =
1

N

N∑
i=1

Prob{ri ∈ P} (26)

If the medium is statistically homogeneous then

〈φ〉 = Prob{zi = 1} = Prob{ri ∈ P} =
〈
χP(ri)

〉
(27)

independent of i. [211.0.4] It happens frequently that one is given only a single sample,
not an ensemble of samples. [211.0.5] It is then necessary to invoke an ergodic hypothesis
that allows to equate spatial averages with ensemble averages.

[211.1.1] The porosity is the first member in a hierarchy of moment functions. [211.1.2] The
n-th order moment function is defined generally as

Sn(r1, . . . , rn) =
〈
χP(r1) . . . χP(rn)

〉
(28)

for n ≤ N . b [211.1.3] For stationary media Sn(r1, . . . rn) = g(r1 − rn, . . . , rn−1 −
rn) where the function g depends only on n − 1 variables. [211.1.4] Another frequently
used expectation value is the correlation function which is related to S2. [211.1.5] For a
homogeneous medium it is defined as

G(r0, r) = G(r − r0) =

〈
χP(r0)χP(r)

〉
− 〈φ〉2

〈φ〉 (1− 〈φ〉)
=
S2(r − r0)− (S1(r0))2

S1(r0)(1− S1(r0))
(29)

where r0 is an arbitrary reference point, and 〈φ〉 = S1(r0). [211.1.6] If the medium is
isotropic then G(r) = G(|r|) = G(r). [211.1.7] Note that G is normalized such that
G(0) = 1 and G(∞) = 0.

[211.2.1] The hierarchy of moment functions Sn, similar to p, is mainly of theoretical inter-
est. [211.2.2] For a homogeneous medium Sn is a function of n− 1 variables. [211.2.3] To
specify Sn numerically becomes impractical as n increases. [211.2.4] If only 100 points
are required along each coordinate axis then giving Sn would require 102d(n−1) numbers.
[211.2.5] For d = 3 this implies that already at n = 3 it becomes economical to specify
the microstructure P directly rather than incompletely through moment or correlation
functions.

bIf a voxel has other attributes besides being pore or matrix one may define also mixed moment
functions Si1...in (r1, . . . , rn) = 〈φi1 (r1) . . . φin (rn)〉 where φi(rj) = Vi(P ∩ Vj)/Vi(Vj) for i = 1, . . . d

are the quermassintegral densities for the voxel at site rj .
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[page 212, §1]

3.5. Contact Distributions

[212.1.1] An interesting geometric characteristic introduced and discussed in the field of
stochastic geometry are contact distributions [18, 61, p. 206]. [212.1.2] Certain special
cases of contact distributions have appeared also in the porous media literature [20].
[212.1.3] Let G be a compact test set containing the origin 0. [212.1.4] Then the contact
distribution is defined as the conditional probability

HG(r) = 1− Prob{0 /∈M + (−rG)|0 /∈M} = 1− Prob{M ∩ rG = ∅}
φ

. (30)

If one defines the random variable R = inf{s : M ∩ sG 6= ∅} then HG(r) = Prob{R ≤
r|R > 0} [61].

[212.2.1] For the unit ball G = B(0, 1) in three dimensions HB is called spherical con-
tact distribution. [212.2.2] The quantity 1 − HB(r) is then the distribution function of
the random distance from a randomly chosen point in P to its nearest neighbour in M.
[212.2.3] The probability density

p(r) =
d
dr

(1−HB(r)) = − d
dr
HB(r) (31)

was discussed in [56] as a well defined alternative to the frequently used pore size distru-
bution from mercury porosimetry.

[212.3.1] For an oriented unit interval G = B1(0, 1; e) where e is the a unit vector one
obtains the linear contact distribution. [212.3.2] The linear contact distribution written
as L(re) = φ(1−HB1(0,1;e)(r)) is sometimes called lineal path function [70]. [212.3.3] It is
related to the chord length distribution pcl(x) defined as the probability that an interval
in the intersection of P with a straight line containing B1(0, 1; e) has length smaller than
x [30, 61, p. 208].

3.6. Local Porosity Distributions

[212.3.4] The idea of local porosity distributions is to measure geometric observables inside
compact convex subsets K ⊂ S, and to collect the results into empirical histograms [27].
[212.3.5] Let K(r, L) denote a cube of side length L centered at the lattice vector r.
[212.3.6] The set K(r, L) is called a measurement cell. [212.3.7] A geometric observable
f , when measured inside a measurement cell K(r, L), is denoted as f(r, L) and called
a local observable. [212.3.8] An example are local Hadwiger functional densities f =∑d
i=1 ciψi with coefficients ci as in Hadwigers theorem (18). [212.3.9] Here the local

quermassintegrals are defined using (12) as

ψi(P ∩K(r, L)) =
Wi(P ∩K(r, L))

Vd(K(r, L))
(32)

for i = 1, . . . , d. [212.3.10] In the following mainly the special case d = 3 will be of interest.
[212.3.11] For d = 3 the local porosity is defined by setting i = 0,

φ(r, L) = ψ0(P ∩K(r, L)). (33)
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[page 213, §0] [213.0.1] Local densities of surface area, mean curvature and Euler char-
acteristic may be defined analogously. [213.0.2] The local porosity distribution, defined
as

µ(φ; r, L) = 〈δ(φ− φ(r, L))〉 , (34)

gives the probability density to find a local porosity φ(r, L) in the measurement cell
K(r, L). [213.0.3] Here δ(x) denotes the Dirac δ-distribution. [213.0.4] The support of µ
is the unit interval. [213.0.5] For noncubic measurement cells K one defines analogously
µ(φ;K) = 〈δ(φ− φ(K))〉 where φ(K) = φ(P ∩K) is the local observable in cell K.

[213.1.1] The concept of local porosity distributions c was introduced in [27] and has been
generalized in two directions [30]. [213.1.2] Firstly by admitting more than one measure-
ment cell, and secondly by admitting more than one geometric observable. [213.1.3] The
general n-cell distribution function is defined as [30]

µn;f1,...,fm(f11, . . . , f1n; . . . ; fm1, . . . , fmn;K1, . . . ,Kn) =

〈δ(f11 − f1(K1)) . . . δ(f1n − f1(Kn)) . . . δ(fm1 − fm(K1)) . . . δ(fmn − fm(Kn))〉 (35)

for n general measurement cells K1, . . . ,Kn and m observables f1, . . . , fm. [213.1.4] The
n-cell distribution is the probability density to find the values f11 of the local observable
f1 in cell K1 and f12 in cell K2 and so on until fmn of local observable fm in Kn.
[213.1.5] Definition (35) is a broad generalization of (34). [213.1.6] This generalization
is not purely academic, but was motivated by problems of fluid flow in porous media
where not only ψ0 but also ψ1 becomes important [28]. [213.1.7] Local quermassintegrals,
defined in (32), and their linear combinations (Hadwiger functionals) furnish important
examples for local observables in (35), and they have recently been measured [40].

