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Abstract

Capillary desaturation experiments produce disconnected (trapped) ganglia of mesoscopic sizes
intermediate between pore size and system size. Experimental evidence for interactions be-
tween these mesoscale clusters during desaturation is analyzed and discussed within the estab-
lished microscopic and macroscopic laws of Newton, Young-Laplace and Darcy. A theoretical
expression for capillary number correlations is introduced that seems to have remained unno-
ticed. It expresses capillary desaturation curves in terms of stationary capillary pressures and
relative permeabilities. The theoretical expression shows that the plateau saturation in capil-
lary desaturation curves may in general differ from the residual nonwetting saturation defined
through the saturation limit of the main hysteresis loop. Hysteresis effects as well as the dif-
ference between wetting and nonwetting fluids are introduced into the analysis of capillary
desaturation experiments. The article examines experiments with different desaturation proto-
cols and discusses the existence of a mesoscopic length scale intermediate between pore scale
and sample scale. The theoretical expression is derived entirely within the existing traditional
theory of two-phase flow in porous media and compared to a recent experiment.
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I. Introduction

[1.1.1.1] A capillary desaturation experiment measures the
volume of fluid flowing out from a porous medium as a result
of injecting a second fluid (immiscible with the first) at vary-
ing injection rates. [1.1.1.2] Displacement of a nonwetting
fluid by a wetting fluid is of great importance for hydrocarbon
production processes [1–3].

[1.1.2.1] Most capillary desaturation experiments are carried
out in “discontinuous mode”. [1.1.2.2] A discontinuous mode
desaturation typically starts from a sample filled with nonwet-
ting fluid and increases the injection rate of the wetting fluid in
steps, i.e. with a step function protocol in time. [1.1.2.3] It is
called “discontinuous mode” because the configuration of the
residual fluid is discontinuous in the sense of not connected
from inlet to outlet. [1.1.2.4] On the other hand in a “contin-
uous mode” desaturation one starts always from a continuous
initial configuration in which the resident fluid is hydraulically
connected to the inlet and outlet. [1.1.2.5] Rather than in-
creasing the injection rate sequentially the sample is emptied,
refilled and then injected at with a new (increased) rate. [1.1.
2.6] Experiments in continuous mode are more laborious and
expensive than discontinuous mode experiments. [1.1.2.7]
Many experiments report a constant plateau saturation of the
remaining resident fluid at small injection rates followed by a
gradual decrease at higher injection rates, as seen for example
in Figures 3-17, 3-18, 3-19, pp 70–73 of [3].

[1.1.3.1] Dimensionless (or scaling) groups are algebraic com-
binations of the constitutive parameters from the mathematical
model. [1.1.3.2] Examples, such as the Reynolds or Peclet
number, arise in many fields of physical science. [1.1.3.3] In
capillary desaturation experiments the results are commonly
given in terms of the capillary number, which quantifies the
ratio of viscous to capillary forces.

[1.2.1.1] Given the correlation between displacement effi-
ciency and capillary number during water flooding, it is be-
lieved that mobilization of residual nonwetting fluid depends
predominantly on the competition between viscous and capil-
lary forces [4]. [1.2.1.2] Less importance is usually attributed
to other factors such as initial fluid configuration, desatura-
tion protocol, mesoscopic cluster interactions and/or the na-
ture of the displacement processes (drainage vs. imbibition)
during the experiment. [1.2.1.3] One of our motivations for
this work is to advance the study of these additional factors
influencing capillary desaturation experiments. [1.2.1.4] Re-
cent experiments [5–7] have called for studies of the process
dependence. [1.2.1.5] In this work we take up such studies by
analyzing these desaturation experiments. [1.2.1.6] As a result
we propose to perform not only desaturation expriments, but
also saturation experiments in which the nonwetting saturation
increases rather than decreases during stationary wetting fluid
flow. [1.2.1.7] Mobilization and trapping, coalescence and
breakup of nonwetting fluid then determines the increase of

nonwetting saturation in the same way as in desaturation ex-
periments from the competition between viscous and capillary
forces.

