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Abstract

This paper introduces local porosity distributions and local percolation probabilities as wellde-
fined and experimentally observable geometric characteristics of general porous media. Based
on these concepts the dielectric response is analyzed using the effective-medium approxima-
tion and percolation scaIing theory. The theoretical origin of static and dynamic scaling laws
for the dielectric response incIuding Archie’s law in the low-porosity limit are elucidated. The
zero-frequency real dielectric constant is found to diverge as ε ∝ (1 − φ)−m′

in the high-
porosity limit, where φ denotes the porosity and m′ is analogous to the cementation exponent.
ModeI calculations are presented for the interplay between geometric characteristics and the
frequency-dependent dieIectric response. Three pureIy geometric mechanisms are identified,
each of which can give rise to a large dielectric enhancement.
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[page 60, §1]

I. Introduction

[60.1.1.1] A long-standing problem of considerable scientific
and technological importance is to improve the understanding
of geometric-dielectric correIations in porous materials. [60.
1.1.2] The scientific problem is to find out which properties
of the complicated random geometry of the pore space have a
significant influence on the electrical and dielectric properties.
[60.1.1.3] The engineer, on the other hand, is interested in the
inverse problem of how to infer geometrical features of the
porous medium from its dielectric response. [60.1.1.4] The
most prominent examp1e for the technoIogica1 importance of
this question arises in the context of well-log interpretation for
petroIeum or water exploration. [1]

[60.1.2.1] My objective in this paper is to present a simple
theoretical framework which allows a systematic study of how
the pore-space geometry of an insulating porous material in-
fluences the low-frequency dielectric response when the pore
space is filled with a conductor. [60.1.2.2] The approach is
based on a novel geometric characterization of porous media
via 1ocaI porosity distributions and local perco1ation proba-
bilities which will be defined in Section II. [60.1.2.3] These
geometric quantities are conceptually well defined and exper-
imentally observable. [60.1.2.4] The dielectric properties will
be calculated directly from the geometric characteristics using
mean-field theory, scaling theory, and numerical techniques.
[60.1.2.5] The results are intended to be applicable to the physics
of water- or brine-saturated clay-free rocks. [60.1.2.6] Such
rocks can have very large re1ative dielectric permittivities, some-
times exceeding those of the constituent materials by a fac-
tor of 103 or more. [1–5] [60.1.2.7] As a second hallmark for
the dielectric response of water-saturated rocks, the dielectric
response of water-saturated rocks, many investigators report
a power-law behavior for the dc conductivity with porosity
known as Archie’s law. [6] [60.1.2.8] Holwech and Nøst have
recently measured the frequency-dependent response of water-
filled sintered glass beads and showed that strong dielectric
dispersion and Archie’s law can arise as a purely geometrical
effect. [8] [60.2.0.9] It will be assumed throughout this paper
that electrochemical effects are absent.

[60.2.1.1] Despite numerous efforts, [9] no theoretical frame-
work has been found to date which encompasses both aspects,
strong dielectric enhancement and Archie’s law, simultane-
ous1y. [60.2.1.2] Recent theoretical approaches can be divided
into two categories: [60.2.1.3] The first class [10–17] attempts
to calculate the dielectric properties starting from highly sim-
plified or indirect geometric models for the pore space. [60.
2.1.4] The difficulty is that most models are too idealized to
be compared even to the simplest experimental model system.
[60.2.1.5] The second category [18–23] does not attempt to in-
corporate the pore-space geometry, but concentrates instead on
a sometimes sophisticated phenomenological approach.

[60.2.2.1] Geometrical theories fall again into two families:
percolation theories [10–12] and grain mixture models. [13–

16] [60.2.2.2] Percolation theories predict a finite porosity be-
low which the conductivity vanishes. [60.2.2.3] Such mod-
els are attractive because they capture to some extent the ge-
ometry of a random network of pores, and they give rise to
a strong dielectric enhancement near the percolation thresh-
old. [60.2.2.4] However, they have been ruled out by the ar-
gument [13] that the pore spaces of realistic systems appear to
remain connected down to zero porosity (Archie’s law). [60.
2.2.5] In addition, strong dielectric enhancement does not ap-
pear to be correlated with a particular porosity threshold. [60.
2.2.6] Grain mixture models, on the other hand, concentrate
on the connectedness of the pore space. [60.2.2.7] They are
attractive because they incorporate to some extent the consoli-
dation processes though which porous rocks are formed. [60.
2.2.8] Similar to abstract resistor network models, [10] they are
usually not very explicit about the microgeometry underlying
a specific model. [60.2.2.9] While predicting grain-shape-
dependent exponents for Archie’s law the grain mixture mod-
els need to assume the presence of strongly platelike grains
to obtain dielectric enhancement. [page 61, §0] [61.1.0.1] It
was pointed out by Wong, Koplik and Tomanic [17] however,
that the cementation index in Archie’s law is not determined
by grain shape. [61.1.0.2] On the experimental side, it was
concluded [5] for the case of White stone that the spheroidal
grain model cannot account simultaneously for the observed
frequency-dependent conductivity and dielectric constant.

[61.1.1.1] Let me conclude the brief discussion of recent the-
ories with phenomenological approaches which form the sec-
ond large category. [61.1.1.2] Most approaches [18–21] are
based on the spectral representation of the complex dielectric
functions developed by Fuchs [22] and Bergman. [23] [61.1.
1.3] These theories start from an abstract pole spectrum which
can be adjusted to reproduce the features of experimental data.
[6] [61.1.1.4] Unfortunately, the pole spectrum or its proper-
ties cannot be related to the pore-space geometry without prior
geometric modeling. [61.1.1.5] Therefore, the theory by itself,
while separating material and geometric aspects, does not lead
to a better understanding of geometric-dieletric correlations in
porous media.

[61.1.2.1] To develop a better understanding of geometric-di-
electric correlations in porous media, it is first necessary to de-
velop a suitable geometric characterization as a starting point.
[61.1.2.2] Instead of considering the different “sizes” of pores
as the fundamental source of randomness in porous media,
the present approach suggests to consider the porosity itself
as the fundamental source of randomness in porous media, the
present approach suggest to consider the porosity itself as the
fundamental random variable. [61.1.2.3] This leads immedi-
ately to suggest local porosity distributions and local percola-
tion probabilities as partial geometric characterizations of the
complex pore space.

[61.1.3.1] Based on these new geometric characterizations,
the following questions will be discussed in the paper: validity
and theoretical origin of static and dynamic scaling laws, in-
cluding Archie’s law, and the universality of scaling indices
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(Sec. V), geometric mechanisms of dielectric enhancement
(Sec. VI), model calculations for the interplay between geo-
metric characteristics and frequency-dependent dielectric re-
sponse (Sec. VI), and theoretical aspects of how to obtain geo-
metric information from the dielectric response (Sec. VII). [61.
1.3.2] It must be emphasized again that dielectric dispersion in
this paper results only from the randomness in the pore-space
geometry. [61.1.3.3] In particular, electrochemical effects,
which are important in real rocks, are not considered. [61.
1.3.4] The dielectric response is found to be surprisingly sen-
sitive to the geometrical features encapsuled in local poros-
ity distributions, and it is hoped that the present investigation
might be a step towards developing ultimately a “dielectric
spectroscopy” of porous media.

II. Geometric Characterization of Porous Media

[61.1.4.1] The porosity φ of a porous medium is defined as
the volume of pore space divided by the total volume. [61.1.
4.2] The complement of the pore space will be called the ma-
trix. [61.1.4.3] The porosity is the most important geometrical
quantity characterizing a porous medium. [61.1.4.4] Clearly, φ
alone, being just a single number, cannot suffice to character-
ize the complex pore-space geometry. [61.2.0.5] On the other
hand, a complete equivalence class of atlantes for the pore-
space boundary considered as a two-dimensional continuous
manifold contains too much (possibly irrelevant) geometrical
information. [61.2.0.6] Similar to many instances in statistical
physics, the task is to find a suitable distribution function such
that a finite number of its moments give a faithful approximate
representation of the system.

[61.2.1.1] It is often suggested to use a “pore-size distribu-
tion” as a possible geometric characterization for porous me-
dia, and mercury injection is suggested to measure it. [61.2.
1.2] Already Scheidegger, [24] however, pointed out that the
pore-size distribution is mathematically ill defined. [61.2.1.3]
It depends on an arbitrary identification of cylindrical pores
and their diameters. [25] [61.2.1.4] It is now well appreci-
ated [26] that the result of a mercury injection measurement
cannot be interpreted without having already a faithful geo-
metrical model of the pore space, which itself requires knowl-
edge of the pore-size distribution. [61.2.1.5] Without such a
model, no reliable geometrical information such as the pore-
size distribution can be extracted from the measurement.

[61.2.2.1] This paper suggests a different characterization of
porous media. [61.2.2.2] Purely geometric quantities will
be introduced which are well defined and readily accessible
to direct measurement. [61.2.2.3] The characterization is
based on viewing the local geometry on a mesoscopic scale
as the fundamental random quantity. [61.2.2.4] To define “lo-
cal geometries”, consider a porous medium with a homoge-
neously and isotropically disordered pore space. [61.2.2.5]
The points of a Bravais lattice (in practice a simple cubic lat-
tice) are superimposed on the porous medium and an arbitrary

(in parctice cubic) primitive cell is chosen. [61.2.2.6] The lo-
cal geometry around the lattice point R is defined as [page 62,

§0] the intersection of the pore space and the primitive cell at
R. [62.1.0.1] The volume of the primitive (or measurement)
cells is VMC = 1/ρ, where ρ is the density of Bravais lattice
points. [62.1.0.2] This defines the length scale of resolution L
as L = ρ−1/3 = (VMC)1/3. [62.1.0.3] For the simple cubic
lattice with cubic primitive cell, L is the lattice constant. [62.
1.0.4] The preceding definition of local geometries is valid for
topologically and continuously disordered pore spaces. [62.
1.0.5] For a porous medium with substitutional disorder, the
measurement lattice is given by the underlying lattice.