[213.2.1] The general n-cell distribution is very general indeed. [213.2.2] It even contains
p from (24) as the special case m = 1, f1 = φ and n = N with Ki = Vi = K(ri, a).
[213.2.3] More precisely one has

µN ;φ(φ1, . . . , φN ;V1, . . . ,VN ) = p(φ1, . . . , φN ) (36)

because in that case φi = zi = 1 if Vi ∈ P and φi = zi = 0 for V /∈ P. [213.2.4] In this way
it is seen that the very definition of a stochastic geometry is related to local porosity dis-
tributions (or more generally local geometry distributions). [213.2.5] As a consequence the
general n-cell distribution µn;f1,...,fm is again mainly of theoretical interest, and usually
unavailable for practical computations.

[213.3.1] Expectation values with respect to p have generalizations to averages with respect
to µ. [213.3.2] Averaging with respect to µ will be denoted by an overline. [213.3.3] In the

cor more generally “local geometry distributions” [28, 30]
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[page 214, §0] special case m = 1, f1 = φ and Ki = Vi = K(ri, a) with n < N one finds [30]

φ(r1, a) · · ·φ(rn, a)

=

∫ 1

0

. . .

∫ 1

0

φ1 · · ·φnµn;φ(φ1, . . . , φn;V1, . . . ,Vn)dφ1 · · · dφn

=

∫ 1

0

. . .

∫ 1

0

φ1 · · ·φnµN ;φ(φ1, . . . , φN ;V1, . . . ,VN )dφ1 · · · dφN

=

∫ 1

0

. . .

∫ 1

0

φ1 · · ·φn 〈δ(φ1 − φ(r1, a)) · · · δ(φN − φ(rN , a))〉 dφ1 · · · dφN

= 〈φ(r1, a) · · ·φ(rn, a)〉

=
〈
χP(r1) . . . χP(rn)

〉
= Sn(r1, . . . , rn) (37)

thereby identifying the moment functions of order n as averages with respect to an n-cell
distribution.

[214.1.1] For practical applications the 1-cell local porosity distributions µ(r, L) and their
analogues for other quermassintegrals are of greatest interest. [214.1.2] For a homogeneous
medium the local porosity distribution obeys

µ(φ; r, L) = µ(φ;0, L) = µ(φ;L) (38)

for all lattice vectors r, i.e. it is independent of the placement of the measurement
cell. [214.1.3] A disordered medium with substitutional disorder [71] may be viewed as a
stochastic geometry obtained by placing random elements at the cells or sites of a fixed
regular substitution lattice. [214.1.4] For a substitutionally disordered medium the local
porosity distribution µ(r, L) is a periodic function of r whose period is the lattice constant
of the substitution lattice. [214.1.5] For stereological issues in the measurement of µ from
thin sections see [64].

[214.2.1] Averages with respect to µ are denoted by an overline. [214.2.2] For a homoge-
neous medium the average local porosity is found as

φ(r, L) =

∫ 1

0

φµ(φ; r, L)dφ = 〈φ〉 = φ (39)



3. GEOMETRIC CHARACTERIZATIONS 215

[page 215, §0] independent of r and L. [215.0.1] The variance of local porosities for a
homogeneous medium defined in the first equality

σ2(L) = (φ(L)− φ)2 =

∫ 1

0

(φ(L)− φ)2µ(φ;L)dφ

=
1

L3
〈φ〉 (1− 〈φ〉)

1 +
2

L3

∑
ri,rj∈K(r0,L)

i6=j

G(ri − rj)

 (40)

is related to the correlation function as given in the second equality [30]. [215.0.2] The
skewness of the local porosity distribution is defined as the average

κ3(L) =
(φ(L)− φ)3

σ(L)3
. (41)

[215.1.1] The limits L → 0 and L → ∞ of small resp. large measurement cells are of
special interest. [215.1.2] In the first case one reaches the limiting resolution at L = a and
finds for a homogeneous medium [27, 30]

µ(φ; a) = φδ(φ− 1)− (1− φ)δ(φ). (42)

[215.1.3] The limit L → ∞ is more intricate because it requires also the limit S → R3.
[215.1.4] For a homogeneous medium (40) shows σ(L)→ 0 for L→ 0 and this suggests

µ(φ,L→∞) = δ(φ− φ). (43)

[215.1.5] For macroscopically heterogeneous media, however, the limiting distribution may
deviate from this result [30]. [215.1.6] If (43) holds then in both limits the geometrical
information contained in µ reduces to the single number φ = 〈φ〉. [215.1.7] If (42) and
(43) hold there exists a special length scale L∗ defined as

L∗ = min{L : µ(0;L) = µ(1;L) = 0} (44)

at which the δ-components at φ = 0 and φ = 1 vanish. [215.1.8] In the examples below
the length L∗ is a measure for the size of pores.

[215.2.1] The ensemble picture underlying the definition of a stochastic medium is an
idealization. [215.2.2] In practice one is given only a single realization and has to resort
to an ergodic hypothesis for obtaining an estimate of the local porosity distributions.
[215.2.3] In the examples below the local porosity distribution is estimated by

µ̃(φ;L) =
1

m

∑
r

δ(φ− φ(r, L)) (45)

where m is the number of placements of the measurement cell K(r, L). [215.2.4] Ideally
the measurement cells should be far apart or at least nonoverlapping, but in
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[page 216, §0] practice this restriction cannot be observed because the samples are not large
enough. [216.0.1] In the results presented below K(r, L) is placed on all lattice sites which
are at least a distance L/2 from the boundary of S. [216.0.2] This allows for

m =

3∏
i=1

(Mi − L+ 1) (46)

placements of K(r, L) in a sample with side lengths M1,M2,M3. [216.0.3] The use of µ̃
instead of µ can lead to deviations due to violations of the ergodic hypothesis or simply
due to oversampling the central regions of S [10, 11].

3.7. Local Percolation Probabilities

[216.0.4] Transport and propagation in porous media are controlled by the connectivity
of the pore space. [216.0.5] Local percolation probabilities characterize the connectivity
[27]. [216.0.6] Their calculation requires a threedimensional pore space representation,
and early results were restricted to samples reconstructed laboriously from sequential thin
sectioning [32].