[1.2.2.1] Recovery of residual oil during waterflooding de-
pends upon how small the capillary forces become relative to
viscous forces. [1.2.2.2] Accordingly, the results of capillary
desaturation experiments are generally presented as functions
of various capillary numbers instead of injection rates, because
capillary numbers are supposed to reflect the force balance.
[1.2.2.3] A capillary number is a dimensionless group

Ca =
(viscous forces)
(capillary forces)

(1)

that quantifies the ratio of viscous to capillary forces. [1.2.2.4]
Ideally, the condition Ca ≈ 1 marks the transition from cap-
illary dominated to viscous dominated flow. [1.2.2.5] Numer-
ous definitions of capillary numbers, however, do not fulfill
this expectation as shown in [8–10].

[page 2, §1] [2.1.1.1] Herein, we present a new formulation
for the force balance between viscous and capillary forces of
macroscale two-phase flow that has previously been overlooked.
[2.1.1.2] This new finding is based on introducing the force bal-
ance F quantitatively into eq. (1) by writing

(viscous pressure drop)
(capillary pressure)

= F (S, v, L) (2)

and investigating its dependence on saturation S, velocity v
and system size L. [2.1.1.3] This simple exercise has, to the
best of our knowledge, never been done and turns up a sur-
prising result that is applicable to capillary desaturation. [2.
1.1.4] The main new result of our investigation is eq. (27) be-
low, which expresses the force balance F (S, v, L) = f(S,Ca)
quantitatively as a function of saturation and the macroscopic
capillary number Ca introduced in [9]. [2.1.1.5] Setting F =
F0 to some fixed value F0 generates capillary number corre-
lations S = SF0

(Ca) that seem to be new. [2.1.1.6] Capil-
lary number correlations appear in capillary desaturation ex-
periments, and were heretofore not predictable within the tra-
ditional theoretical framework. [2.1.1.7] Our new findings
provide a means to develop theoretical capillary desaturation
curves that compare well to experimental results.

[2.1.2.1] The article is organized as follows: [2.1.2.2] Section
II formulates the problem as a problem of length scales. [2.
1.2.3] Mobilization and recovery of residual oil produces dis-
connected nonwetting clusters whose average extension is de-
termined by a balance of viscous and capillary forces. [2.1.
2.4] Section II also formulates six specific objectives that have
been addressed and achieved. [2.1.2.5] Section III introduces
notation and, more importantly, formulates scale separation
between microscopic pore scale and macroscopic laboratory
scale. [2.1.2.6] The mathematically precise formulation of
scale separation was crucial for all of our subsequent analysis.

[2.1.3.1] Section IV gives a brief analysis of force balance
and capillary number on the pore scale. [2.1.3.2] Section V
discusses the force balance and capillary number on the sam-
ple scale uncovering eq. (27) as the main new result. [2.1.3.3]
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Section VI relates the main new result to a variety of alterna-
tive definitions for capillary number and visco-capillary force
balance. [2.1.3.4] This discussion is crucial for the subsequent
application of eq. (27) to experiment in Section VII. [2.1.3.5]
Equally important is the experimental fact that capillary desat-
uration experiments depend critically on the desaturation pro-
tocol. [2.1.3.6] Accordingly, Section VII defines and distin-
guishes various experimental protocols in these experiments.
[2.1.3.7] It then applies eq. (27) in two ways: Firstly, to discuss
and analyse the recent experiments of [5]. [2.1.3.8] The result
is presented in Figure 3. [2.1.3.9] Secondly, to propose a new
experiment (with the protocol specified in eq. (56)) and pre-
dict its outcome in Figure 4. [2.1.3.10] Figures 3 and 4 are the
main results demonstrating the fruitful application of eq. (27)
to existing experiments as well as its predictive power for new
experiments.

