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Abstract

Multiscale simulation of transport in disordered and porous media requires mi-

crostructures covering several decades in length scale. X-ray and synchrotron com-

puted tomography are presently unable to resolve more than one decade of geometric

detail. Recent advances in pore scale modeling (Phys.Rev.E 80, (2009), 041301)

provide strongly correlated microsctructures with several decades in microstructural

detail. A carefully calibrated microstructure model for Fontainebleau sandstone has

been discretized into a suite of three dimensional microstructures with resolutions

from roughly 128 micrometer down to roughly 500 nanometer. At the highest reso-

lution the three dimensional image consists of 327683 = 35 184 372 088 832 discrete

cubic volume elements with gray values between 0 and 216. This synthetic image is

the largest computed tomogram of a porous medium available at present.

[398.1.1.1] Accurate prediction and understanding of ma-
terial parameters for disordered systems such as rocks [1],
soils [2], papers [3], clays [4], ceramics [5], composites
[6], microemulsions [7] or complex fluids require geomet-
rical microstructures as a starting point as emphasized
by Landauer [8] and numerous authors [9, 10, 11, 12].
[398.1.1.2] Digital three dimensional images of unprece-
dented size and accuracy have been prepared for the case
of Fontainebleau sandstone, and are being made available
to the scientific community in this brief report.

[398.1.2.1] Multiscale modelling of disordered media has
recently become a research focus in mathematics and
physics of complex materials and porous media [13, 14,
15, 16, 17, 18]. [398.1.2.2] Accurate prediction of phys-
ical observables for multiscale heterogeneous media is a
perennial problem [9, 8]. [398.1.2.3] It requires knowl-
edge of the three dimensional disordered microstructure
[11]. [398.1.2.4] Our objective in this brief report is to
provide to the scientific public a sequence of fully three
dimensional digital images with a realistic strongly cor-
related microstructure typical for sandstone. [398.1.2.5]

Resolutions from a = 117.18 µm to 0.4576 µm are avail-
able for download [19]. [398.1.2.6] Experimental com-
puted microtomographic images of comparable size, res-
olution or data quality are, to the best of our knowledge,
not available at present. [398.1.2.7] More importantly,
experimental images of similar size and quality are not
expected to become available to the scientific community
in the near future.

[398.1.3.1] Despite the impressive progress in fully three
dimensional high resolution X-ray and synchrotron com-
puted tomography of porous media in recent years [20, 21]
acquisition times for 1500 radiograms needed for a 1024×
1024× 1024-sample of average quality at the ID19 beam-
line of the European Synchrostron Radiation Facility are
on the order of 30 minutes [22]. [398.1.3.2] Extrapolating
to the number of 32768 such blocks, that we provide in
this report, would thus require on the order of 16384 hours
or roughly 2 years of uninterrupted beamtime. [398.1.

3.3] It is unlikely that this amount of beamtime will ever
be spent.

[398.1.4.1] The continuum multiscale modeling technol-
ogy for carbonates developed in [23, 24, 25] was applied
to Fontainebleau sandstone in [26], to create a synthetic,
non-experimental image at very high resolution. [398.2.
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0.2] A laboratory sized cubic sample of sidelength 1.8 cm
was generated containing roughly 1.02× 106 polyhedral
quartz grains. [398.2.0.3] For simplicity there are a to-
tal of 99 grain types each defined by eighteen intersecting
planes. [398.2.0.4] The grains are rescaled, randomly
oriented and have a prescribed overlap with each other
(see [26] for more modeling details). [398.2.0.5] The
model was geometrically calibrated against a well studied
experimental microtomogram at 7.5 µm resolution [27].
[398.2.0.6] The geometric calibration was based on match-
ing porosity, specific surface, integrated mean curvature,
Gaussian curvature, correlation function, local porosity
distributions (with 240 µm and 480 µm measurement cell
size), and local percolation probabilities at the same mea-
surement cell sizes. [398.2.0.7] Comparison of these
quantities at a = 7.5 µm was carried out in [26].