[216.1.1] Consider the functional Λ : K ×K ×R → Z2 = {0, 1} defined by

Λ(K0,K∞;P ∩ S) =

{
1 : if K0  K∞ in P
0 : otherwise

(47)

where K0 ⊂ R3,K∞ ⊂ R3 are two compact convex sets with K0 ∩ (P ∩ S) 6= ∅ and
K∞ ∩ (P ∩ S) 6= ∅, and “K0  K∞ in P” means that there is a path connecting K0

and K∞ that lies completely in P. [216.1.2] In the examples below the sets K0 and K∞
correspond to opposite faces of the sample, but in general other choices are allowed.
[216.1.3] Analogous to Λ defined for the whole sample one defines for a measurement cell

Λα(r, L) = Λ(K0α,K∞α;P ∩K(r, L)) =

{
1 : if K0α  K∞α in P
0 : otherwise

(48)

where α = x, y, z and K0x,K∞x denote those two faces of K(r, L) that are normal to the
x direction. [216.1.4] Similarly K0y,K∞y,K0zK∞z denote the faces of K(r, L) normal to
the y- and z-directions. [216.1.5] Two additional percolation observables Λ3 and Λc are
introduced by

Λ3(r, L) = Λx(r, L)Λy(r, L)Λz(r, L) (49)
Λc(r, L) = sgn(Λx(r, L) + Λy(r, L) + Λz(r, L)). (50)

[216.1.6] Λ3 indicates that the cell is percolating in all three directions while Λc indicates
percolation in x- or y- z-direction. [216.1.7] The local percolation probabilities are defined
as

λα(φ;L) =

∑
r Λα(r, L)δφ,φ(r,L)∑

r δφ,φ(r,L)
(51)
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δφ,φ(r,L) =

{
1 : if φ = φ(r, L)

0 : otherwise.
(52)

[217.0.1] The local percolation probability λα(φ;L) gives the fraction of measurement cells
of sidelength L with local porosity φ that are percolating in the “α”-direction. [217.0.2] The
total fraction of cells percolating along the “α”-direction is then obtained by integration

pα(L) =

∫ 1

0

µ(φ;L)λα(φ;L)dφ. (53)

[217.0.3] This geometric observable is a quantitative measure for the number of elements
that have to be percolating if the pore space geometry is approximated by a substitu-
tionally disordered lattice or network model. [217.0.4] Note that neither Λ nor Λα are
additive functionals, and hence local percolation probabilities have nothing to do with
Hadwigers theorem.

[217.1.1] It is interesting that there is a relation between the local percolation probabilities
and the local Euler characteristic V0(P ∩ K(r, l)). [217.1.2] The relation arises from the
observation that the voxels Vi are closed, convex sets, and hence for any two voxels Vi,Vj
the Euler characteristic of their intersection

V0(Vi ∩ Vj) =

{
1 : if Vi ∩ Vj 6= ∅
0 : if Vi ∩ Vj = ∅

(54)

indicates whether two voxels are nearest neighbours. [217.1.3]A measurement cell K(r, L)
contains L3 voxels. [217.1.4] It is then possible to construct a (L3 + 2)× (L3 + 2)2-matrix
B with matrix elements

(B)i (i,j) = V0(Vi ∩ Vj) (55)
(B)i (j,i) = −V0(Vi ∩ Vj) (56)

where i, j ∈ {0, 1, . . . , L3,∞} and the sets V0 = K0 and V∞ = K∞ are two opposite faces
of the measurement cell. [217.1.5] The rows in the matrix B correspond to voxels while
the columns correspond to voxel pairs. [217.1.6] Define the matrix A = BBT where BT
is the transpose of B. [217.1.7] The diagonal elements (A)ii give the number of voxels
to which the voxel Vi is connected. [217.1.8] A matrix element (A)ij differs from zero
if and only if Vi and Vj are connected. [217.1.9] Hence the matrix A reflects the local
connectedness of the pore space around a single voxel. [217.1.10] Sufficiently high powers
of A provide information about the global connectedness of P. [217.1.11] One finds

Λ(K0,K∞;P ∩K(r, L)) = sgn (|(Am)0∞|) (57)

where (Am)0∞ is the matrix element in the upper right hand corner and m is arbitrary
subject to the condition m > L3. [217.1.12] The set P∩K(r, L) can always be decomposed
uniquely into pairwise disjoint connectedness components (clusters)
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V0(P ∩K(r, L)) =

rankB∑
i=1

V0(Bi) (58)

provides an indirect connection between the local Euler characteristic and the local per-
colation probabilities mediated by the matrix B. d)

4. Stochastic Reconstruction of Microstructures

4.1. Description of Experimental Sample

[218.0.2] The experimental sample, denoted as SEX, is a threedimensional microtomo-
graphic image of Fontainebleau sandstone. [218.0.3] This sandstone is a popular reference
standard because of its chemical, crystallographic and microstructural simplicity [14, 13].
[218.0.4] Fontainebleau sandstone consists of monocrystalline quartz grains that have been
eroded for long periods before being deposited in dunes along the sea shore during the
Oligocene, roughly 30 million years ago. [218.0.5] It is well sorted containing grains of
around 200 µm in diameter. [218.0.6] The sand was cemented by silica crystallizing around
the grains. [218.0.7] Fontainebleau sandstone exhibits intergranular porosity ranging from
0.03 to roughly 0.3 [13].

Table 2. Overview of geometric properties of the four microstructures
displayed in Figures 1 through 4

Properties SEX SDM SGF SSA

M1 300 255 256 256
M2 300 255 256 256
M3 299 255 256 256
φ(P ∩ S) 0.1355 0.1356 0.1421 0.1354
φ2(P ∩ S) 10.4mm−1 10.9mm−1 16.7mm−1 11.06mm−1

L∗ 35 25 23 27
1− λc(0.1355, L

∗) 0.0045 0.0239 0.3368 0.3527

[218.1.1] The computer assisted microtomography was carried out on a micro-plug drilled
from a larger original core. [218.1.2] The original core from which the micro-plug was
taken had a measured porosity of 0.1484, permability of 1.3D and formation factor 22.1.
[218.1.3] The porosity φ(SEX) of the microtomographic data set is only 0.1355 (see Table
2). [218.1.4] The difference between the porosity of the original core and that of the final
data set is due to the heterogeneity of the sandstone and to the difference in sample size.
[218.1.5] The experimental sample is referred to as EX in the following. [218.1.6] The pore
space of the experimental sample is visualized in Figure 1.

dFor percolation systems it has been conjectured that the zero of the Euler characteristic as a
function of the occupation probability is an approximation to the percolation threshold [45]
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Figure 1. Sample EX: Threedimensional pore space PEX of
Fontainebleau sandstone. The resolution of the image is a = 7.5 µm,
the sample dimensions are M1 = 300, M2 = 300, M3 = 299. The pore
space is indicated opaque, the matrix space is transparent. The lower im-
age shows the front plane of the sample as a twodimensional thin section
(pore space black, matrix grey).