[62.1.1.1] The local geometry inside the measurement cell
will become increasingly complex as the length scale of reso-
lution L is increased. [62.1.1.2] A full geometric characteriza-
tion at arbitrary L is difficult. [62.1.1.3] However, at every L
the local geometry may be partially characterized by two sim-
ple properties. [62.1.1.4] One is the cell porosity; the second
is whether the pore space percolates or not.

[62.1.2.1] Consider first the local (or cell) porosity. [62.1.2.2]
To define it, the characteristic functions (indicator functions)
of an arbitrary set A is introduced as

χA(r) =

{
0 if r lies outside the set A
1 if r lies inside the set A.

(2.1)

[62.1.2.3] The local (or cell) porosity φ(R, L) at the lattice
position R and length scale L is defined as

φ(R, L) = ρ

∫
χMC(r;R, L)χPC(r) dr, (2.2)

where χMC(r;R, L) is the characteristic function of the mea-
surement cell at R having size L, χPC(r) is the character-
istic function of the pore space and the integration extends
over the porous medium. [62.1.2.4] One can now define lo-
cal porosity distribution functions in analogy to atomic distri-
bution functions. [62.1.2.5] Thus µ(φ,R;L) measures the
probability density to find the local porosity φ in the range
from φ to φ + dφ in a cell of linear dimenios L at the point
R. [62.1.2.6] The assumption of homogeneity implies that
µ(φ,R;L) = µ(φ;L) must be independent of R. [62.1.2.7]
The function µ(φ;L) will be called the local porosity density
at scale L. [62.1.2.8] The bulk porosity φ can be thought of
as the integral over a large volume or as the average over a
statistical ensemble of measurement cells, and thus, assuming
“ergodicity”,

φ = φ(R, L→∞) =

∫ 1

0

φµ(φ;L) dφ, (2.3)

independent of R and L. [62.1.2.9] Higher-order distribution
functions can be defiend similarly. [62.1.2.10] The n-cell local
porosity diestribution function µn(φ1,R1;φ2,R2; . . . ;φn,Rn;L)
at scaleLmeasures the probability density to find φ1 in the cell
at R1, φ2 in the cell at R2 etc. [62.1.2.11] The full informa-
tion about the statistical properties of the porosity distribution
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at scale L is contained in the local porosity probability func-
tional µ(φ,L) at scale Lwhich is obtained as the limit n→∞
of µn.

[62.2.1.1] The local porosity distribution µ(φ;L) depends str-
ongly on L. [62.2.1.2] There are two competing effects. [62.
2.1.3] At small L the local geometries are simple, but they
are highly correlated with each other, and the one-cell func-
tion µ(φ;L) does not contein these complex geometric corre-
lations. [62.2.1.4] At large L the local geometries are statisti-
cally uncorrelated, but each one of them is nearly as complex
as the geometry of the full pore space. [62.2.1.5] There must
then exist an intermediate length scale ξ at which, on the one
hand, the local geometries are relatively simple, and on the
other hand the single-cell distribution function has sufficeint
nontrivial geometric content to be a good first approximation.
[62.2.1.6] In this paper this lenght will be taken as a length of
the order of the characteristic pore or grain size of the porous
medium. [62.2.1.7] More precisely, ξ is determined from the
two-cell distribution function µ2(φ1,R1;φ2,R2;L). [62.2.
1.8] The assumption of isotropy implies that the two-cell dis-
tribution function depends only on the distance R, i.e.

µ2(φ1,R1;φ2,R2;L) = µ2(φ1, φ2;R;L). (2.4)

[62.2.1.9] The porosity autocorrelation function at scale L is
defined as

C(R,L) =∫ 1

0

∫ 1

0
(φ1 − φ)(φ2 − φ)µ2(φ1, φ2;R;L) dφ1dφ2∫ 1

0
(φ− φ)2µ(φ;R;L) dφ

, (2.5)

and the porosity correlation length ξ is obtained fromC(R,L)
as

ξ2 =

∫
R2C(R, 0) d3R∫
C(R, 0) d3R

. (2.6)

[62.0.1.10] In the following the “local porosity distribution”
is defined as µ(φ) = µ(φ; ξ), the single-cell local porosity
density at scale ξ. [62.0.1.11] Simultaneously with this con-
vention it will be assumed that the local geometries at scale
ξ are “simple”. [62.0.1.12] This is called the “hypothesis of
local simplicity”, and it will be made more precise in Sec. IV.
[62.0.1.13] For systems with an underlying lattice symmetry,
the length ξ has to be replaced by the lattice constant.

[62.0.2.1] The most important aspect of µ(φ) = µ(φ; ξ) is
that it is readily measureable using modern image-processing
equipment. [62.0.2.2] In the following a simplified and ap-
proximate procedure to observe µ(φ) in homogeneous and
isotropic porous media is discussed. [62.0.2.3] This procedure
measures µ(φ) from photographs of two-dimensional thin sec-
tions through the pore space. [62.0.2.4] These photographs
must be colored such that pore space and matrix are clearly
distinguished. [62.0.2.5] The quality of the pore-space visual-
ization should be such that a high-resolution digitization of the
image allows each pixel to be assigned unambigouosly to ei-
ther pore space or matrix. [62.1.0.6] An approximate correla-
tion length might be calculated by noting that limL→0 φ(R, L)
corresponds to the pixel value 0 or 1, according to whether the

pixel at position R falls into matrix (0) or pore space (1). [62.
1.0.7] The porosity autocorrelation function C(R, 0) can be
calculated from the pixel power spectrum using the Wiener-
Khintchine theorem, and the correlation length ξ is obtained
from C(R, 0) using eq. (2.6). [62.1.0.8] Having determined
the correlation length, the photograph is subdivided into cells
by placing, e.g., a square grid with squares of length ξ over it.
[62.1.0.9] The cell porosities are then

φi =
1

ξ2

ξ2∑
j=1

φi(Rj), (2.7)

where φi(Rj) is the pixel at position Rj within cell i. [62.1.
0.10] The resulating probability density is averaged over dif-
ferent ways of placing the measurement lattice, over many
choices of the primitive cell, and over alle available photogr-
aphs of two-dimensional sections to obtain the local porosity
density µ(φ).

[62.1.1.1] The result of the measuring procedure described in
the preceding paragraph will in general lead to a local porosity
distribution of the form

µ(φ) = µ0δ(φ) + (1−µ0−µ1)µ̃(φ) +µ1δ(φ−1). (2.8)

[page 63, §0] [63.1.0.1] Its bulk (average) porosity φ is obtained
as the expectation value φ =

∫ 1

0
φµ(φ) dφ, in agreement with

eq. (2.3). [63.1.0.2] The local porosity distribution µ(φ) con-
tains very much geometrical information about the pore-space
geometry. [63.1.0.3] Its definition as µ(φ; ξ) is optimal in
the sense that it contains the maximum amount of information
based purely on the porosity concept. [63.1.0.4] If the cells
were chosen much larger than ξ, then the simple form

µ(φ;L� ξ) = δ(φ− φ) (2.9)

is expected to result. [63.1.0.5] The geometric information in
this case is reduced to φ. [63.1.0.6] At the same time, the local
geometries are nearly as complex as the bulk geometry. [63.1.
0.7] If, on the other hand, the cells are chosen very small, i.e.,
L � ξ, then the measurement procedure above could still be
applied and is expected to yield

µ(φ;L� ξ) = φδ(φ− 1) + (1− φ)δ(φ). (2.10)

Again, the geometrical information in µ(φ) reduced to one
number. [63.1.0.8] The geometrical complexity has gone into
the correlations between cells contained only in the full poros-
ity probability functional, but not in the single-cell quantity
µ(φ). [63.1.0.9] In this sense choosing L ≈ ξ is optimal.

[63.1.1.1] The local porosity distribution µ(φ) is easily calcu-
lated for ordered or substitutionally disordered porous media,
but very dificult to obtain for topological or continuum dis-
order. [63.1.1.2] For ordered or substitutionally disordered
cases, the measurement is given by the underlying lattice, and
ξ is the lattice constant. [63.1.1.3] One finds immediately
µ(φ) = δ(φ − φ) for the ordered case, in agreement with
eq. (2.9). [63.1.1.4] For substitutional disorder the local poros-
ity density follows directly from the distribution of the individ-
ual geometrical elements which occupy the lattice sites.
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[63.1.2.1] The second geometric propery to characterize local
geometries is whether the pore space percolates or not. [63.
1.2.2] For cubic cells each cell is classified as percolating or
nonpercolating according to whether or not there exists at least
one face of the cube which can be connected to any of the
other faces via a path contained completely inside the pore
space. [63.1.2.3] For noncubic cells the classification has to be
modified appropriately. [63.1.2.4] Let λ(φ) denote the fraction
of percolating cells with local porosity φ. [63.1.2.5] λ(φ)
will be called the “local percolation probability”. [63.1.2.6] It
is an important geometric quantity for all physical properties
of porous media such as conduction or fluid flow because it
determines whether volume elements are permeable or not.