[2.1.4.1] Section VIII places the main results of eq. (27), Fig.
3 and Fig. 4 in a broader context. [2.1.4.2] It discusses proto-
col dependence, plateau saturation, cooperative dynamics and
inertial effects. [2.1.4.3] This discussion achieves the objec-
tives formulated in Section II. [2.1.4.4] The article concludes
with a summary of results. [2.1.4.5] The motivating ques-
tion of length scales can, at present, not be answered with yes
or no. [2.2.0.6] However, investigating this question has un-
covered new facts related to the importance of nonpercolat-
ing fluid parts for residuals, capillary desaturation and macro-
scopic two phase immiscible displacement.

II. Problem and Objectives

[2.2.1.1] The problem to be discussed in this article is the
question of whether or not there exists a mesoscopic length
scale with new constitutive laws intermediate between the mi-
croscopic pore scale ` and the macroscopic sample size L.
[2.2.1.2] Recent capillary desaturation experiments in [5, 11]
seem to hint towards the possible existence of a mesoscopic
length scale. [2.2.1.3] Existing theories do not explain or pre-
dict capillary desaturation curves or spatiotemporal changes of
nonpercolating residual saturations. [2.2.1.4] Direct upscaling
from pore to sample scale may be difficult or impossible, be-
cause mesoscopic nonpercolating clusters and their interaction
become important [12–14].

[2.2.2.1] The theoretical importance of nonpercolating trap-
ped clusters (ganglia) on macroscopic scales (Darcy scale and
larger) was emphasized already in [15]. [2.2.2.2] It was thor-
oughly analyzed in [16] and [17]. [2.2.2.3] The results of this
analysis led to the proposal of a generalized macroscopic the-
ory [18] predicting hysteresis [19], recovering the traditional
theory [20] and highlighting the role of interfacial areas in
[21]. [2.2.2.4] Experimental evidence for the possible impor-
tance of a mesoscopic scale seems to have been found in recent

experimental advances allowing in situ monitoring of immisci-
ble displacement processes using fast X-ray computed micro-
tomography [5]. [2.2.2.5] Theoretical evidence for the impor-
tance of clusters on macroscopic scales was found in [22] for
immiscible fluids in hydrostatic equilibrium, in [23] for raising
and/or rotating closed columns, in [24] for Buckley-Leverett
shocks, in [25] for McWhorter-Sunada flows and capillarity
driven horizontal redistribution (Philip-problem), in [26] for
saturation overshoot, and in [27] for multistep outflow experi-
ments. [2.2.2.6] Recent drainage and imbibition experiments
with pore scale imaging performed by [11] confirm that the
dynamics is nonlocal and that capillary action at menisci is
percolating over some mesoscopic distance. [2.2.2.7] These
experimental observations and theoretical advances all seem
to hint towards a mesoscopic cluster scale, that might be de-
fined via the nonpercolating clusters and their interaction with
each other.

[2.2.3.1] The main objectives of this paper are:
(i) to study the process dependence of capillary desaturation

curves and the dependence on the desaturation protocol,
(ii) to introduce new capillary saturation curves for oil injec-

tion based on traditional two-phase flow theory,
(iii) to propose new capillary saturation experiments with oil

injection instead of water injection,
(iv) to introduce a new relation between capillary desaturation

curves and the product of relative permeabilities with nor-
malized capillary pressure functions that seems to have
remained unnoticed so far,

(v) to show that the plateau saturation in capillary desatura-
tion curves is not given as the residual oil saturation SO r

(defined in eq. (25b) below), but can be either 1 − SW i

(where the irreducible water saturation SW i is defined in
eq. (25a) below) or any saturation below 1 − Sz where
Sz is defined as the zero Pc

imb(Sz) = 0 on the capillary
pressure curve for secondary imbibition, and

(vi) to quantify the large variation of breakpoints in capillary
desaturation curves within the traditional two-phase flow
theory.