220 CONTENTS

[page 220, §1]

4.2. Sedimentation, Compaction and Diagenesis Model

[220.1.1] Fontainebleau sandstone is the result of complex physical, chemical and geological
processes known as sedimentation, compaction and diagenesis. [220.1.2] It is therefore
natural to model these processes directly rather than trying to match general geometrical
characteristics. [220.1.3] This conclusion was also obtained from local porosity theory for
the cementation index in Archie’s law [27]. [220.1.4] The diagenesis model abbreviated
as DM in the following, attempts model the main geological sandstone-forming processes
[4, 48].

[220.2.1] In a first step porosity, grain size distribution, a visual estimate of the degree of
compaction, the amount of quartz cement and clay contents and texture are obtained by
image analysis of backscattered electron/cathodo-luminescence images made from thin
sections. [220.2.2] The sandstone modeling is then carried out in three main steps: grain
sedimentation, compaction and diagenesis described in detail in [4, 48].

[220.3.1] Sedimentation begins by measuring the grain size distribution using an erosion-
dilation algorithm. [220.3.2] Then spheres with random diameters are picked randomly
according to the grain size distribution. [220.3.3] They are dropped onto the grain bed and
relaxed into a local potential energy minimum or, alternatively, into the global minimum.

[220.4.1]
Compaction occurs because the sand becomes buried into the subsurface. [220.4.2] Com-
paction reduces the bulk volume (and porosity). [220.4.3] It is modelled as a linear process
in which the vertical coordinate of every sandgrain is shifted vertically downwards by an
amount proportional to the original vertical position. [220.4.4] The proportionality con-
stant is called the compaction factor. [220.4.5] Its value for the Fontainebleau sample is
estimated to be 0.1 from thin section analysis.

[220.5.1] In the diagenesis part only a subset of known diagenetical processes are simulated,
namely quartz cement overgrowth and precipitation of authigenic clay on the free surface.
[220.5.2] Quartz cement overgrowth is modeled by radially enlarging each grain. [220.5.3] If
R0 denotes the radius of the originally deposited spherical grain, its new radius along the
direction r from grain center is taken to be [59, 48]

R(r) = R0 + min(b`(r)γ , `(r)) (59)

where `(r) is the distance between the surface of the original spherical grain and the
surface of its Voronoi polyhedron along the direction r. [220.5.4] The constant b controls
the amount of cement, and the growth exponent γ controls the type of cement overgrowth.
[220.5.5] For γ > 0 the cement grows preferentially into the pore bodies, for γ = 0 it
grows concentrically, and for γ < 0 quartz cement grows towards the pore throats [48].
[220.5.6] Authigenic clay growth is simulated by precipitating clay voxels on the free
mineral surface. The clay texture may be pore-lining or pore-filling or a combination of
the two.
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[220.6.1] The parameters for modeling the Fontainebleau sandstone were 0.1 for the com-
paction factor, and γ = −0.6 and b = 2.9157 for the cementation parameters. [220.6.2] The
resulting model configuration of the sample DM is displayed in Figure 2.

[page 221, §0]

Figure 2. Sample DM: Threedimensional pore space PDM of the sedi-
mentation and diagenesis model described in the text. The resolution is
a = 7.5 µm, the sample dimensions are M1 = 255, M2 = 255, M3 = 255.
The pore space is indicated opaque, the matrix space is transparent. The
lower image shows the front plane of the sample as a twodimensional thin
section (pore space black, matrix grey)
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4.3. Gaussian Field Reconstruction Model

[222.1.1] A stochastic reconstruction model attempts to approximate a given experimen-
tal sample by a randomly generated model structure that matches prescribed stochastic
properties of the experimental sample. [222.1.2] In this and the next section the stochastic
property of interest is the correlation function GEX(r) of the Fontainebleau sandstone.

[222.2.1] The Gaussian field (GF) reconstruction model tries to match a reference corre-
lation function by filtering Gaussian random variables [49, 2, 1, 69]. [222.2.2] Given the
reference correlation function GEX(r) and porosity φ(SEX) of the experimental sample the
Gaussian field method proceeds in three main steps:

(1) Initially a Gaussian fieldX(r) is generated consisting of statistically independent
Gaussian random variables X ∈ R at each lattice point r.

(2) [222.2.3] The field X(r) is first passed through a linear filter which produces a
correlated Gaussian field Y (r) with zero mean and unit variance. [222.2.4] The
reference correlation function GEX(r) and porosity φ(SEX) enter into the math-
ematical construction of this linear filter.

(3) [222.2.5] The correlated field Y (r) is then passed through a nonlinear discretiza-
tion filter which produces the reconstructed sample SGF.

[222.2.6] Step 2 is costly because it requires the solution of a very large set of non-linear
equations. [222.2.7] A computationally more efficient method uses Fourier Transformation
[1]. [222.2.8] The linear filter in step 2 is defined in Fourier space through

Y (k) = α(GY (k))
1
2X(k), (60)

where M = M1 = M2 = M3 is the sidelength of a cubic sample, α = M
d
2 is a normalisa-

tion factor, and

X(k) =
1

Md

∑
r

X(r)e2πik·r (61)

denotes the Fourier transform of X(r). [222.2.9] Similarly Y (k) is the Fourier trans-
form of Y (r), and GY (k) is the Fourier transform of the correlation function GY (r).
[222.2.10] GY (r) has to be computed by an inverse process from the correlation function
GEX(r) and porosity of the experimental reference (details in [1]).