[398.2.1.1] The continuum sample generated and charac-
terized in [26] is the starting point for the work reported
here. [398.2.1.2] To eliminate boundary effects a cen-
tered cubic sample, denoted by S, of sidelength 1.5 cm
was cropped from the original deposit. [398.2.1.3] The
pore space inside S is denoted by P, the matrix region is
denoted M.

[398.2.2.1] The sample region S was discretized into N
cubic voxels Vi(a) ⊂ S (i = 1, . . . , N), whose sidelength a
is a multiple of the base resolution a0 = 1.5 cm/16384 =
0.915 527 3 µm . [398.2.2.2] The discretization employs a
cubic array of 63 = 216 collocation points placed centrally
and distributed uniformly inside each voxel Vi(a). [398.

2.2.3] It yields an integer gray scale value 0 ≤ gi(a) ≤ 216
with 1 ≤ i ≤ N for each of the N voxels (discrete [page

399, §0] volume elements). [399.1.0.1] The gray value
gi(a) ∈ N equals the number of collocation points inside
voxel Vi, that fall into the matrix region M [26]. The
gray values approximate the integral

ψi(a) =
1

a3

∫
Vi∩P

d3x ≈ 1− gi(a)

216
, (1)

which is the porosity inside the voxel Vi at resolution a.
[399.1.0.2] Thus, gi(a) = 0 approximates Vi ⊂ P, while
gi(a) = 216 approximates Vi ⊂M.

[399.1.1.1] At the lowest resolution a = 128a0 = 117.18 µm
the sample consists ofN = 128×128×128 = 2 097 152 dis-
crete volume elements (voxels), and it can easily be stored
in a single file. [399.1.1.2] At higher resolution this be-
comes technically inconvenient, and we have limited the
file size to blocks with 1024×1024×1024 = 1 073 741 824
voxels corresponding to roughly 1 Gigabyte. [399.1.

1.3] The highest resolution at which the sample is still
stored in a single file is a = 16a0 = 14.65 µm . [399.

1.1.4] For resolutions a ≤ 8a0 = 7.3244 µm the data are
stored in several blocks. [399.1.1.5] This results in a
maximum of 32768 blocks for the highest resolution of
a = a0/2 = 0.4576 µm. [399.1.1.6] The number of voxels
is N = 245 = 35 184 372 088 832 at this resolution. [399.

1.1.7] Table 1 gives a summary of the available resolutions
a, sample sidelength L (in units of a), number of voxels
N , number of 10243-blocks K, and an estimate of the
CPU time and wall time expended for the computation.

[399.1.2.1] All computations were performed on the HLRS’s
bwGRID cluster at the Universität Stuttgart consisting
of 498 compute nodes each holding two Intel Xeon CPU’s
capable of 11.32 GFLOPs. [399.1.2.2] The peak perfor-
mance (Linpack) is 38 TFLOP [28]. For the calculations
performed in this work 256 nodes (=512 CPU’s) were
used in parallel. [399.1.2.3] The discretization algorithm
was parallelized, but not optimized. [399.1.2.4] Every
discretized volume element (voxel) requires one byte of
storage. [399.1.2.5] The storage requirements without
compression amount to roughly 40 Terabytes.

[399.1.3.1] The results can be used to calculate resolu-
tion dependent geometric and physical properties. [399.

1.3.2] Because the underlying continuum microstructure
is available with floating point precision, the resolution
can be changed over many decades. [399.1.3.3] Reso-
lution dependent geometrical or physical properties can
be compared with, or extrapolated to, the continuum re-
sult. [399.1.3.4] This is illustrated with the porosity φ
(volume fraction of pore space) and specific internal sur-
face S (surface area per unit volume).

[399.1.4.1] The exact values of φ and S are not known
for the continuum model. [399.1.4.2] Depending on the
geometrical or physical quantity of interest computations
on the continuum model as well as computations on dis-
cretizations with more than 10243 discrete volume ele-
ments are (as a rule) challenging at present.