[page 3, §1]

III. Preliminaries

A. Notation

[3.1.1.1] Time is denoted as t ∈ R and position as x ∈ R3.
[3.1.1.2] The geometry of the porous medium and its fluid con-
tent is represented mathematically by several closed subsets of
R3. [3.1.1.3] These are

R3 ⊃ S := sample core (3a)
S ⊃ P := pore space (3b)

S ⊃ S \ P = M := matrix space (3c)

P ⊃W(t) := wetting fluid at time t (3d)

P ⊃ P \W(t) = O(t) := non-wetting fluid at time t (3e)
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where W stands for water (wetting) and O for oil (non-wetting).
[3.1.1.4] The wetting and nonwetting fluid are assumed to be
immiscible. [3.1.1.5] The Euclidean position space R3 car-
ries the usual topology, metric structure and Lebesgue mea-
sure d3x. [3.1.1.6] The volume of a subset G ⊂ R3 is defined
and denoted as

|G| :=
∫
R3

χ
G
(x) d3x =

∫
G

d3x (4)

where

χ
G
(x) :=

{
1 for x ∈ G
0 for x /∈ G

(5)

is the characteristic (or indicator) function of a set G. [3.1.
1.7] The interior in(G) of a set G is the union of all open sets
contained in the set G. [3.1.1.8] It is assumed that

S = P ∪M, in(P) ∩ in(M) = ∅ (6)

holds and the volume fraction

φ =
|P|
|S|

= 1− |M|
|S|

(7)

is called porosity. [3.1.1.9] The surface, or boundary, of a set
G is denoted as ∂G. [3.1.1.10] All boundaries are assumed to
be sufficiently smooth. [3.1.1.11] The set P ∩M = ∂P \ ∂S =
∂M \ ∂S is the rigid internal boundary between P and M.

[3.1.2.1] It will be assumed throughout, that the sets P and
M are pathconnected. [3.1.2.2] A set is called pathconnected
if any two of its points can be connected by a path contained
inside the set. [3.1.2.3] This excludes isolated disconnected
pores and grains [28, Problem 6.(a), p. 120]. [3.1.2.4] More-
over, it will be assumed that ∂P ∩ ∂S 6= ∅ and ∂M ∩ ∂S 6= ∅.
[3.1.2.5] Analogous to eq. (6) also the fluid regions are disjoint
except for their boundary, i.e.

P = W(t) ∪O(t), in(W(t)) ∩ in(O(t)) = ∅ (8)

holds for all t. [3.1.2.6] Their volume fractions

SW(t) =
|W(t)|
|P|

=
|P \O(t)|
|P|

= 1− SO(t) (9)

are called saturations. [3.1.2.7] The volumetric injection rates
of the two immiscible and incompressible fluids are denoted
for i = W,O as

Qi = volumetric injection rate of fluid i (10)

and have units of ms−1. [3.2.0.8] Matrix rigidity implies

Q(t) = QW(t) +QO(t) (11)

where Q(t) is the total volumetric flux.

B. Scale separation

[3.2.1.1] Porous media physics requires to distinguish the mi-
croscopic pore scale ` from the macroscopic sample scale L.
[3.2.1.2] The two scales are related by coarse graining or, math-
ematically, by a scaling limit as emphasized in [29, 30]. [3.
2.1.3] The two scales will be distinguished by a tilde ˜ for
microscopic pore scale quantities when necessary. [3.2.1.4]

Thus x̃ ∈ R̃3 represents a position in the pore scale descrip-
tion, while x ∈ R3 refers to a macroscale position. [3.2.1.5]
The relation between R̃3 and R3 may be symbolically written
as R3 ∼ (R̃3)R̃

3

. [3.2.1.6] This expression symbolizes the
formal relation

x̃ = εx =
`

L
x, x̃ ∈ R̃3, x ∈ R3 (12)

in the scaling limit ε → 0. [3.2.1.7] To illustrate its meaning,
consider the microscopic saturations