[222.3.1] The Gaussian field reconstruction requires a large separation ξEX � N1/d where
ξEX is the correlation length of the experimental reference, and N = M1M2M3 is the
number of sites. [222.3.2] ξEX is defined as the length such that GEX(r) ≈ 0 for r > ξEX.
[222.3.3] If the condition ξEX � N1/d is violated then step 2 of the reconstruction fails in
the sense that the correlated Gaussian field Y (r) does not have zero mean and unit vari-
ance. [222.3.4] In such a situation the filter GY (k) will differ from the Fourier transform of
the correlation function of the Y (r). [222.3.5] It is also difficult to calculate GY (r) accu-
rately near r = 0 [1]. [222.3.6] This leads to a discrepancy at small r between GGF(r) and
GEX(r). [222.3.7] The problem can be overcome by choosing large M . [222.3.8] However,
in d = 3 very large M also demands prohibitively large memory. [222.3.9] In
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Figure 3. Sample GF: Threedimensional pore space PGF with GGF(r) ≈
GEX(r) constructed by filtering Gaussian random fields. The resolution is
a = 7.5 µm, the sample dimensions are M1 = 256, M2 = 256, M3 = 256.
The pore space is indicated opaque, the matrix space is transparent. The
lower image shows the front plane of the sample as a twodimensional thin
section (pore space black, matrix grey)
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earlier work [2, 1] the correlation function GEX(r) was sampled down to a lower resolution,
and the reconstruction algorithm then proceeded with such a rescaled correlation function.
[224.0.1] This leads to a reconstructed sample SGF which also has a lower resolution.
[224.0.2] Such reconstructions have lower average connectivity compared to the original
model [9] For a quantitative comparison with the microstructure of SEX it is necessary
to retain the original level of resolution, and to use the original correlation function
GEX(r) without subsampling. [224.0.3] Because GEX(r) is nearly 0 for r > 30a GEX(r)
was truncated at r = 30a to save computer time. [224.0.4] The resulting configuration
SGF with M = 256 is displayed in Figure 3.

4.4. Simulated Annealing Reconstruction Model

[224.0.5] The simulated annealing (SA) reconstruction model is a second method to gen-
erate a threedimensional random microstructure with prescribed porosity and correlation
function. [224.0.6] The method generates a configuration SSA by minimizing the devi-
ations between GSA(r) and a predefined reference function G0(r). [224.0.7] Note that
the generated configuration SSA is not unique and hence other modeling aspects come
into play [42]. [224.0.8] Below, G0(r) = GEX(r) is again the correlation function of the
Fontainebleau sandstone.

[224.1.1] An advantage of the simulated annealing method over the Gaussian field method
is that it can also be used to match other quantities besides the correlation function.
[224.1.2] Examples would be the linear or spherical contact distributions [42]. [224.1.3] On
the other hand the method is computationally very demanding, and cannot be imple-
mented fully at present. [224.1.4] A simplified implementation was discussed in [70], and
is used below.

[224.2.1] The reconstruction is performed on a cubic lattice with side length M = M1 =
M2 = M3 and lattice spacing a. [224.2.2] The lattice is initialized randomly with 0’s
and 1’s such that the volume fraction of 0’s equals φ(SEX). [224.2.3] This porosity is
preserved throughout the simulation. [224.2.4] For the sake of numerical efficiency the
autocorrelation function is evaluated in a simplified form using [70]

G̃SA(r)
(
G̃SA(0)− G̃SA(0)2

)
+ G̃SA(0)2 =

=
1

3M3

∑
r

χM(r)
(
χM(r + re1) + χM(r + re2) + χM(r + re3)

)
(62)

where ei are the unit vectors in direction of the coordinate axes, r = 0, . . . , M2 − 1, and
where a tilde ˜ is used to indicate the directional restriction. [224.2.5] The sum

∑
r runs

over all M3 lattice sites r with periodic boundary conditions, i.e. ri + r is evaluated
modulo M .

[224.3.1] A simulated annealing algorithm is used to minimize the "energy" function

E =
∑
r

(
G̃SA(r)−GEX(r)

)2
, (63)
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defined as the sum of the squared deviations of G̃SA from the experimental correlation
function GEX. [224.3.2] Each update starts with the exchange of two pixels, one

[page 225, §0]

Figure 4. Sample SA: Threedimensional pore space PSA with GSA(r) =
GEX(r) constructed using a simulated annealing algorithm. The res-
olution is 7.5 µm, the sample dimensions are M1 = 256, M2 = 256,
M3 = 256. The pore space is indicated opaque, the matrix space is
transparent. The lower image shows the front plane of the sample as a
twodimensional thin section (pore space black, matrix grey)
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[page 226, §0] from pore space, one from matrix space. [226.0.1] Let n denote the number of
the proposed update step. [226.0.2] Introducing an acceptance parameter Tn, which may
be interpreted as an n-dependent temperature, the proposed configuration is accepted
with probability

p = min

(
1, exp

(
−En − En−1

TnEn−1

))
. (64)

[226.0.3] Here the energy and the correlation function of the configuration is denoted
as En and G̃SA,n, respectively. [226.0.4] If the proposed move is rejected, then the old
configuration is restored.

[226.1.1] A configuration with correlation GEX is found by lowering T . [226.1.2] At low T
the system approaches a configuration that minimizes the energy function. [226.1.3] In
the simulations Tn was lowered with n as

Tn = exp
(
− n

100000

)
. (65)

[226.1.4] The simulation was stopped when 20000 consecutive updates were rejected.
[226.1.5] This happened after 2.5× 108 updates (≈ 15 steps per site). [226.1.6] The result-
ing configuration SSA for the simulated annealing reconstruction is displayed in Figure 4.

[226.2.1] A complete evaluation of the correlation function as defined in (29) for a three-
dimensional system requires so much computer time, that it cannot be carried out at
present. [226.2.2] Therefore the algorithm was simplified to increase its speed [70].
[226.2.3] In the simplified algorithm the correlation function is only evaluated along the
directions of the coordinate axes as indicated in (62). [226.2.4] The original motivation
was that for isotropic systems all directions should be equivalent [70]. [226.2.5] However,
it was found in [41] that as a result of this simplification the reconstructed sample may
become anisotropic. [226.2.6] In the simplified algorithm the correlation function of the
reconstruction deviates from the reference correlation function in all directions other than
those of the axes [41]. [226.2.7] The problem is illustrated in Figures 5(a) and 5(b) in two
dimensions for a reference correlation function given as

G0(r) = e−r/8 cos r. (66)

[226.2.8] In Figure 5(a) the correlation function was matched only in the direction of the
x- and y-axis. [226.2.9] In Figure 5(b) the correlation function was matched also along the
diagonal directions obtained by rotating the axes 45 degrees. [226.2.10] The differences
in isotropy of the two reconstructions are clearly visible. [226.2.11] In the special case
of the correlation function of the Fontainebleau sandstone, however, this effect seems
to be smaller. [226.2.12] The Fontainebleau correlation function is given in Figure 7
below. [226.2.13] Figure 6(a) and 6(b) show the result of twodimensional reconstructions
along the axes only and along axes plus diagonal directions. [226.2.14] The differences in
isotropy seem to be less pronounced. [226.2.15] Perhaps this is due to the fact that the
Fontainebleau correlation function has no maxima and minima.
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(a) (b)

Figure 5. Twodimensional stochastic reconstruction for the correlation
function of G0(r) = e−r/8 cos r (a) for the direction of the x- and y-
coordinate axes only, and (b) for the directions of the coordinate axes
plus diagonal directions.