[63.1.3.1] Twe two function µ(φ) and λ(φ) constitute only a
partial and approximate geometric characterization of the pore
space. [63.1.3.2] However, λ and µ have a rich geometrical
content. [63.1.3.3] This becomes obvious from the difficulty
of calculating them even for the simplest models of homoge-
neous and isotropic porous media. [63.1.3.4] At present, no
experimentally observed local porosity distributions or perco-
lation probabilities are available to the author. [27] [63.1.3.5]
However, I believe that the general shape of µ(φ) for pore
spaces resulting from spinodal decomposition may be simi-
lar to the order-parameter distribution of a two-dimensional
Lennard-Jones fluid measured in a recent computer experi-
ment. [28]

III. Dielectric Response

[63.2.1.1] The low-frequency dielectric response of a porous
medium is influenced by the randomness in its pore-space ge-
ometry. [63.2.1.2] Given the geometric description of the pore
space developed in the last section, two questions arise: [63.
2.1.3] One is how the geometrical information encapsuled in
µ(φ) and λ(φ) expresses itself in the effective complex di-
electric constant ε(ω), where ω is the frequency. [63.2.1.4]
This will be walled the direct problem. [63.2.1.5] The in-
verse problem is the question what geometric information can
be obtained from a measurement of the frequency-dependent
dielectric constant.

[63.2.2.1] To study these two questions, standard effective-
medium theory is an appropraite tool for a first approximate
investigation. [63.2.2.2] Consider again the subdivision of the
porous medium into cells of length ξ. [63.2.2.3] Let εR and
εW be the complex frequency-dependent dielectric constants
of the constituent materials where the index R stands for the
rock matrix and the index W stands for water (or brine) filling
the pore space. [63.2.2.4] Because alle cells are statistically
independent, standard one-cell effective-medium theory [29]
can be employed to write a self-consistency equation for the
effective dielectric consant ε(ω) of the medium, which reads

∫
G

εloc(ω; εR, εW ;G)− ε(ω)

εloc(ω; εR, εW ;G) + 2ε(ω)
dµ(G) = 0. (3.1)

[page 64, §0] [64.1.0.1] Here εloc(ω; εR, εW ;G) is the local
effective dielectric constant, which depends on the constituent
materials εR and εW and the local geometry G. [64.1.0.2]
The integration is performed over the space G of all possible
local geometries G, and the probability measure dµ(G) on G
represents a complete description of the statistical pore-space
geometry.

[64.1.1.1] It was discussed in Section II that a complete geo-
metric description such as dµ(G) is not known, and that in the
present paper the local porosity distribution µ(φ) and the lo-
cal percolation probability λ(φ) will be used as approximate
descriptions. [64.1.1.2] This implies that the local effective
dielectric constant εloc(ω; εR, εW ;G) must be replaced simul-
taneously by an approximate effective local dielectric constant
ε(ω;φ). [64.1.1.3] It depends on the local porosity φ as the
only geometrical quantity. [64.1.1.4] As a consequence of the
basic hypothesis of local simplicity discussed above, ε(ω;φ)
can later be approximated by simple geometric models of the
pore space. [64.1.1.5] Note that the dependence on εR and εW
as well as the index “loc” have been suppressed to shorten the
notation. [64.1.1.6] With these simplifications one arrives at
the simpler equations

∫ 1

0

εC(ω;φ)− ε(ω)

εC(ω;φ) + 2ε(ω)
λ(φ)µ(φ)) dφ

+

∫ 1

0

εB(ω;φ)− ε(ω)

εB(ω;φ) + 2ε(ω)
[1− λ(φ)]µ(φ) dφ = 0. (3.2)

[64.1.1.7] Here εC(ω;φ) and εB(ω;φ) are the local effective
dielectric constants. [64.1.1.8] The index C stands for con-
ducting (percolating) local geometries and the index B for
blocking (nonpercolating) cells.

[64.1.2.1] Equation (3.2) represents the starting point for the
present investigation, and it is appropriate to discuss briefly its
content. [64.1.2.2] Mathematically, eq. (3.2) is a complicated
integral equation involving five different functions. [64.1.2.3]
The average local dielectric properties εR, εW are assumed
to be known. [64.1.2.4] According to the hypothesis of lo-
cal simplicity, their precise form is not sensitive to geometric
properties other than porosity, and thus they will in practice be
determined from very simple geometrical models of the local
pore space. [64.1.2.5] The important assumptions implicit in
using equation (3.2) are twofold: [64.1.2.6] The first is that
local geometries are uncorrelated. [64.1.2.7] The second says
that the important geometric features giving rise to dielectric
dispersion can be described using local porosity distributions
and local percolation probabilities. [64.1.2.8] With εB and εC
known, eq. (3.2) can be written as F (ε, µ, λ) = 0. [64.1.2.9]
The direct problem is to determine ε given λ and µ as geomet-
rical input. [64.1.2.10] The inverse problems are to calculate
µ from ε and λ or to find λ given ε and µ.

[64.1.3.1] Before embarking on the discussion of these prob-
lems, some notation and conventions must be established for
the subsequent treatment.
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IV. Notation and Conventions

[64.1.4.1] The time variation of electrical fields is taken pro-
portional to exp(−iωt). [64.1.4.2] The complex dieelectric
constant ε is written as

ε = ε′ + iε′′ = ε′ + i
σ′

ω
, (4.1)

where ε′(ε′′) are the real (imaginary) parts of ε, and σ′ is the
real part of the complex conductivity σ. [64.1.4.3] SI units
will be used. [64.1.4.4] Values for ε are given in multiples of
ε0 = 8.8542× 10−12 F/m, the permittivity of free space, and
the units for σ′ are then S/m. [64.1.4.5] The conductivity is
written as

σ = σ′ + iσ′′ = σ′ + iω(1− ε′). (4.2)

[64.1.4.6] The relationship between σ and ε is also written as

ε(u) = 1− σ

u
, (4.3)

where the notation u = iω has been used.

[64.1.5.1] The constituent materials are assumed to be rock
forming the matrix and water filling the pore space. [64.1.5.2]
Their dielectric constants are

εW = ε′W + i
σ′W
ω
, (4.4)

for water, and

εR = ε′R, (4.5)

for rock. [64.1.5.3] In calculations the values ε′W = 79ε0 and
ε′R = 7ε0 will be used. [64.1.5.4] Dimensionless frequencies
are introduced by setting ω0 = σ′W /ε

′
W = 1 for the relaxation

frequency of water, and this also fixes ε′W = σ′W .

[64.2.1.1] The average local dielectric constants εB(ω;φ) and
εC(ω;φ) at porosity φ are in general unknown. [64.2.1.2]
Nevertheless, some general statements can be made. [64.2.
1.3] The relation

σ′B(ω = 0;φ) = 0 (4.6)

must hold for all φ. [64.2.1.4] It expresses the fact that the
blocking geometry is nonconducting. [64.2.1.5] The following
relations for the low- and high-porosity limits are also obvious:

σ′C(ω;φ = 0) = σ′R = 0, (4.7a)

σ′C(ω;φ = 1) = σ′W , (4.7b)

ε′C(ω;φ = 0) = ε′B(ω;φ = 0) = ε′R, (4.7c)

ε′C(ω;φ = 1) = ε′B(ω;φ = 1) = ε′W , (4.7d)

and they are valid for all frequencies ω.

[64.2.2.1] Finally, the local simplicity hypothesis will be cast
into mathematical form by requiring that σ′C(ω = 0;φ) can be
expanded for samll φ as

σ′C(0;φ) = φ(c1 + C2φ+ . . . ). (4.8)

[64.2.2.2] Correspondingly, for the blocking geometries the
real dielectric constant diverges as φ → 1, which is a thin-
plate effect. [64.2.2.3] Local simplictiy is assumed to imply
that the expension

[ε′B(0;φ)]−1 = (1− φ)[B1 +B2(1− φ) + . . . ] (4.9)

is vaild for φ < 1. [64.2.2.4] Note that equation (4.7d) implies
a discontinuity at φ = 1.

[64.2.3.1] For the local porosity distribution, it will be as-
sumed that µ0 = µ1 = 0 in equation (2.8) and thus µ(φ) =
µ̃(φ). [64.2.3.2] The local percolation probability has to as-
sume the limiting values

λ(φ = 0) = 0, (4.10a)

λ(φ = 1) = 1. (4.10b)

The first equation states that there are no conducting geome-
tries with porosity 0, and the second says that there exist no
blocking geometries at porosity 1.

V. Direct Problem

[64.2.4.1] Consider now the direct problem with λ(φ) and
µ(φ) given. [64.2.4.2] The problem is to calculate ε(ω). [64.2.
4.3] The nonlinear integral equation (3.2) is too difficult for an
analytical treatment, and numerical solutions must ultimately
be sought. [64.2.4.4] Some analytic information can be ob-
tained, however, by exploiting the similarity to the well-known
percolation problem. [64.2.4.5] The analogy arises from the
classification of local geometries into percolating and nonper-
colating ones. [64.2.4.6] The first question is then whether
there indeed exists a percolation threshold.

A. Solution for strongly peaked local porosity distri-
butions

[64.2.5.1] For strongly peaked µ(φ), eq. (3.2) can be expanded
around φ. [64.2.5.2] The lowest-order approximation (a “mean-
field approximation to a mean-field approximation”) [page 65,

§0] leads to a quadratic equation for ε(ω) which is easily
solved. [65.1.0.1] For low frequencies (ω → 0), one finds

σ′(0) = 1
2σ
′
C(0;φ)[3λ(φ)− 1], (5.1)

for λ(φ) > 1
3 , and σ′(0) = 0, for λ(φ) ≤ 1

3 . [65.1.0.2] Thus a
percolation transition with control parameter λ(φ) is predicted
for strongly peaked local porosity distributions. [65.1.0.3] Al-
though the prediction of a percolation transition remains cor-
rect for arbitrary µ(φ), the control parameter is in general not
λ(φ). [65.1.0.4] This will be seen in the next subsection. [65.
1.0.5] The percolation transition leads to a divering dc dielec-
tric constant, which is given within the present approximations
as

ε′(0) = 1
2 [3λ(φ− 1)]ε′C(0;φ)

+
9λ(φ)[λ(φ)− 1]ε′B(0;φ)

2[3λ(φ)− 1]
, (5.2a)
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for λ(φ) > 1
3 , and as

ε′(0) =
ε′B(0;φ)

1− 3λ(φ)
, (5.2b)

for λ(φ) < 1
3 . [65.2.0.6] Note that eqs. (4.9) and (5.2) identify

already two possible mechanisms for dielectric enhancement,
one from the necessity of a thin-plate effect for local geome-
tries in the high-porosity limit, the secound from the percola-
tion threshold.