[399.1.5.1] The discretized samples approximate the ex-
act geometry of the continuum model. [399.1.5.2] Let
δij = 1 for i = j and δij = 0 for i 6= j. [399.2.0.3] Then

M(g, a) =

N∑
i=1

δggi(a) (2)

is the number of voxels with grey value g at resolution a,
and

φ(gth, a) =
1

N

gth∑
g=0

M(g, a) (3)

is an estimate for the porosity based on a segmentation
of its discretization at resolution a with segmentation
threshold gth. [399.2.0.4] The porosity φ = lima→0 φ(gth, a)
of the continuum model at infinite resolution is expected
to obey

φ(0, a) ≤ φ ≤ φ(215, a) (4)

for all gth and all a. [399.2.0.5] The validity of these
bounds depends on the continuum microstructure. [399.

2.0.6] They are expected to hold approximately for the
sandstone microstructure. [399.2.0.7] Grey values g = 0
and g = 216 do not guarantee, that the pore boundary
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a 128a0 64a0 32a0 16a0 8a0 4a0 2a0 a0 a0/2
L 128 256 512 1024 2048 4096 8192 16 384 32 768
N 221 224 227 230 233 236 239 242 245

K 1 1 1 1 8 64 512 4096 32 768
TCPU [h] 1.6 3.2 6.5 11 88 704 5632 45 056 360 448

Table 1. Overview of data sets available from http:www.icp.uni-stuttgart.demicroct for download. a is the resolution in
units of a0 = 0.915 527 34 µm . L is the sidelength of the cubic sample in units of aa0. The total number of voxels is N , and K
is the number of cubic blocks used to represent the sample. One has K > 1 whenever L > 1024. TCPU gives an estimate of the
total CPU time in hours, that was used to generate the discretizations. Calculations were typically performed in parallel on 512
Xeon processors requiring a total wall time of approximately Twall = TCPU/512 in hours due to an essentially linear speedup.
Total wall time was around 800 hours or 34 days.
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Figure 1. Porosity φ(gth, a) as function of segmentation
threshold gth for resolutions a = 8a0, 4a0, 2a0, a0, a0/2 .

does not intersect the voxel region, although it will be
true for the majority of voxels in the limit a→ 0.

[399.2.1.1] Figure 1 shows the porosity φ(gth, a) as a
function of the segmentation threshold gth for resolutions
a = 8a0, 4a0, 2a0, a0, a0/2.

[399.2.2.1] Figure 2 shows the porosity bounds φ(0, a)
and φ(215, a) for resolutions a = 8a0, 4a0, 2a0, a0, a0/2.
[399.2.2.2] It also shows eight extrapolations defined as
the linear functions

φi(a; c) = ϕi(c) + ki(c)a (5)

where i ∈ {0, 215} and the slopes ki(c) and intercepts
ϕi(c) are determined such that

φi(a; c) = φ(i, a) (6)

for a = c and a = c/2. [399.2.2.3] Table 2 lists the slopes
and intercepts of all eight extrapolations. [399.2.2.4] In
between the upper and lower bounds Figure 2 also shows
(with symbols × connected by a solid line) the porosity
obtained by maximizing the variance [page 400, §0] of
the grey scale histogram, a standard technique in image
processing [29].

Figure 3 shows the mean values

φ∗(c) =
ϕ0(c) + ϕ215(c)

2
(7)
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Figure 2. Approximate lower bounds φ(0, a) and approxi-
mate upper bounds φ(215, a) for the porosity φ for resolutions
a = 8a0, 4a0, 2a0, a0, a0/2 are shown as (+) data points. A to-
tal of eight straight lines show extrapolations of these upper
and lower bounds to a = 0. The symbols × connected by a
solid line show the porosity estimated from maximizing the
variance of the grey scale histogram.

plotted against the differences

φ∗∗(c) = ϕ215(c)− ϕ0(c) (8)

as data points. [400.1.0.1] It also shows a linear fit to
the data as a dashed line. [400.1.0.2] The linear fit
extrapolates to the value

lim
c→0

φ∗(c) = 0.134 313± 0.000 01 (9)

where the uncertainty is from the residues of the fit.

[400.1.1.1] We now turn to an estimate for the specific
internal surface S. [400.1.1.2] Assume, that every voxel
Vi(a) at resolution a with 0 < gi(a) < 216 is cut by a
single plane. [400.1.1.3] Let Bi(R) denote a ball with
radius R centered at the center of the voxel Vi(a). [400.