S̃W(x̃, t) = χ
W(t)

(x̃), x̃ ∈ R̃3 (13a)

S̃O(x̃, t) = χ
O(t)

(x̃), x̃ ∈ R̃3 (13b)

that are trivially defined in terms of characteristic functions.
[3.2.1.8] Let

εG = {εx : x ∈ G} . (14)

[3.2.1.9] The macroscopic saturations are to be understood for-
mally as the scaling limit

SW(x, t) = lim
ε→0

1

|εG|

∫
G

χ
W(t)

(x + εy) d3y, (15a)

SO(x, t) = lim
ε→0

1

|εG|

∫
G

χ
O(t)

(x + εy) d3y, (15b)

where x ∈ S ⊂ R3 whenever this limit exists and is indepen-
dent of G. [3.2.1.10] Note that eq. (15) is formal, because the
integrand is understood as a function of ỹ = εy ∈ R̃3. [3.
2.1.11] For more mathematical rigour on homogenization see
e.g. [31]. [3.2.1.12] Existence of the scaling limit is tanta-
mount to the existence of an intermediate “representative ele-
mentary volume” G large compared to ` and small compared
to L.

IV. Microscopic pore scale `

[3.2.2.1] Consider stationary flow of a fluid inside the pore
space P. [3.2.2.2] On the pore scale the viscous forces are
given quantitatively by Newton’s law of internal friction

(viscous pressure gradient) = µ|∇̃ṽ|

≈ µ |ṽ(x̃)− ṽ(x̃wall)|
|x̃− x̃wall|

(16)

where µ is the fluid viscosity, ∇̃ṽ is the phase velocity gradient
∗, and ṽ(x̃, t) = ṽ(x̃) is the phase velocity for stationary flow.
[page 4, §0] [4.1.0.1] The capillary forces are quantified by the
Young Laplace law as

(capillary pressure) = σWOκ (17)

where σWO is the interfacial tension and κ the interfacial mean
curvature in thermodynamic equilibrium between the two pha-
ses. [4.1.0.2] Using the same scale in both laws

|x̃− x̃wall| ≈ κ−1 ≈ ` = (pore diameter), (18a)

∗In general∇̃ṽi is a tensor of rank 2 and µ is a tensor of rank 4 yielding
the fluid stress tensor of rank 2.
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approximating ṽ(x̃) by its spatial average ṽ as

ṽi(x̃) ≈ ṽi =
1

|P ∩ S|

∫
S

χ
P
(ỹ)ṽi(ỹ) d

3ỹ (18b)

and using

ṽi(x̃wall) = 0 (18c)

for both phases i = W,O one arrives at the microscopic cap-
illary number

C̃ai =
µi|ṽi|
σWO

(19)

for phase i = W,O. [4.1.0.3] Note that σWO/µi is a charac-
teristic flow velocity that depends only on the fluid properties.
[4.1.0.4] As a consequence the microscopic capillary number
C̃a depends only on fluid properties, but is independent of the
pore space properties.

[4.1.1.1] For a derivation of C̃ai from the pore scale equations
of motion, see [9, 32].

V. Macroscopic sample scale L

[4.1.2.1] Consider again the stationary limit t → ∞ of fluid
flow in P. [4.1.2.2] On the scale of a macroscopic sample, the
viscous forces are dominated by wall friction and quantified
by Darcy’s law for single phase flow

vD = φv =
k

µ

dP

L
, (20)

where vD is the magnitude of the (superficial) Darcy velocity,
v = |v| is the phase velocity of the (interstitial) fluid, and dP
is the magnitude of the viscous pressure drop across a region
of length L. [4.1.2.3] Here µ is the fluid viscosity, k is the (ab-
solute) permeability and φ the porosity of the porous medium.