[65.2.1.1] In the high-frequency limit (ω → ∞), the results
are

ε′(∞) =
B

4

(
1±

(
1 +

8ε′C(∞;φ)ε′B(∞;φ)

B2

) 1
2

)
, (5.3a)

where

B = [3λ(φ)− 1]ε′C(∞;φ) + ε′B(∞;φ)[2− 3λ(φ)], (5.3b)

for the real dielectric constant, and

σ′(∞) (5.4)

=
λ(φ)σ′C(∞;φ)ε′(∞)

λ(φ)ε′C(∞;φ) + [1− λ(φ)]ε′B(∞;φ)
(
ε′C(∞;φ)+2ε′(∞)

ε′B(∞;φ)+2ε′(∞)

)2 ,
for real part of the conductivity. [65.0.1.2] The sign in equa-
tion (5.3a) has to be chosen such that σ′ remains positve.

B. Low-frequency limit

[65.0.2.1] In this subsection it will be shown that equation
(3.2) does indeed imply the existence of a percolation thresh-
old, also for general µ(φ). [65.0.2.2] But contrary to previous
percolation theories for porous media, the bulk porosity φ is
not the control parameter of the transition. [65.0.2.3] There-
fore, a transition can or cannot occur as φ is varied.

[65.0.3.1] To identify the percolation transition, consider the
low-frequency limit. [65.0.3.2] Expanding eq. (3.2) around
ω = 0 leads to∫ 1

0

σ′C(0;φ)− σ′(0)

σ′C(0;φ)− 2σ′(0)
λ(φ)µ(φ) dφ

+

∫ 1

0

σ′B(0;φ)− σ′(0)

σ′B(0;φ)− 2σ′(0)
[1− λ(φ)]µ(φ) dφ = 0, (5.5)

for the effective dc conductivity σ′(0) of the system. [65.0.
3.3] Inserting equation (4.6) into (5.5),

σ′(0)

∫ 1

0

λ(φ)µ(φ)

σ′C(0;φ) + 2σ′(0)
dφ

= − 1
6 + 1

2

∫ 1

0

λ(φ)µ(φ) dφ (5.6)

is found. [65.0.3.4] This equation for σ′(0) has no positive
solutions if

∫ 1

0
λ(φ)µ(φ) dφ < 1

3 . [65.0.3.5] This identifies
the control parameter for the transition as

p =

∫ 1

0

λ(φ)µ(φ) dφ, (5.7)

and the effective-medium value pc = 1
3 for the percolation

thershold. [65.1.0.6] The control parameter p is the total frac-
tion of percolating local geometries.

[65.1.1.1] For the effective real dielectric constant ε′(0), two
equations are obtained. [65.1.1.2] If p < pc, the equation
reads

[ε′(0)]−1
∫ 1

0

[1− λ(φ)]µ(φ)

[ε′B(0;φ)]−1 + [2ε′(0)]−1
dφ = 2(pc − p).

(5.8)

[65.1.1.3] For p > pc the solution to equation (5.6) must be
inserted into

ε′(0) =
A+B

C
, (5.9)

where

A = [4σ′(0)]−1
∫ 1

0

ε′B(0;φ)[1− λ(φ)]µ(φ) dφ,

B =

∫ 1

0

ε′C(0;φ)σ′(0)

[σ′C(0;φ) + 2σ′(0)]2
λ(φ)µ(φ) dφ,

C =

∫ 1

0

σ′C(0;φ)

[σ′C(0;φ) + 2σ′(0)]2
λ(φ)µ(φ) dφ.

[65.1.2.1] Equation (5.2) can be treated analogously to the
case of ordinary percolation. [30, 31] [65.1.2.2] The effective
conductivity σ′(0) will be small for p→ pc or whenever φ→
0, i.e., in the low-porosity limit. [65.1.2.3] In this case the
integral on the left-hand side of eq. (5.6) is dominated by the
small φ behavior of λ(φ)µ(φ). [65.1.2.4] The following three
cases for λ(φ)µ(φ) must be distinguished:

(a)
∫ 1

0

φ−1λ(φ)µ(φ) dφ <∞, (5.10a)

(b) λ(φ)µ(φ)→ const for φ→ 0, (5.10b)

(c) λ(φ)µ(φ) ∝ φ−α for φ→ 0 and 0 < α < 1. (5.10c)

[65.1.2.5] [page 66, §0] For case (a) the solution of eq. (5.6) is
obtained as

σ′(0) ≈ σ′+(p− pc), (5.11)

where σ′+ is defined by

1

σ′+
=

∫ 1

0

λ(φ)µ(φ)

σ′C(0;φ)
dφ. (5.12)

[66.1.0.1] The integral exists because of eq. (4.8) and condition
(5.10a). [66.1.0.2] Note that eq. (5.11) is valid for all p for
φ → 0 and for all φ for p → pc. [66.1.0.3] The conductivity
exponent t = 1 has its expected reflective-medium value. [66.
1.0.4] The result of eq. (5.11) is universal in the sense that the
value of t does not depend on the specific geometry contained
in λ(φ) and µ(φ) as long as condition (5.10a) remains fulfilled.

[66.1.1.1] The situation is very different for case (c). [66.1.
1.2] If λ(φ)µ(φ) ∝ Mφ−α and σ′C(0;φ) is given by eq. (4.8),
then to leading order in σ′ the solution to eq. (5.6) is

σ′(0) ∝ C1

(
1− α
M

sin(πα)(p− pc)
)t
, (5.13a)
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where the conductivity exponent

t =
1

1− α
(5.13b)

is now no longer universal. [66.1.1.3] It depends on the be-
havior of λ(φ)µ(φ) for small φ. [66.1.1.4] For the marginal
case α = 0 [case (b)], logarithmic corrections to eq. (5.11) are
obtained, and

σ′(0) ∝ (p− pc)
(

log
(

1
p−pc

))−1
. (5.14)

[66.1.2.1] For the real dielectric constant, eq. (5.8) is valid be-
low pc. [66.1.2.2] This equation has the same form as eq. (5.6)
for the conductivity. [66.1.2.3] However, it is now the behavior
of λ(φ) and µ(φ) that high porosities φ → 1 that is relevant.
[66.1.2.4] From eq. (5.8)

ε′(0) ≈ ε′−(p− pc)−1 (5.15)

is obtained, where

ε′− =

∫ 1

0

ε′B(0;φ)[1− λ(φ)]µ(φ) dφ, (5.16)

analogous to eqs. (5.11) and (5.12). [66.1.2.5] Again, the ex-
pected value s = 1 for the superconductivity exponent is uni-
versal as long as the integral in eq. (5.16) exists. [66.1.2.6] The
asymptotic solution is valid for all p if φ → 1, and for all φ
whenever p→ pc. [66.1.2.7] If [1− λ(φ)]µ(φ) ∝ (1− φ)−β ,
with 0 < β < 1, then the superconductivity exponent becomes
nonuniversal and has the value

s =
1

1− β
,

in analogy with eq. (5.13b) for the conductivity exponent t.

[66.1.3.1] The central result of this section is the identifica-
tion of a percolation transition underlying the random geome-
try of porous media. [66.2.0.2] The control parameter for the
transition is neither the bulk porosity φ nor λ(φ) as suggested
in Sec. V.A, but the total fraction of conducting local geome-
tries. [66.2.0.3] Another result is that the underlying transition
is expected to become relevant both in the low-porosity limit
(φ → 0) and in the high-porosity limit (φ → 1). [66.2.0.4]
Having identified the transition using mean-field theory, the
next step is to apply the results of scaling theory in the present
context.

C. Scaling theory

[66.2.1.1] In this section the scaling theory for the percolation
transition [32,33] is applied in the present context. [34] [66.2.
1.2] Therefore, the present section goes beyond the effective-
medium equation (3.2). [66.2.1.3] Scaling theory starts from
the assumption that the complex dielectric constant can be
written as

ε = ε+|p− pc|tf
(

ε−/ε+
|p− pc|t+s

)
, (5.17)

with the scaling function

f(z) = AI
0 +AI

1z +AI
2z

2 + . . . , (5.18a)

for |z| � 1 and p > pc,

f(z) = AII
1 z +AII

2 z
2 + . . . , (5.18b)

for |z| � 1 and p < pc, and

f(z) = AIIIzt/(t+s) + . . . , (5.18c)

for |z| � 1 and all p. [66.2.1.4] Here ε+ is the complex
dielectric constant of a good conductor, and ε− is the com-
plex dielectric constant for the poor conductor. [66.2.1.5] p
is the volume fraction of good conductor, pc is the percolation
threshold, and t and s are the conductivity and the supercon-
ductivity exponents. [66.2.1.6] For ω → 0, eqs. (5.17) and
(5.18) yield the well-known results

σ′(0) = AI
0σ
′
+|p− pc|t + . . . , (5.19)

for p > pc, and σ′(0) = 0, for p ≤ pc for the conductivity.
[66.2.1.7] For the dielectric constant, one obtains

ε′(0) = AII
1 ε
′
−|p− pc|−s + . . . , (5.20a)

for p < pc, and

ε′(0) = AI
0ε
′
+|p− pc|t +AI

1ε
′
−|p− pc|−s + . . . , (5.20b)

for p > pc.