1.1.4] Then Bi(a/2) is the inscribed ball with radius a/2,

and Bi(
√

3a/2) denotes the circumscribed ball with radius√
3a/2. [400.1.1.5] If the voxel is cut by a single plane,

then the surface area of the cut is bounded above by the
area of the circle forming the base of the spherical cap
cut from the circumscribed ball

√
3a/2. [400.1.1.6] Let



4

c k0(c) ϕ0(c) k215(c) ϕ215(c)

8a0 −0.004 944 104 133 756 0.131 677 153 054 625 0.006 128 869 055 829 0.133 806 445 926 894
4a0 −0.005 437 994 277 600 0.133 652 713 629 999 0.006 038 194 581 379 0.134 169 143 824 69
2a0 −0.005 680 456 774 371 0.134 137 638 623 542 0.005 981 708 264 244 0.134 282 116 458 962
a0 −0.005 843 877 976 029 0.134 301 059 825 200 0.005 942 813 391 024 0.134 321 011 332 18

Table 2. Slopes and intercepts for extrapolations in Figure 2 according to equation (5).

a[a0] 8 4 2 1 0.5

Smax(a) [mm−1] 20.039 20.530 20.774 20.904 20.946
Smf(a) [mm−1] 9.6371 9.8774 9.9978 10.061 10.065
Smin(a) [mm−1] 6.0407 6.1915 6.2673 6.3068 6.3096

Smeasured(a) [mm−1] 9.168±0.02 9.825±0.06 10.159±0.16 10.307(±0.43) 10.355(±1.34)

Table 3. Smax(a) and Smin(a) are the upper and lower bounds computed from eqs. (16) resp. (17) and eq. (18) for specific
internal surfaces as functions of resolution a. Smf(a) is the mean field estimate computed from eqs. (18)–(23). Smeasured(a) is
calculated by applying the direct algorithm from [30] to thresholded cubic subsamples, and averaging the results as described
in the last paragraph of the main text.
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Figure 3. Linear fit to the mean values φ∗(c) versus differ-
ences φ∗∗(c) for c = 8a0, 4a0, 2a0, a0.

b denote the radius of the circle forming the base, let h
denote the height of the cap, and let R be the radius of
the sphere from which the cap is cut. [400.2.0.7] Then

b2 = h(2R− h) (10)

and

V =
π

3
h2(3R− h) (11)

is the volume of the spherical cap. [400.2.0.8] Introducing
the voxel porosity

ψ =
3V

4πR3
(12)

and solving the last equation for h and gives

hm(ψ) = R

{
1 + 2 cos

[
arccos(1− 2ψ) + 2mπ

3

]}
(13)

as a function of voxel porosity, where m = 0, 1, 2. [400.

2.0.9] The inequality

0 ≤ h ≤ R (14)

selects the solution with m = 2. [400.2.0.10] The area of
the circle at the base of the spherical cap is A = πb2 so
that

A(ψ,R) = πh2(ψ) [2R− h2(ψ)] (15)

is the relation between the circular base area and the
volume fraction of a spherical cap cut from a sphere of
radius R. [page 401, §0] [401.1.0.1] Combined with eq.
(1) this yields the upper bound

Smax(g, a) =
1

a3
A

(
1− g

216
,

√
3a

2

)
(16)

for the specific internal surface inside a voxel with reso-
lution a having grey value g under the assumption that
the voxel is cut by a single flat plane.

[401.1.1.1] For the lower bound we use the circular base
area obtained by the intersection with the inscribed ball
Bi(a/2) of radius a/2. [401.1.1.2] The minimum is at-
tained when the intersection plane is oriented perpendicu-
lar to one of the space diagonals of the cubic voxel. [401.