[4.1.3.1] The generalization of Darcy’s law to two immisci-
ble fluids requires some assumptions. [4.1.3.2] Let W(t0),
O(t0) denote the fluid configuration inside the porous medium
at some initial time t0 and consider flooding at constant injec-
tion ratesQW 6= 0,QO = 0 orQW = 0,QO 6= 0 with water or
oil. [4.1.3.3] It is observed experimentally and then assumed
theoretically that for long times t→∞ the total volume frac-
tions

lim
t→∞

|W(t)|
|P|

= lim
t→∞

SW(t) = SW = S (21a)

lim
t→∞

|O(t)|
|P|

= lim
t→∞

SO(t) = SO = 1− S (21b)

approach constant limiting values. [4.2.0.4] The values of
SW, SO will depend on the phase pressures PW, PO. [4.2.
0.5] Because the injection rates are constant the homogenized
phase velocities vW(t), vO(t) approach constant values. [4.2.
0.6] Specifically,

lim
t→∞

|vW(t)| = vW, and lim
t→∞

|vO(t)| = 0 (22a)

lim
t→∞

|vW(t)| = 0, and lim
t→∞

|vO(t)| = vO (22b)

because QW 6= 0, QO = 0 for water flooding and QW = 0,
QO 6= 0 for oil flooding. [4.2.0.7] Under these assumptions
Darcy’s law is generalized from single phase flow to two-phase
flow as discussed in [33–37] to

vD = φvi =
k kri (S)

µi

dPi

L
(23)

where i = W,O indicates the two phases and the relative
permeability functions krW(S), krO(S) quantify the change in
permeability for phase i due to presence of the second phase.
[4.2.0.8] Note that the asymptotic water configuration W(∞)
must be path connected and percolating from inlet and out-
let†in case (22a) and the same holds for O(∞) in case (22b).

[4.2.1.1] The asymptotic pressure difference PO(t) − PW(t)
for t → ∞ reflects microscopic capillarity on macroscales.
[4.2.1.2] The difference is assumed to depend only on satura-
tion

lim
t→∞

(PO(t)− PW(t)) = Pc(S) = Pb P̂c(S) (24)

but not on the phase velocities although dynamic capillary ef-
fects have been observed [38, 39]. [4.2.1.3] The function
Pc(S) is called capillary pressure and P̂c(S) is its dimension-
less form. [4.2.1.4] The functions Pc(S) and kri (S) are de-
fined on the interval [SW i, 1− SO r]. [4.2.1.5] The parameters
SW i, SO r, defined as solutions of the equations

krW(SW i) = 0 (25a)

krO(1− SO r) = 0, (25b)

are the irreducible water saturation SW i and the residual oil
saturation SO r. [4.2.1.6] Both parameters SW i and SO r are
assumed to be small but nonvanishing, i.e. 0 < SW i � 1 and
0 < SO r � 1. [4.2.1.7] With SW i and SO r the parameter Pb

in eq. (24) is defined as

Pb = Pc

(
SW i + 1− SO r

2

)
. (26)

[page 5, §0] [5.1.0.1] If there is hysteresis, so that the values
P im
b 6= P dr

b differ, then Pb = (P im
b +P dr

b )/2 will be used. [5.

1.0.2] The dimensionless capillary pressure function P̂c(S) can
be positive and negative. [5.1.0.3] The relative permeabilities
are positive and monotone functions.