[66.2.2.1] For one-dimensional systems, the effective-medium
approximation is known to be asymptotically exact for class
(a) distributions. [31] [66.2.2.2] If this remains true in higher
dimensions, then the scaling theory can be applied to porous
media by identifying the prefactors σ′+ and ε′− above as those
given in eqs. (5.12) and (5.16). [66.2.2.3] The important new
aspect of eqs. (5.19) and (5.20) applied to porous media is that
they are universally valid in the low-porosity limit of systems
having λ(φ)µ(φ) which obeys condition (5.10a). [66.2.2.4]
Naturally, they are also valid whenever p→ pc at finite φ.

[66.2.3.1] Consider now the case of finite frequencies ω 6=
0. [66.2.3.2] The condition |z| � 1 in eqs. (5.18) as always
satisfied for [page 67, §0] sufficiently small ω. [67.1.0.1] On the
other hand, the condition |z| � 1 is always if either p ≈ pc
or ε′−/ε

′
+ � 1. [67.1.0.2] The latter condition does not apply

for the systems considered in thes paper, and thus |z| � 1 is
always interpreted as p ≈ pc. [67.1.0.3] Equations (5.17) and
(5.18) imply, for the case p < pc,

σ′(ω) = −AII
2 σ
′
+|p− pc|−2s−tω2 + . . . , (5.21)

for the conductivity, and

ε′(ω) = AII
1 ε
′
−|p− pc|−s (5.22)

+AII
2 ε
′
−|p− pc|−2s−t

(
ε′−
ε′+

)(
ω

ω+

)2

+ . . . ,

for the dielectric constant, where ω+ = σ′+/ε
′
+. [67.1.0.4] For

p ≈ pc one obtains

σ′(ω) = AIIIσ′+

(
ε′−
ε′+

)t/(t+s)(
ω

ω+

)t/(t+s)
(5.23)

×
(

cos

(
ϕt

t+ s

)
+

ω

ω+
sin

(
ϕt

t+ s

))
+ . . .
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and

ε′(ω) = AIIIε′+

(
ε′−
ε′+

)t/(t+s) (ω+

ω

)s/(t+s)
(5.24)

×
(

sin

(
−ϕt
t+ s

)
+

ω

ω+
cos

(
ϕt

t+ s

))
+ . . . ,

where ϕ = arg(ε−/ε+). [67.1.0.5] Finally, the case p > pc
leads to

σ′(ω) =

σ′+
(
AI

0|p− pc|t −AI
2|p− pc|−2s−tω2 + . . .

)
(5.25)

and

ε′(ω) = AI
0ε
′
+|p− pc|t +AI

1ε
′
−|p− pc|−s (5.26)

+AI
2ε
′
−|p− pc|−2s−t

(
ε′−
ε′+

)(
ω

ω+

)2

+ . . . .

[67.1.0.6] These results predict a divergence of ε′(ω) as ω → 0
with an exponent s/(s + t) whenever the control parameter
p approaches criticality. [67.1.0.7] Simultaneously, the con-
ductivity will also exhibit power-law behavior with exponent
t/(t+ s). [67.1.0.8] Outside the critical region, the frequency
dependency is quadratic.

D. Archie’s law

[67.1.1.1] Most publications on the electrical properties of
porous media discuss the phenomenological relationship [8]
between dc conductivity and bulk porosity:

σ′(0) ∝ φm (5.27)

called “Archie’s law”, which is usually written in terms of the
formation factor F = [σ′(0)]−1. [67.2.0.2] The widespread
acceptance of eq. (5.27) as a fundamental law for the physics
of porous media is rather surprising in view of the fact that
most experimental data [1–3, 6, 17] rarely span more than a
decade in porosity. [67.2.0.3] Correspondingly, the cementa-
tion exponent m is found to scatter widely between m ≈ 1
and m ≈ 4. [67.2.0.4] Having found it necessary to introduce
two functions to only partially characterize the pore-space ge-
ometry, it may be understandable that the present author has
strong reservations to accept φ and m as sufficient geometric
information to predict σ′, as is done in the well-logging litera-
ture. [1] [67.2.0.5] However, he feels compelled to admit that
eq. (5.27) receives a certain amount of theoretical justification
from his own investigation, if it is interpreted not as a relation
between geometry and electrical resistance, but as a statement
about physical processes which reduce the bulk porosity. [67.
2.0.6] Let me explain this in more detail.

[67.2.1.1] Sedimentary and related rocks arise from sedimen-
tation and subsequent compactification, cementation, and other
physicochemical processes. [67.2.1.2] The bulk porosity φ
changes during the sedimentation history of the rock. [67.2.
1.3] The final specimen’s porosity may be primary, i.e., inter-
particle porosity, or secondary, i.e., resulting from dissolation
of grains or cements, shrinkage, fracturing, etc. [67.2.1.4] The

diagenetic processes change the local dielectric and geometric
properties. [67.2.1.5] Within the present formulation, it might
be assumed that primarily λ(φ) and µ(φ) are affected. [67.2.
1.6] This implies that σ′+ and p become implicitly dependent
upon φ, and consequently σ′(0) will change with φ. [67.2.
1.7] To discuss these changes one needs a physical model for
the changes of α and µ, but this is not the objective of the
present investigation. [67.2.1.8] Nevertheless, it is of interest
to discuss the general consequences of the scaling approach
presented above. [67.2.1.9] Clearly, σ′+(φ) should tend to
zero as φ → 0, and it should approach σ′W for φ → 1. [67.2.
1.10] It seems also plausible that p(φ) should decrease as φ is
lowered. [67.2.1.11] If one assumes that σ′+(φ) and p(φ) can
be expanded around φ = 0 as

σ′+(φ) = σ̇′+(0)φ+ 1
2 σ̈
′
+(0)φ

2
+ . . . , (5.28)

p(φ) = p(0) + ṗ(0)φ(0)φ+ . . . , (5.29)

then eq. (5.19) implies that

σ′(φ) = AI
0σ̇
′
+(0)φ

[
p(0)− pc + ṗ(0)φ+ . . .

]t
. (5.30)

[67.2.1.12] This already resembles eq. (5.27). [67.2.1.13] In
particular, if it happens that p(0) ≈ pc, i.e., if one approaches
criticality as φ→ 0, then eq. (5.30) yields Archie’s law with a
cementation exponent,

m = 1 + t, (5.31a)

as long as condition (5.10a) remains satisfied during the ce-
mentation process. [67.2.1.14] If the system falls under condi-
tion (5.10c), however, the cementation index becomes

m = 1 + t+
α(φ)

1− α(φ)
. (5.31b)

[page 68, §0] [68.1.0.1] Note that α and thus m may explicitly
depend on the bulk porosity. [68.1.0.2] Even more compli-
cated results for m obtained if λ(φ) and µ(φ) change with φ
such that σ′+(φ) ∝ φmσ and p(φ) ∝ pc + ṗ(0)φ

mp . [68.1.0.3]
In such cases,

m = mσ +mp

(
t+

α(φ)

1− α(φ)

)
. (5.31c)

[68.1.0.4] The surprising result is that the simplest form for
m, namely, eq. (5.31a), predicts an exponent in the range from
m = 2 for p � pc to m = 1 + t ≈ 3 for p ≈ pc. [68.1.
0.5] Nevertheless, the cementation exponent will in general be
very different for different compaction processes, and without
physical models for such processes even a nonmonotonous be-
havior of σ′(0;φ) is possible. [68.1.0.6] The important result
of this section is that it provides a general framework inside
which the apparent phenomenological universality and scaling
properties of Archie’s law might be understood.

[68.1.1.1] A second interesting consequence of this section
is that it predicts similar scaling laws for the dielectric con-
stant in the high-porosity limit φ → 1. [68.1.1.2] This is a
consequence of the thin-plate effect [eq. (4.9)] and analogous
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assumptions about the corresponding dilution process. [68.1.
1.3] More precisely, it is predicted that

ε′(0) ∝ (1− φ)−m
′
. (5.32)

[68.1.1.4] Here the “dilution exponent” m′ is given in the sim-
plest case as

m′ = 1 + s, (5.33a)

where s is the superconductivity exponent, and in the general
case as

m′ = m′σ +m′p

(
s+

β(φ)

1− β(φ)

)
. (5.33b)

[68.1.1.5] The exponentsm′σ andm′p characterize the behavior
of ε′− and p as φ → 1, and β(φ) is the exponent governing
λ(φ)µ(φ) as φ → 1. [68.1.1.6] The behavior predicted by
eq. (5.32) might be experimentally observable in water-filled
pore casts of systems obeying (5.27).

VI. Model Calculations

[68.1.2.1] This section returns to eq. (3.2) and presents nu-
merical solutions. [68.1.2.2] This is intended as a case study
exploring the relationship between the statistics of local ge-
ometries and bulk dielectric behavior. [68.1.2.3] The main
focus will be on dielectric enhancement. [68.1.2.4] To solve
eq. (3.2) for ε(ω), one must know the geometric input func-
tions µ(φ), λ(φ) and local dielectric responses εC(ω;φ), εB(ω;φ).
[68.1.2.5] Unfortunately, no experimental data are available at
present, [27] and geometric modeling has to be used instead.