(a) (b)

Figure 6. A Twodimensional stochastic reconstruction for the correla-
tion function G0(r) = GEX(r) displayed as the solid line in Figure 7 (a)
along the direction of the x- and y-coordinate axes only, and (b) along
the directions of the coordinate axes plus diagonal directions.
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5. Quantitative Comparison of Microstructures

5.1. Conventional Observables and Correlation Functions

[228.1.1] Table 2 gives an overview of several geometric properties for the four microstruc-
tures discussed in the previous section. [228.1.2] Samples GF and SA were constructed to
have the same correlation function as sample EX. [228.1.3] Figure 7 shows the direction-
ally averaged correlation functions G(r) = (G(r, 0, 0) +G(0, r, 0) +G(0, 0, r))/3 of all four
microstructures where the notation G(r1, r2, r3) = G(r) was used.

G
r(
)

r

Figure 7. Directionally averaged correlation functions G(r) =
(G(r, 0, 0) +G(0, r, 0) +G(0, 0, r))/3 of the samples EX,DM,GF and SA

[228.2.1] The Gaussian field reconstruction GGF(r) is not perfect and differs from GEX(r)
for small r. [228.2.2] The discrepancy at small r reflects the quality of the linear filter,
and it is also responsible for the differences of the porosity and specific internal surface.
[228.2.3] Also, by construction, GGF(r) is not expected to equal GEX(r) for r larger than
30. [228.2.4] Although the reconstruction method of sample SSA is intrinsically anisotropic
the correlation function of sample SA agrees also in the diagonal directions with that of
sample EX. [228.2.5] Sample SDM while matching the porosity and grain size distribution
was not constructed to match also the correlation function. [228.2.6] As a consequence
GDM(r) differs clearly from the rest. [228.2.7] It reflects the grain structure of the model
by becoming negative. [228.2.8] GDM(r) is also anisotropic.
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[page 229, §1] [229.1.1] If two samples have the same correlation function they are expected
to have also the same specific internal surface as calculated from

S = −4 〈φ〉 (1− 〈φ〉)dG(r)

dr

∣∣∣∣
r=0

. (67)

[229.1.2] The specific internal surface area calculated from this formula is given in Table 2
for all four microstructures.

[229.2.1] If one defines a decay length by the first zero of the correlation function then
the decay length is roughly 18a for samples EX, GF and SA. [229.2.2] For sample DM it
is somewhat smaller mainly in the x- and y-direction. [229.2.3] The correlation length,
which will be of the order of the decay length, is thus relatively large compared to the
system size. [229.2.4] Combined with the fact that the percolation threshold for continuum
systems is typically around 0.15 this might explain why models GF and SA are connected
in spite of their low value of the porosity.

[229.3.1] In summary, the samples SGF and SSA were constructed to be indistinguishable
with respect to porosity and correlations from SEX. [229.3.2] Sample SA comes close to
this goal. [229.3.3] The imperfection of the reconstruction method for sample GF ac-
counts for the deviations of its correlation function at small r from that of sample EX.
[229.3.4] Although the difference in porosity and specific surface is much bigger between
samples SA and GF than between samples SA and EX sample SA is in fact more sim-
ilar to GF than to EX in a way that can be quantified using local porosity analysis.
[229.3.5] Traditional characteristics such as porosity, specific surface and correlation func-
tions are insufficient to distinguish different microstructures. [229.3.6] Visual inspection of
the pore space indicates that samples GF and SA have a similar structure which, however,
differs from the structure of sample EX. [229.3.7] Although sample DM resembles sample
EX more closely with respect to surface roughness it differs visibly in the shape of the
grains.

5.2. Local Porosity Analysis

[229.3.8] The differences in visual appearance of the four microstructures can be quantified
using the geometric observables µ and λ from local porosity theory. [229.3.9] The local
porosity distributions µ(φ, 20) of the four samples at L = 20a are displayed as the solid
lines in Figures 8a through 8d. [229.3.10] The ordinates for these curves are plotted on
the right vertical axis.

[229.4.1] The figures show that the original sample exhibits stronger porosity fluctuations
than the three model samples except for sample SA which comes close. [229.4.2] Sam-
ple DM has the narrowest distribution which indicates that it is most homogeneous.
[229.4.3] Figures 8a–8d show also that the δ-function component at the origin, µ(0, 20), is
largest for sample EX, and smallest for sample GF. [229.4.4] For samples DM and SA the
values of µ(0, 20) are intermediate and comparable. [229.4.5] Plotting µ(0, L) as a func-
tion of L shows that this remains true for all L. [229.4.6] These results indicate that the
experimental sample EX is more strongly heterogeneous than the models, and that large
regions of matrix space occur more frequently in sample EX. [229.4.7] A similar conclusion
may be drawn from the variance of local porosity
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Figure 8. Local percolation probabilities λα(φ, 20) (broken curves, val-
ues on left axis) and local porosity distribution µ(φ, 20) (solid curve, val-
ues on right axis) at L = 20 for sample EX(Figure 8a), sample DM(Figure
8b), sample GF(Figure 8c), and sample SA(Figure 8d). The inset shows
the function pα(L). The line styles corresponding to α = c, x, y, z, 3 are
indicated in the legend.
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[page 232, §0] fluctuations which will be studied below. [232.0.1] The conclusion is also
consistent with the results for L∗ shown in Table 2. [232.0.2] L∗ gives the sidelength
of the largest cube that can be fit into matrix space, and thus L∗ may be viewed as a
measure for the size of the largest grain. [232.0.3] Table 2 shows that the experimental
sample has a larger L∗ than all the models. [232.0.4] It is interesting to note that plotting
µ(1, L) versus L also shows that the curve for the experimental sample lies above those
for the other samples for all L. [232.0.5] Thus, also the size of the largest pore and the
pore space heterogeneity are largest for sample EX. [232.0.6] If µ(φ,L∗) is plotted for all
four samples one finds two groups. [232.0.7] The first group is formed by samples EX and
DM, the second by samples GF and SA. [232.0.8] Within each group the curves µ(φ,L∗)
nearly overlap, but they differ strongly between them.

[232.1.1] Figures 9, and 10 exhibit the dependence of the local porosity fluctuations on
L. [232.1.2] Figure 9 shows the variance of the local porosity fluctuations, defined in

¾

L

Figure 9. Variance of local porosities for sample EX(solid line with
tick), DM(dashed line with cross), GF(dotted line with square), and
SA(dash-dotted line with circle).