[5.1.1.1] The force balance between the viscous and capillary
forces of macroscale two-phase flow can now be expressed

†Limitations and previously unnoticed implicit assumptions for the valid-
ity of (23) were first addressed in [15] and then formulated mathematically
and explicitly as the residual decoupling approximation in [18–20].
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either as a function of S, vi and L

Fi(S, vi, L) =
(viscous pressure drop in phase i)

(capillary pressure)

=
|dPi|

|PO − PW|
(27a)

=
µi φ vi L

k kri (S)|Pc(S)|
(27b)

=
Cai

kri (S)
∣∣∣P̂c(S)

∣∣∣ (27c)

= fi(S,Cai) i = W,O (27d)

or as a function of S and the macroscopic capillary number
Cai in the last two equalities. [5.1.1.2] The macroscopic cap-
illary number Cai is defined as in [9] by

Cai =
µi φ vi L

k Pb
i = W,O (28)

and it depends not only on fluid properties, but also on prop-
erties of the porous medium such as porosity and permeablity.
[5.1.1.3] Equation (27) seems to be a new result that has been
overlooked so far. [5.1.1.4] Note that Ca does not explicitly
depend on the interfacial tension σWO between the two phases
and that the quantity Ai = k Pb/(µi φ) with i = W,O is di-
mensionally not a velocity, but a specifc action, i.e. action per
unit mass. [5.1.1.5] For a derivation of Cai from the tradi-
tional macroscale equations of motion see [9, 32].

VI. Mesoscopic cluster scale Lcl

[5.1.2.1] As of today there does not seem to exist a rigorous
connection between the microscopic Newton and Laplace law
and the macroscopic generalized Darcy law. [5.1.2.2] This
fact was discussed at length in [9,16,17,20,32,40] and it is the
reason why the microscopic interfacial tension σWO does not
appear explicitly in the macroscopic capillary number in eq.
(28). [5.1.2.3] Nevertheless numerous authors have mingled
pore and sample scale in an attempt to discuss nonpercolating
fluid parts, mesoscopic clusters or trapped ganglia. [5.1.2.4]
A classic example, that led to some confusion, is given in [41]
where Darcy’s law for single phase flow (20) is inserted into
eq. (19) to write

C̃a
OPC

i =
k dPi

σWOφL
i = W,O (29)

replacing velocity and viscosity by permeability, porosity and
pressure gradient. [5.1.2.5] Subsequently [4, eq. (9)] used the
generalized Darcy law eq. (23) in eq. (19) to obtain

C̃a
MB

i =
k kri (S) dPi

σWO φLcl
i = W,O (30)

a pore-scale capillary “number” that is now a function of sat-
uration S. [5.1.2.6] They then interpret this expression as a
saturation dependent “critical” capillary number for mobiliza-
tion of trapped oil ganglia with linear extent Lcl. [5.2.0.7]
Solving for Lcl gives Lcl = Lcl(S, C̃ai). [5.2.0.8] Such ap-
proaches were critically examined in [9, 32, 40]. [5.2.0.9] The

problem with eq. (30) emerges by noting that the same relation
(30) can be obtained from the equality between the expression
in (27a) and expression (27b) by using eq. (24) and multiply-
ing with 1/σWO. [5.2.0.10] This derivation shows that the
influence of Pc(S) on Lcl(S) is lost. [5.2.0.11] More impor-
tantly, it is clear from eqs. (22a) and (22b) that the generalized
Darcy law requires pathconnected and percolating phases. [5.
2.0.12] Its application to disconnected trapped phases is ques-
tionable at least as long as cross terms are not included into
the analysis [42, 43]. [5.2.0.13] This casts some doubt on the
interpretation of L ≈ Lcl as a length scale of clusters.

[5.2.1.1] More recently this cluster length Lcl was discussed
using Ca instead of C̃a in [5] following [40]. [5.2.1.2] The
idea is to assume that mesoscopic (nonpercolating) clusters or
trapped ganglia are roughly of size

Lcl ≈ Li(S, vi) =
k kri (S)|Pc(S)|

µi φ vi
, i = W,O (31)

where the length scale Li(S, vi) is obtained from the macro-
scopic force balance by setting Fi(S, vi, L) = 1 in eq. (27).
[5.2.1.3] The capillary correlation from [5, eq. (7)] is defined
following eq. (27b) as (i = W,O)

CaAGOKB
i =

µi φ vi Lcl(S, v,Π)

k∗∗(S, v,Π)Pc
∗∗(S, v,Π)