A. Local dielectric response

[68.1.3.1] The hypothesis of local simplicity states that the lo-
cal geometries are simple and that the effective local dielectric
constants are insensitive to geometrical details other than local
porosity. [68.1.3.2] The simplest isotropic local geometry is
spherical. [68.2.0.3] For conducting local geometries, a water-
coated spherical rock grain will serve as the local model. [68.
2.0.4] For blocking geometries a rock-coated spherical water
pore is employed. [68.2.0.5] In the notation of Sec. IV, this
means

εC(u;φ) = εW

(
1− 1− φ

(1− εR/εW )−1 − 1
3φ

)
, (6.1)

εB(u;φ) = εR

(
1− φ

(1− εW /εR)
−1 − 1

3 (1− φ)

)
. (6.2)

[68.2.0.6] In the low-frequency limit, one obtains for the con-
ducting geometry

σ′C(0;φ) = σ′W
2φ

3− φ
= 2

3σ
′
Wφ(1 + 1

3φ+ . . . ), (6.3)

thereby identifying C1 in eq. (4.8) as C1 = 2
3σ
′
W . [68.2.0.7]

The real dielectric constant is found as

ε′C(0;φ) = ε′W −
1− φ

(1− 1
3φ)2

[
ε′W (1− 1

3φ)− ε′R
]
. (6.4)

[68.2.0.8] For the blocking geometry, the dc limit gives σ′B(0;φ) =
0, in agreement with eq. (4.6), and

ε′B(0;φ) = ε′R
1 + 2φ

1− φ
, (6.5)

for φ < 1, identifyingB1 = 1/ε′R in eq. (4.9), and ε′B(0;φ) =
ε′W , for φ = 1. [68.2.0.9] Note the presence of the thin-plate
divergence in the φ→ 1 limit.

B. Local porosity distribution

[68.2.1.1] It was mentioned repeatedly that no experimental
data for µ(φ) are available to the author at present. [68.2.1.2]
A qualitative guideline for porous media resulting from spin-
odal decomposition might be the shape of the order-parameter
distribution calculated in Ref. [28] which suggests in particu-
lar that µ(φ) can be bimodal.

[68.2.2.1] For the subsequent calculations, a simple mixture
of two β distributions has been used. [68.2.2.2] The analytic
expression reads

µ(φ) = ω
Γ(µ1 + ν1)

Γ(µ1)Γ(ν1)
(1− φ)µ1−1φν1−1

+ (1− ω)
Γ(µ2 + ν2)

Γ(µ2)Γ(ν2)
(1− φ)µ2−1φν2−1, (6.6)

where 0 ≤ ω ≤ 1, µ > 0, ν > 0 and Γ(x) denotes Euler’s Γ
function. [68.2.2.3] The bulk porosity is then given as

φ = ω
ν1

µ1 + ν1
+ (1− ω)

ν2
µ2 + ν2

. (6.7)

[68.2.2.4] For µ, ν > 1, the β densities are bell shaped, and
for µ, ν > 1 they diverge at the limits.

[68.2.3.1] Eight different local porosity distributions are com-
pared in the calculations. [68.2.3.2] All of them are chosen
such that they give the same bulk porosity φ = 0.1. [68.2.
3.3] The values of the parameters are listed in Table 1, and the
densities [page 69, §0] themselves are displayed graphically in
fig. 1. [69.1.0.1] Each distribution is identified by a number
and a line style as indicated in the inset of Fig. 1. φi (i = 1, 2)
are the partial porosities νi/(νi + µi) in eq. (6.7). [69.1.0.2]
The uniform distribution carries number 1 and is identified by
a thin dot-dashed line. [69.1.0.3] Number 2 represents the
strongly peaked case and is identified by a wide dashed line,
and so on.

[69.1.1.1] The choices presented in Fig. 1 are arbitrary. [69.1.
1.2] The reader should bear in mind, however, that µ(φ) is eas-
ily measureable and cannot be adjusted to fit experimentally
observed dielectric data when comparing the theory with ex-
periment. [69.1.1.3] The choices for µ(φ) presented here are
intended as a case study illustrating different possibilities that
might occur in real or artificial experimental systems. [69.2.
0.4] The highly peaked µ(φ) (curve 2) represents the limit of
weak disorder. [69.2.0.5] Remember that µ(φ) = δ(φ − φ)
for ordered systems. [69.2.0.6] Curve 2 gives a reference to
which other distributions can be compared. [69.2.0.7] The dis-
tributions 4, 5 and 6 have been chosen divergent at φ = 0 with
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TABLE 1. Paramenter values for the eight different forms of µ(φ) displayed in Fig. 1 and used in the model calculations. The parameters
ω, µ1, ν1, µ2 and ν2 are those of Eq. (6.6). φ1, φ2, var1 and var2 are the average and variance for µ1, µ2, if µ in Eq. (6.6) is written as
µ = ωµ1 + (1− ω)µ2. The rows labeled φ, variance, and skewness contain the mean, variance and skewness for the eight forms of µ(φ).

Curve No. 1 2 3 4 5 6 7 8
ω 1 1 2/3 1 1 1 2/3 2/3
µ1 1.0 360.0 191.1 7.2 4.5 1.8 28.8 58.6
ν1 1.000 40.000 3.900 0.800 0.500 0.200 0.087 0.176
µ2 1423.0 13.9 2.24
ν2 500.00 6.00 0.96

φ1 0.1 0.1 0.02 0.1 0.1 0.1 0.003 0.003

φ2 0.26 0.294 0.294
var1 0.003 33 0.000 24 0.000 10 0.000 10 0.015 00 0.030 00 0.000 10 0.000 05
var2 0.000 10 0.010 00 0.050 00

φ 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1
Variance 0.003 33 0.000 24 0.012 90 0.010 00 0.015 00 0.030 00 0.022 13 0.035 41
Skewness 0 0.2657 0.6993 1.6004 1.8679 2.3124 1.1588 2.1176

exponents 0.8, 0.5 and 0.2 as examples for distributions whose
inverse first moment does not exist. [69.2.0.8] Curves 3, 7 and
8 demonstrate the fact that µ(φ) itself might be “of percolation
type.” [69.2.0.9] This occurs if the porous medium contains
two types of porosity or regions of very different porosities.
[69.2.0.10] For curve 3 the ratio between the two porosities is
roughly 100, and the inverse first moment of µ(φ) exists. [69.
2.0.11] For curves 7 and 8, the ratio roughly 1000, and the
densities diverge at φ = 0. [69.2.0.12] In all cases the dis-
tributions were chosen critical in the sense that the weight for
the higher-porosity component is 1

3 .

C. Local percolation probability

[69.2.1.1] The local percolation probabilities λ(φ) can be mea-
sured simultaneously with the local porosity distribution µ(φ).

FIGURE 1. Eight porosity densities with parameters given in Table
1.

[69.2.1.2] However, such a measurement is more difficult be-
cause it requires the approximate reconstruction of the three-
dimensional pore space from parallel two-dimensional sec-
tions. [69.2.1.3] For this reason geometric modeling of porous
media is most important for this quantity.

[69.2.2.1] Three simple models will be compared in the cal-
culations: the uniformly connected model (UCM), the central
pore model (CPM), and the grain consolidation model (GCM).

1. Uniformly connected models

[69.2.3.1] In these models λ(φ) equals a constant, i.e.,

α(φ) = p. (6.8)

[69.2.3.2] In the simplest case, the fully connected model, p =
1. [69.2.3.3] This means that all local geometries are assumed
to be [page 70, §0] conducting. [70.1.0.1] In addition, the case
p = 1

2 will also be investigated.

2. Central pore model

[70.1.1.1] Consider a cubic cell of volume 1 filled with rock.
[70.1.1.2] Inside the cubic cell a centered cubic pore of side
length a (0 ≤ a ≤ 1) is cut out. [70.1.1.3] Now a random
process is used to drill cylindrical pores with square cross sec-
tion from the faces of the cube toward the central pore. [70.
1.1.4] Sometimes these pores will connect to the central pore,
and sometimes not. [70.1.1.5] The random process starts with
the choice of an arbitrary face of the cube. [70.1.1.6] Now
choose a random number r between 0 and 1

2 . [70.1.1.7] If
r > 1

2 (1 − a), a pore with square cross section of side length
b (0 ≤ b ≤ a) is drilled from the center of the face all the way
to the central pore. [70.1.1.8] The central pore had volume
a3, and the connection pore has the volume 1

2b
2(1 − a). [70.

1.1.9] If the random number fulfills f < 1
2 (1 − a), then the

face is not pierced, but instead the same volume 1
2b

2(1 − a)
is removed from the wall in such a way that the resulting pore
space remains disconnected from the pore space connected to
the central pore. [70.1.1.10] This process is repeated for all
six faces of the cube. [70.1.1.11] The cubic symmetry is not
essential, and a model with different symmetry can be defined
similarly.
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[70.1.2.1] The result of the process described above is a cu-
bic cell whose porosity can be expressed in terms of the side
length a of the central pore and the ratio R = b/a as

φ = a3 + 3b2(1− a) = a3(1− 3R2) + 3R2a2. (6.9)

[70.1.2.2] According to the definitions in Section II, the cell is
called percolating if there exist at least one path within the pore
space connecting a face to a face different than itself. [70.1.
2.3] To obtain λ(φ) the probability that either no or exactly one
face is pierced has to be calculated. [70.1.2.4] This probability
euqals 1− λ(φ). [70.1.2.5] Clearly,

1− λ = (1− a)6 + a(1− a)5 = (1− a)5. (6.10)

[70.1.2.6] Thus, in the central pore model,

λ(φ,R) = 1− [1− a(φ,R)]5, (6.11)

where a(φ,R) is that root of eq. (6.9), which fulfills 0 ≤ a ≤ 1
for all 0 ≤ φ ≤ 1 and 0 ≤ R ≤ 1. [70.1.2.7] For R = 1,
i.e., b = a, it follows that φ ∝ a2 and thus a ∝ φ1/2, resulting
in λ(φ) ∝ φ1/2 for small φ. [70.1.2.8] On the other hand, for
R → 0 one finds a ∝ φ1/3 for φ → 0 and thus λ(φ) ∝ φ1/3

for φ → 0. [70.1.2.9] Thus the general conclusion for the
central pore model is that

λ(φ) ∝ φγ , (6.12)

where γ can range between 1
2 and 1

3 .