(40) as function of L. [232.1.3] The variances for all samples indicate an approach to
a δ-distribution according to (43). [232.1.4] Again sample DM is most homogeneous in
the sense that its variance is smallest. [232.1.5] The agreement between samples EX,
GF and SA reflects the agreement of their correlation functions, and is expected by virtue
of eq. (40). [232.1.6] Figure 10 shows the skewness as a function of L calculated from
(41). [232.1.7] κ3 characterizes the asymmetry of the distribution, and the difference
between the most probable local porosity and its average. [232.1.8] Again samples GF and
SA behave similarly, but sample DM and sample EX differ from each other, and from the
rest.



5. QUANTITATIVE COMPARISON OF MICROSTRUCTURES 233

[page 233, §1] [233.1.1] At L = 4a the local porosity distributions µ(φ, 4) show small spikes
at equidistantly spaced porosities for samples EX and DM, but not for samples GF and SA.
[233.1.2] The spikes indicate that models EX and DM have a smoother surface than mod-
els GF and SA. [233.1.3] For smooth surfaces and small measurement cell size porosities
corresponding to an interface intersecting the measurement cell produce a finite proba-
bility for certain porosities because the discretized interface allows only certain volume
fractions. [233.1.4] In general whenever a certain porosity occurrs with finite probability
this leads to spikes in µ.

∙
3

L

Figure 10. Skewness of local porosities for sample EX(solid line with
tick), DM(dashed line with cross), GF(dotted line with square), and
SA(dash-dotted line with circle).

5.3. Local Percolation Analysis

[233.1.5] Visual inspection of Figures 1 through 4 does not reveal the degree of connectivity
of the various samples. [233.1.6] A quantitative characterization of connectivity is provided
by local percolation probabilities [27, 10], and it is here that the samples differ most
dramatically.

[233.2.1] The samples EX, DM , GF and SA are globally connected in all three directions.
[233.2.2] This, however, does not imply that they have similar connectivity. [233.2.3] The
last line in Table 2 gives the fraction of blocking cells at the porosity 0.1355 and for L∗.
[233.2.4] It gives a first indication that the connectivity of samples DM and GF is, in fact,
much poorer than that of the experimental sample EX.

[233.3.1] Figures 8a through 8d give a more complete account of the situation by exhibiting
λα(φ, 20) for α = 3, c, x, y, z for all four samples. [233.3.2] First one notes that sample
DM is strongly anisotropic in its connectivity. [233.3.3] It has a higher connectivity
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[page 234, §0] in the z-direction than in the x- or y-direction. [234.0.1] This was found to be
partly due to the coarse grid used in the sedimentation algorithm [47]. [234.0.2] λz(φ, 20)
for sample DM differs from that of sample EX although their correlation functions in
the z-direction are very similar. [234.0.3] The λ-functions for samples EX and DM rise
much more rapidly than those for samples GF and SA. [234.0.4] The inflection point of
the λ-curves for samples EX and DM is much closer to the most probable porosity (peak)
than in samples GF and SA. [234.0.5] All of this indicates that connectivity in cells with
low porosity is higher for samples EX and DM than for samples GF and SA. [234.0.6] In
samples GF and SA only cells with high porosity are percolating on average. [234.0.7] In
sample DM the curves λx, λy and λ3 show strong fluctuations for λ ≈ 1 at values of
φ much larger than the 〈φ〉 or φ(SDM). [234.0.8] This indicates a large number of high
porosity cells which are nevertheless blocked. [234.0.9] The reason for this is perhaps that
the linear compaction process in the underlying model blocks horizontal pore throats and
decreases horizontal spatial continuity more effectively than in the vertical direction, as
shown in [4], Table 1 p. 142.

[234.1.1] The absence of spikes in µ(φ, 4) for samples GF and SA combined with the
fact that cells with average porosity (≈ 0.135) are rarely percolating suggests that these
samples have a random morphology similar to percolation.

[234.2.1] The insets in Figures 8a through 8d show the functions pα(L) = λα(φ,L) for
α = 3, x, y, z, c for each sample calculated from (53). [234.2.2] The curves for samples
EX and DM are similar but differ from those for samples GF and SA. [234.2.3] Figure 11
exhibits the curves p3(L) of all four samples in a single figure. [234.2.4] The samples fall
into two groups {EX,DM} and {GF,SA} that behave very differently. [234.2.5] Figure 11

p
L

3
(

)

L

Figure 11. p3(L) for sample EX(solid line with tick) DM(dashed line
with cross) GF(dotted line with square), and SA(dash-dotted line with
circle).
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[page 235, §0] suggests that reconstruction methods [1, 70] based on correlation functions
do not reproduce the connectivity properties of porous media. [235.0.1] As a consequence,
one expects that also the physical transport properties will differ from the experimental
sample, and it appears questionable whether a pure correlation function reconstruction
can produce reliable models for the prediction of transport.

[235.1.1] Preliminary results [42] indicate that these conclusions remain unaltered if the
linear and/or spherical contact distribution are incorporated into the simulated annealing
reconstruction. [235.1.2] It was suggested in [70] that the linear contact distribution
should improve the connectivity properties of the reconstruction, but the reconstructions
performed by [42] seem not to confirm this expectation.

6. Physical Properties

6.1. Exact Results

[235.1.3] One of the main goals in studying the microstructure of porous media is to iden-
tify geometric observables that correlate strongly with macroscopic physical transport
properties. [235.1.4] To achieve this it is not only necessary to evaluate the geometric
observables. [235.1.5] One also needs to calculate the effective transport properties ex-
actly, in order to be able to correlate them with geometrical and structural properties.
[235.1.6] Exact solutions are now becoming available and this section reviews exact results
obtained recently in cooperation with J. Widjajakusuma [10, 65, 67]. [235.1.7] For the
disordered potential problem, specified above in equations (2) through (7), the effective
macroscopic transport parameter C is defined by

〈j(r)〉 = −C 〈∇u(r)〉 (68)

where the brackets denote an ensemble average over the disorder defined in (25). [235.1.8]
The value of C can be computed numerically [66, 33]. [235.1.9] For the following results
the material parameters were chosen as

CP = 1, CM = 0. (69)

[235.1.10] Thus in the usual language of transport problems the pore space is conducting
while the matrix space is chosen as nonconducting. [235.1.11] Equations (2) through (7)
need to be supplemented with boundary conditions on the surface of S. [235.1.12] A
fixed potential gradient was applied between two parallel faces of the cubic sample S, and
no-flow boundary condition were enforced on the four remaining faces of S.