1.1.3] The inscribed ball is intersected by the plane only
when its distance from the nearest voxel corner exceeds
a(
√

3 − 1)/2. [401.1.1.4] This occurs at ψ =
√

3(
√

3 −
1)3/16 ≈ 0.042 468 and at ψ = 1 − [

√
3(
√

3 − 1)3/16] ≈
0.957 53. [401.1.1.5] Therefore, one finds the lower bound
Smin(g, a) = 0 for g ≤ 9 and g ≥ 206, while

Smin(g, a) =
1

a3
A
(

1− g

216
,
a

2

)
(17)

holds for 10 ≤ g ≤ 205. [401.1.1.6] Upper and lower
bounds for the specific surface are obtained from these
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results by summation as

Sb(a) =
1

N(a)

215∑
g=1

M(g, a)Sb(g, a) (18)

where b=min resp. b=max. [401.1.1.7] Table 3 lists the
results for Smin(a) and Smax(a) for a = 8a0, 4a0, 2a0, a0, a0/2.

[401.1.2.1] Table 3 shows that the bounds for the specific
surface are rather wide. [401.1.2.2] It is then of interest
to investigate the following simple geometric estimate: In
the limit a → 0 most voxels are intersected by a single
plane. [401.1.2.3] The intersecting planes can have vary-
ing orientations. [401.1.2.4] As a simple approximation it
may be assumed, that the effect of different orientations
is averaged out, and that a single orientation suffices to
estimate the specific surface inside a voxel. [401.1.2.5]

Here we assume this single direction to be a space diago-
nal of the voxel. [401.1.2.6] All four space diagonals are
equivalent by symmetry so that it suffices to consider one
direction. [401.1.2.7] A simple meanfield like appproxi-
mation is to assume, that every voxel with porosity ψi(a)
given in eq. (1) is intersected by a single plane oriented
perpendicular to one of the four space diagonals of the
voxel.

[401.1.3.1] Let 0 ≤ d ≤
√

3a denote the distance from
the corner of the voxel along the diagonal to the inter-
section point, where the plane intersects the space diag-
onal. [401.1.3.2] By symmetry it suffices to consider
0 ≤ d ≤

√
3a/2. For 0 ≤ d ≤ a/

√
3 the intersection

forms an equilateral triangle. [401.2.0.3] In this case d is
related to the voxel porosity ψ by

d(ψ, a)

a
=

(
2(1− ψ)√

3

)1/3

(19)

and the area of the triangle is

A(d, a) =
3
√

3

2
d(ψ, a)2 (20)

[401.2.0.4] For the range a/
√

3 ≤ d ≤
√

3a/2 the inter-
section forms a hexagon. [401.2.0.5] In this case the
analogous results are

d(ψ, a)

a
=

√
3

2
− cos

[
arccos(2(2ψ − 1)/

√
3) + π

3

]
(21)

and

A(d, a) =

√
3

2

[
3d2 − 3(

√
3d− a)2

]
. (22)

[401.2.0.6] The specific surface area of a voxel with grey
value g is then

Smf(g, a) =
A(d(ψ, a), a)

a3
(23)

computed from eqs. (19) and (20) for 1 ≤ g ≤ 36 or from
eqs. (21) and (22) for 37 ≤ g ≤ 108 with ψ = 1−(g/216).
[401.2.0.7] For g > 108, i.e. ψ smaller than roughly 1/2,
equations (19), (20) are used for 180 ≤ g ≤ 215, while
(21), (22) are used for 109 ≤ g ≤ 179, but now in both

cases with ψ = g/216. [401.2.0.8] The second line in
Table 3 is then obtained by inserting eq.(23) into eq. (18)
with b=mf.

[401.2.1.1] The last line in Table 3 gives the specific in-
ternal surface Smeasured(a) calculated directly using the
algorithm from [30]. [401.2.1.2] The data are obtained
by averaging segmented (1024)3-blocks. [401.2.1.3] The
segmentation threshold was chosen by maximizing the
variance of the grey scale histogram [29]. [401.2.1.4] For
a = 8a0, 4a0, 2a0 all blocks were included into the average,
for a = a0 half of the blocks, and for a = a0/2 ten percent
randomly chosen blocks were averaged in the measure-
ment. [401.2.1.5] The calculation of Smeasured(a) took
approximately 1100 hours CPU time (without segmenta-
tion), while the mean field estimate Smf(a) can be ob-
tained (e.g. within Matlab) directly from the histogram
M(g, a) at virtually no computational cost.
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