3. Grain consolidation model

[70.1.3.1] The grain consolidation model was proposed as a
simple geometrical model for diagenesis. [11] [70.1.3.2] Its
main observation is the existence and smallness of the perco-
lation threshold in regular and random bead packings when
the bead radii are increased. [70.1.3.3] In fact, the model has
recently been modified such that the critical porosity at which
conduction ceases can be arbitrarily small. [12] [70.2.0.4] For
regular bead packings, this implies

λ(φ) =

{
0 for φ < φc

1 for φ > φc .
(6.13)

[70.2.0.5] For random packings λ(φ) will be smoothed out
around φc. [70.2.0.6] For simplicity, in this paper eq. (6.13)
will be used with φc = 0.05.

[70.2.1.1] The most important aspect of λ(φ) is that it de-
termines the control parameter p. [70.2.1.2] According to
eq. (6.12), its behavior near φ = 0 can influence the exponent
α in (5.10c). [70.2.1.3] Note that for the grain consolidation
model the form of λ(φ) always implies that condition (5.10a)
is fulfilled, and universal behavior is expected. [70.2.1.4] The
half-connected model in the uniformly connected model class
is included to demonstrate the influence of the thin-plate ef-
fect. [70.2.1.5] The shape of λ(φ) in all other cases gives
extremely small probability to blocking geometries with high
porosities. [70.2.1.6] This is expected to be generally true for
interparticle porosity. [70.2.1.7] This is expected to be gen-
erally true for interparticle porosity. [70.2.1.8] However, the
secondary pore space in real rocks may contain a significant
fraction of high-porosity blocking geometries. [32]

D. Numerical results

[70.2.2.1] Numerical solutions to eq. (3.2) were obtained us-
ing an iterative technique. [70.2.2.2] The iteration was stopped
whenever |εn(ω) − εn−1(ω)| < 10−7. [70.2.2.3] In Figs. 2-
5 selected results for ε(ω) are presented. [70.2.2.4] Figure
2 presents the uniformly connected model with p = 1, Fig-
ure 3 the uniformly connected model with p = 1

2 . [70.2.
2.5] Figure 4 gives the results for the central pore model with
R = 0.922, and Fig. 5 those for the grain consolidation model
with φc = 0.05. [70.2.2.6] In each figure the line styles cor-
respond to the line styles of the local porosity distributions
displayed in Figure 1. [70.2.2.7] Parts (a) of each figure shows
log10 ε

′(ω) as a function of log10 ω in the upper graph and
log10 σ

′(ω) in the lower graph. [70.2.2.8] In addition, the
inset in the upper right-hand corner displays the local percola-
tion probability λ(φ) for 0 ≤ φ ≤ 1

2 . [70.2.2.9] The vertical
scale for the inset is always 0 ≤ λ ≤ 2. [70.2.2.10] Part (b)
display in the upper graph −d[log10 ε

′(ω)]/d(log10 ω) versus
log10 ω and d[log10 σ

′(ω)]/d(log10 ω) in the lower plot. [70.
2.2.11] These quantities give a more sensitive representation of
the dispersion and show at the same time the values of “local
exponents”. [70.2.2.12] In all figures frequency is measured
in units of the relaxation frequency of water as discussed in
Section IV. [70.2.2.13] All plots are given over ten frequency
decades with a resolution of five points per decade.

E. Discussion

[70.2.3.1] It is obvious from Figs. 2-5 [especially part (b)] that
the low-frequency dielectric response depends sensitively on
the details of µ(φ) and λ(φ). [70.2.3.2] A general discussion
is difficult, because the response is always a mixture between
three basic mechanisms each of which can give significant di-
electric dispersion. [page 71, §0] [71.1.0.1] The first mechanism
is the dispersion resulting from the disorder in µ(φ) itself. [71.
1.0.2] The second mechanism is the despersion resulting from
p, i.e., from percolation geometry. [71.1.0.3] The third mech-
anism is the dispersion resulting from the behavior of λ(φ) in
the φ→ 1 limit, i.e., the thin-plate effect.

[71.1.1.1] The absolute dispersion for all figures is collected
in Table 2. [71.1.1.2] ∆ε is defined as ∆ε = ε′(0) − ε′(∞),
while ∆σ = σ′(∞)− σ′(0).

[71.2.1.1] Before discussing the three mechanisms, it is im-
portant to note that the bulk porosity φ does not influence the
shape of the response curves if it is changed without changing
the shape of µ(φ). [71.2.1.2] Instead, it determines an overall
frequency shift for the frequency region over which the disper-
sion occurs. [71.2.1.3] As φ is lowered, this region is shifted
toward lower frequencies. [71.2.1.4] This observation together
with the fact that all µ(φ) give the same bulk porosity of 0.1
shows that the bulk porosity by itself cannot be used to charac-
terize the dielectric response. [71.2.1.5] In particular, there is
no theoretical basis for Archie’s law [eq. (5.27)] if interpreted



13

as a relation between dc conductivity and bulk porosity (see
Section V.D for a discussion).

[page 72, §0]

[page 73, §0]

[73.1.1.1] A second observation is that in all figures the high-
frequency real dielectric constant ε′(∞) is not very sensitive

FIGURE 2. (a) Real part of the complex dielectric constant (upper
graph) and real part of complex conductivity (lower graph) vs fre-
quency in a doubly logarithmic plot. Each graph contains eight curves
whose line style corresponds to the local porosity densities displayed
in Figure 1. The inset shows the local percolation probability λ(φ)
used in the calculation, in this case that of the uniformly conducting
model with p = 1. The vertical axis of the inset ranges form λ = 0 to
2, the horizontal axis from φ = 0 to 0.5. (b) Derivativs of the curves
in (a).

to the details of µ(φ). [73.1.1.2] This is a consequence of
the fact that for low φ the local dielectric constants ε′B and ε′C
must both approach ε′R.

[73.1.2.1] The first mechanism, dispersion from the form of
µ(φ), can be studied in pure form when λ(φ) = 1, and the
corresponding results are shown in Figure 2. [73.1.2.2] In this
case there are no blocking local geometries; i.e., p = 1 ac-
cording to eq. (5.7). [73.1.2.3] If µ(φ) is highly peaked as in
curve 2, then the system is only weakly disordered, and there
is almost no visible disperion with the amount of disorder con-
tained in µ(φ). [73.1.2.4] In fact, distributions with power-law
divergences at φ → 0 or with percolation structure generate

FIGURE 3. Same as Figure 2 for the uniformly conducting model
with p = 1

2
.
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the strongest dispersion, as can be seen from curves 3 and 5-8
in figure 2. [73.1.2.5] Table 2 shows that the dispersion varies
almost three orders of magnitude between the different distri-
butions. [73.1.2.6] Note that relatively similar local porosity
distributions such as curves 6 and 8 can have very different
dielectric response. [73.1.2.7] On the other hand, very differ-
ent shapes for µ(φ) can give similar ε(ω), as demonstrated by
curves 3 and 5. [73.1.2.8] This shows that the dielectric re-
sponse by itself does not contain a full geometric characteriza-
tion of the pore space, and it needs always to be complemented
with additional physical or geometrical information. [73.1.
2.9] This is not too surprising. [73.1.2.10] Indeed, it is more

FIGURE 4. Same as Figure 2 for the central pore model with R =
0.922.

surprising that when the dielectric response becomes large it is
also very sensitive to geometric details. [73.1.2.11] This is the
case for dielectric enhancement near the percolation threshold
or as a result of the thin-plate effect.

[73.1.3.1] Consider the thin-plate mechanism. [73.1.3.2] It
requires the presence of blocking geometries of high poros-
ity. [73.1.3.3] Mathematically, this means λ(φ) 6= 1 for large
φ. [73.1.3.4] As a simple illustration, Figure 3 displays the
results for the uniformly connected model when λ(φ) = 1

2 .
[73.1.3.5] Now p = 1

2 , which is far away from pc. [73.1.3.6]
Nevertheless, the dielectric dispersion is much stronger than
would be obtained for solutions to the central pore model or

FIGURE 5. Same as Figure 2 for the grain consolidation model with
φc = 0.05.
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grain consolidation model with the same p. [73.1.3.7] Com-
pare, e.g., curve 5 in figure 3 with curve 5 in figure 5. [73.
1.3.8] Moreover, the dielectric dispersion becomes sensitive to
the details µ(φ). [73.1.3.9] It is now possible to distinguish
in figure 3(b) the distributions 3, 7 and 8, which have ω 6= 1
from the rest for which ω = 1. [73.1.3.10] In particular, curves
3 and 5, which had very similar response in figure 2, appear
now very different. [73.1.3.11] The dispersion is the stronger
the more weight µ(φ) has at high φ. [73.1.3.12] This can be
seen from curve 3, which shows less dispersion than curves 4
and 5, while the opposite was true for figure 2. [73.2.0.13]
Similarly, ε′ for curve 7 is depressed below curves 6 and 8 at
intermediate frequencies. [73.2.0.14] At very low frequen-
cies, the percolative character of distribution 7 is responsible
for stronger overall dispersion than in curve 6. [73.2.0.15] The
degree of asymmetry of µ(φ) is reflected in the asymmetry of
the response, as best seen in the derivatives plotted in figure
3(b).