[235.2.1] The macroscopic effective transport properties are known to show strong sam-
ple to sample fluctuations. [235.2.2] Because calculation of C requires a disorder av-
erage the four microsctructures were subdivided into eight octants of size 128 × 128 ×
128. [235.2.3] For each octant three values of C were obtained from the exact solu-
tion corresponding to application of the potential gradient in the x-, y- and z-direction.
[235.2.4] The values of C obtained from dividing the measured current by the applied po-
tential gradient were then averaged. [235.2.5] Table 3 collects the mean and the standard
deviation from these exact calculations. [235.2.6] The standard
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[page 236, §0] deviations in Table 3 show that the fluctuations in C are indeed rather
strong. [236.0.1] If the system is ergodic then one expects that C can also be calculated
from the exact solution for the full sample. [236.0.2] For sample EX the exact transport
coefficient for the full sample is Cx = 0.02046 in the x-direction, Cy = 0.02193 in the
y-direction, and Cz = 0.01850 in the z-direction [65]. [236.0.3] All of these are seen to fall
within one standard deviation of C. [236.0.4] The numerical values have been confirmed
independently by [47].

[236.1.1] Finally it is interesting to observe that C seems to correlate strongly with p3(L)
shown in Figure 11. [236.1.2] This result emphasizes the importance of non-Hadwiger
functionals because by construction there is no relationship between C and porosity,
specific surface and correlation functions.

Table 3. Average and standard deviation σ for effective macroscopic
transport property C calculated from subsamples (octants) for CP = 1
and CM = 0.

SEX SDM SGF SSA

C 0.018 80 0.019 59 0.002 34 0.001 19
σ ±0.008 50 ±0.009 42 ±0.002 30 ±0.002 34

6.2. Mean Field Results

[236.1.3] According to the general criteria discussed above in Section 3.1 a geometrical
characterization of random media should be usable in approximate calculations of trans-
port properties. [236.1.4] In practice the full threedimensional microstructure is usually
not available in detail, and only approximate calculations can be made that are based on
partial geometric knowledge.

[236.2.1] Local porosity theory [27, 28] was developed as a generalized effective medium
approximation for C that utilizes the partial geometric characterization contained in the
quantities µ and λ. [236.2.2] It is therefore useful to compare the predictions from local
porosity theory with those from simpler mean field approximations. [236.2.3] The latter
will be the Clausius-Mossotti approximation with P as background phase

Cc(φ) = CP

(
1− 1− φ

(1− CM/CP)−1 − φ/3

)

= CP

(
3CM + 2φ(CP − CM)

3CP − φ(CP − CM)

)
, (70)
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[page 237, §0] the Clausius-Mossotti approximation with M as background phase

Cb(φ) = CM

(
1− φ

(1− CP/CM)−1 − (1− φ)/3

)

= CM

(
2CM + CP + 2φ(CP − CM)

2CM + CP − φ(CP − CM)

)
, (71)

and the self-consistent effective medium approximation [37, 35]

φ
CP − C
CP + 2C

+ (1− φ)
CM − C
CM + 2C

= 0 (72)

which leads to a quadratic equation for C. [237.0.1] The subscripts b and c in (71)
and (70) stand for "blocking" and "conducting". [237.0.2] In all of these mean field
approximations the porosity φ is the only geometric observable representing the influence
of the microstructure. [237.0.3] Thus two microstructures having the same porosity φ are
predicted to have the same transport parameter C. [237.0.4] Conversely, measurement
of C combined with the knowledge of CM, CP allows to deduce the porosity from such
formulae.

[237.1.1] If the microstructure is known to be homogeneous and isotropic with bulk poros-
ity φ, and if CP > CM, then the rigorous bounds [24, 8, 62]

Cb(φ) ≤ C ≤ Cc(φ) (73)

hold, where the upper and the lower bound are given by the Clausius-Mossotti formulae,
eqs. (71) and (70). [237.1.2] For CP < CM the bounds are reversed.

[237.2.1] The proposed selfconsistent approximations for the effective transport coefficient
of local porosity theory reads [27]∫ 1

0

Cc(φ)− C
Cc(φ) + 2C

λ3(φ,L)µ(φ,L)dφ+

∫ 1

0

Cb(φ)− C
Cb(φ) + 2C

(1− λ3(φ,L))µ(φ,L)dφ = 0 (74)

where Cb(φ) and Cc(φ) are given in eqs. (71) and (70). [237.2.2] Note that (74) is still
preliminary, and a generalization is in preparation. [237.2.3] A final form requires general-
ization to tensorial percolation probabilities and transport parameters. [237.2.4] Equation
(74) is a generalization of the effective medium approximation. [237.2.5] In fact, it reduces
to eq. (72) in the limit L→ 0. [237.2.6] In the limit L→∞ it also reduces to eq. (72) al-
beit with φ in eq. (72) replaced with λ3(φ). [237.2.7] In both limits the basic assumptions
underlying all effective medium approaches become invalid. [237.2.8] For small L the local
geometries become strongly correlated, and this is at variance with the basic assumption
of weak or no correlations. [237.2.9] For large L on the other hand the assumption that
the local geometry is sufficiently simple becomes invalid [27]. [237.2.10] Hence one expects
that formula (74) will yield good results only for intermediate L. [237.2.11] The question
which L to choose has been discussed in the literature
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[page 238, §0] [12, 3, 10, 66, 33]. [238.0.1] For the results in Table 4 the so called
percolation length Lp has been used which is defined through the condition

d2p3
dL2

∣∣∣∣
L=Lp

= 0 (75)

assuming that it is unique. [238.0.2] The idea behind this definition is that at the inflection
point the function p3(L) changes most rapidly from its trivial value p3(0) = φ at small L
to its equally trivial value p3(∞) = 1 at large L (assuming that the pore space percolates).
The length Lp is typically larger than the correlation length calculated from G(r)[10, 11].

[238.1.1] The results obtained by the various mean field approximations are collected in
Table 4 [65, 67]. [238.1.2] The exact result is obtained by averaging the three values
for the full sample EX given in the previous section. [238.1.3] The additional geometric
information contained in µ and λ seems to give an improved estimate for the transport
coefficient.

Table 4. Effective macroscopic transport property C calculated from
Clausius-Mossotti approximations (Cc ,Cb), effective medium theory
CEMA and local porosity theory CLPT compared with the exact re-
sult Cexact (for CP = 1 and CM = 0).

Cc Cb CEMA CLPT Cexact
0.094 606 0.0 0.0 0.025 115 0.020 297
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