[73.2.1.1] The percolation mechanism is responsible for strong
dielectric disperion in figures 4 and 5. [73.2.1.2] There is
essentially no dispersion from thin-plate mechanism in these
cases because in both cases λ(φ) ≈ 1 for φ > 0.5, and
thus there are no local geometrics with a high dielectric con-
stant. [73.2.1.3] Figure 4 represents the central pore model
with R = 0.922, and results for the grain consolidation model
with φc = 0.05 are given in figure 5. [73.2.1.4] Contrary to
the situation in figures 2 and 3, p is now different for each dis-
tribution. [73.2.1.5] The results of performing the integral in
eq. (5.7) are listed in table 3. [73.2.1.6] Naturally, the dielec-
tric dispersion increases strongly with p → pc and this effect
dominates the dispersion from µ itself. [73.2.1.7] In particu-
lar, for p ≈ pc power-law behavior for ε(ω) as a function of
frequency is obtained in agreement with the scaling theory pre-
sented in Section V. [73.2.1.8] As an example, scaling theory
predicts the exponent 0.597 for the conductivity of distribution
8 in figure 4 and 0.403 for the real dielectric constants. [73.2.
1.9] These predictions are obtained from eqs. (5.23) and (5.24)
using s = 1 and eqs. (5.13b) and (6.12) with γ = 0.5, and the
exponent ν1 from Table 1. [73.2.1.10] Figure 4(b) shows that
these values are indeed approached at low frequencies. [73.
2.1.11] Similarly, scaling theory predicts the exponent 0.5 for
ε′ and σ′ corresponding to distributions 3, 6 and 7 in figure
5. [73.2.1.12] Again, these values are approached as seen
fom figure 5(b), although the power-law behavior occurs over
a limited frequency range because p is not sufficiently close
to the critical region. [73.2.1.13] Note that curve 8 in figure
5 has dropped below the percolation threshold, and thus the
conductivity increases as ω2 for small ω.

[73.2.2.1] The complexity and variability of ε(ω) obtained
from the simple mean-field solutions of this section correspond
to the complexity and variability of possible pore-space ge-
ometries. [73.2.2.2] More approximate analytical investiga-
tions of the solutions to eq. (3.2) are necessary to identify sim-
ple parameters characterizing µ and λ which allow a better

classification of the solutions and thereby the possible geome-
tries.

F. Sedimentary rock

[73.2.3.1] The present paper deals only with simple homoge-
neous and isotropic porous media. [73.2.3.2] Real rocks are
highly inhomogeneous, but they can also be discussed within
the present framework. [page 74, §0] [74.1.0.1] Sedimentary
rocks exhibit two main types of porosity. [74.1.0.2] Primary
interparticle porosity is the porosity between the grains of the
original sediment. [74.1.0.3] Often, this pore space is changed
during diagenesis of the sediment. [74.1.0.4] In particular
cements between the grains can exhibit a qualitatively differ-
ent secondary porosity. [33] [74.1.0.5] This situation can be
treated within the present formalism by replacing the dielec-
tric constant εW of the pore-filling fluid with the effective di-
electric constant of the pore-filling cement. [74.1.0.6] Natu-
rally, the results must be much more complex, as they contain
additional independent geometrical information describing the
cement.

VII. Inverse Problem

[74.1.1.1] Up to now the direct problem was discussed which
consists in finding ε(ω) for given µ(φ) and λ(φ) from the non-
linear eq. (3.2). [74.1.1.2] The inverse problem is to determine
α(φ) or µ(φ) from a knowledge of ε(ω). [74.1.1.3] This is
most important for applications such as well logging. [74.1.
1.4] Particularly important is the problem of determining α(φ)
from ε(ω) and µ(φ) in view of the fact that the local porosity
distribution µ(φ) can be observed much more easily than the
local percolation probabilities.

[74.1.2.1] Consider therefore briefly the problem of determin-
ing λ(φ) from eq. (3.2) given ε(ω) and µ(φ). [74.1.2.2] A
general theoretical discussion can be given based on the obser-
vation that eq. (3.2) is now linear. [74.1.2.3] It can be written
as

∫ 1

0

K(ω;φ)λ(φ) dφ = f(ω), (7.1)

where

K(ω;φ)

= µ(φ)

(
εC(ω;φ)− ε(ω)

εC(ω;φ) + 2ε(ω)
− εB(ω;φ)− ε(ω)

εB(ω;φ) + 2ε(ω)

)
, (7.2)

f(ω) = −
∫ 1

0

εB(ω;φ)− ε(ω)

εB(ω;φ) + 2ε(ω)
µ(φ) dφ. (7.3)

[74.1.2.4] Equation (7.1) is a linear Fredholm integral equation
of the first kind. [74.1.2.5] Because the kernel K(ω;φ) is not
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TABLE 2. Numerical values for ∆ε = ε′(0)− ε′(∞) and ∆σ = σ′(∞− σ′(0)) contained in the model calculations of Figures 2-5.

Curve No. 1 1 2 3 4 5 6 7 8

∆ε (Fig. 2) 0.798 0.053 3.716 1.863 3.147 9.261 28.793 20.484
∆σ (Fig. 2) 0.298 0.035 1.067 0.619 0.889 1.545 2.400 2.029
∆ε (Fig. 3) 19.197 13.819 21.956 25.162 34.950 96.046 186.010 115.270
∆σ (Fig. 3) 1.585 1.370 1.664 1.674 1.741 1.648 1.751 1.489
∆ε (Fig. 4) 5.996 3.835 16.616 9.639 14.204 52.196 259.700 3932.522
∆σ (Fig. 4) 1.105 0.801 1.974 1.455 1.708 2.176 2.877 2.283
∆ε (Fig. 5) 2.119 0.053 371.525 5.498 11.430 291.481 277.396 37.691
∆σ (Fig. 5) 0.595 0.035 3.025 1.137 1.604 2.565 3.043 2.436

TABLE 3. Calculated values of p corresponding to the eight different forms of µ(φ) for the central pore model (CPM, displayed in Figure 4)
and for the grain consolidation model (GCM, displayed in Figure 5). Note that p = 1 for all cases in Figure 1 and p = 1

2
for all cases displayed

in Figure 2.

Curve No. 1 2 3 4 5 6 7 8

CPM 0.6542 0.6940 0.5420 0.5858 0.5341 0.4059 0.3643 0.3334
GCM 0.7500 1.0000 0.3399 0.6048 0.4962 0.3415 0.3376 0.2841

symmetric, define

K1(ω, ω′) =

∫ 1

0

K(ω, φ)K(ω′, φ) dφ,

K2(φ, φ′) =

∫ 1

0

K(ω, φ)K(φ, φ′) dω.

[74.1.2.6] General results can be employed to solve eq. (7.1)
if f(ω) is continuous and such that

∫ 1

0
f(ω)2 dω exists, and

if
∫ 1

0

∫ 1

0
Ki(ω;φ) dωdφ exists and Ki(ω;φ) is piecewise con-

tinuous in 0 ≤ ω ≤ 1, 0 ≤ φ ≤ 1. [74.1.2.7] The Ki are
symmetric and have eigenvalues λ2n. [74.1.2.8] The normal
modes called Ωni and Φni can be chosen orthonormal and sat-
isfy

λn

∫ 1

0

K(ω;φ)Ωni(φ) dφ = Φni(ω),

λn

∫ 1

0

K(ω;φ)Φni(ω) dω = Ωni(φ).

[74.2.0.9] These modes are used to solve eq. (7.1). [74.2.0.10]
If (7.1) has any solution, then the inhomogeneity f(ω) can be
written as

f(ω) =
∑
n,i

Φni(ω)

∫ 1

0

f(ω′)Φni(ω
′) dω′. (7.4)

[74.2.0.11] It is assumed that the two sets Ωni and Φni have
been made orthonormal. [74.2.0.12] Then the solution to
eq. (7.1) is given as

λ(φ) =
∑
i,n

λnΩni(φ)

∫ 1

0

f(ω′)Φni(ω
′) dω′. (7.5)

[74.2.0.13] The eigenvalues λ2n are the solutions ofD(λ2) = 0,
where

D(λ2) =

∞∑
n=0

κnλ
2n,

κ0 = 1, K
(0)
i (x, y) = 0,

κn = − 1

n

∫ 1

0

K
(n)
i (x, x) dx,

K
(n)
i (x, y) =

∫ 1

0

Ki(x, t)K
(n−1)
i (t, y) dt+ κn−1Ki(x, y).

[74.2.0.14] These brief remarks about the inverse problem are
intended to outline the general characteristics of the problem.
[74.2.0.15] A more detailed discussion must await the availabil-
ity of experimentally observed local porosity distibutions. [27]

VIII. Conclusion

[74.2.1.1] Local porosity distributions and local percolation
probabilities have been introduced as a partial geometric char-
acterization of the complex pore-space geometry in porous
media. [74.2.1.2] From these well-defined and experimen-
tally accessible geometric quantities, the dielectric response
of general porous media resulting from geometrical disorder
was calculated using simple effective-medium theory. [74.2.
1.3] It was found that the theory predicts an underlying perco-
lation transition, which may or may not appear as a porosity
threshold for conduction. [74.2.1.4] As a consequence, perco-
lation scaling theory can be applied to the case of porous me-
dia. [74.2.1.5] This provides a theoretical framework inside
which Archie’s law can be understood as a statement about
the diagenesis of rocks. [74.2.1.6] In particular, the universal
applicability of this phenomenological relationship appears as
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a consequence of the universality of the percolation transition.
[74.2.1.7] Simplest mean-field theory gives the value m = 2
for the cementation exponent in the low-porosity limit. [74.2.
1.8] A new scaling law for the divergence of the real duelectric
constant is predicted in the high porosity limit. [74.2.1.9] This
law should be observable in conductor-filled insulating pore
casts of systems obeying Archie’s law. [74.2.1.10] Numerical
solutions for the effective dielectric constant show a surpris-
ing sensitivity to geometric details whenever the dispersion
becomes large. [74.2.1.11] The present theory contains no ad-
justable parameters or distribution functions. [page 75, §0] [75.1.
0.1] The dielectric response is calculated purely from geomet-
rical quantities. [75.1.0.2] Experimental observation of local
porosity distributions and local percolation probabilities [27]
must answer the question whether they are suitable geomet-
ric characteristics for distinguishing different cases of porous
media or not.
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