(32)

by replacing the macroscopic length L with the mesoscopic
Lcl, the effective permeability k kri (S) with a computed per-
meability k∗∗ = k∗∗(S, v,Π) and the macroscopic capillary
pressure |Pc(S)|with a computed pore scale capillary pressure
Pc
∗∗ = Pc

∗∗(S, v,Π). [5.2.1.4] The quantities k∗∗ and Pc
∗∗

are obtained from pore scale imaging of P, W and O by com-
putations based on digital image analysis. [5.2.1.5] Their val-
ues depend on numerous numerical and computational param-
eters summarized as Π. [5.2.1.6] Examples are segementation
thresholds, lattice constants or density functional parametriza-
tions used by [5] to replace more conventional computational
fluid dynamics approaches. [5.2.1.7] Within the limits of ap-
plicability of the macroscopic constitutive laws (23) and (24)
such computational approaches are expected to yield

k∗∗(S, v,Π) ≈ k kri (S) (33a)

Pc
∗∗(S, v,Π) ≈ Pc(S) (33b)

independent of v and Π. [5.2.1.8] If this holds true, then
inserting eq. (31) is expected to give

CaAGOKB
i ≈ 1 (34)

provided Lcl ≈ Li(S, vi) holds true. [5.2.1.9] Measuring the
cluster length Lcl from fast X-ray computed microtomography
[5, Fig. 1] finds values of

CaAGOKB
i ≈ 10 (35)

from saturation weighted averaging of the cluster size distri-
bution.

[5.2.2.1] Note also, that the length scale Li(S, vi) may often
fall in between ` and L, but it can also exceed beyond these
limits. [5.2.2.2] In fact 0 ≤ Li < ∞ in general. [5.2.2.3]
The length scale Li cannot be considered a new mesoscopic
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FIGURE 1. Cross section of 2.6mm×2.5mm (632×607 pixel, 16 bit
gray values) at 4.1µm resolution from a 3-dimensional computerto-
mographic image of a VitraPOR P2 Robu R© sintered glass specimen.
Matrix M is shown in grey, pores P are black.

length scale, because it is not derived from a new mesoscopic
constitutive law. [page 6, §0] [6.1.0.1] Mesoscopic laws for Lcl

defined as the saturation weighted average of the distribution
of cluster sizes, are also lacking at present. [6.1.0.2] Although
constitutive laws for disconnected fluids have been proposed
in [19] and discussed in [21] the present article will stay within
the confines of the traditional Darcy based constitutive theory.

VII. Application to experiment

A. Definition of desaturation protocols

[6.1.1.1] As emphasized above (see also footnote †) the valid-
ity of the generalized Darcy law (23) requires path connected
fluids, i.e. fluid configurations that percolate from inlet to out-
let. [6.1.1.2] Application of Cai from (28) to water flooding
desaturation experiments therefore requires that also the oil
configuration O(t0) is percolating at the initial time t0, if the
generalized Darcy law is assumed to describe the reduction of
oil saturation. [6.1.1.3] An appropriate desaturation protocol
consists of M steps with

O(tk−1) = P, (36a)

W(tk−1) = ∅, (36b)

QO(t) = 0, tk−1 ≤ t ≤ tk (36c)

QW(t) = Qk χ
[tk−1,tk]

(t), tk−1 ≤ t ≤ tk (36d)

with 1 ≤ k ≤M and tk is chosen such that

[tk−1, tk] \ suppOO(t) 6= ∅, (37)

holds for every fixed k. [6.1.1.4] Here Qk are constant and
OO(t) denotes the volumetric production rate (outflow) of oil.
Its support suppOO(t) is the set of time instants t ∈ R for
which OO(t) 6= 0 holds. [6.2.0.5] Condition (37) means that
the oil production has stopped. [6.2.0.6] During the experi-
ment the oil phase is kept at a sufficiently high ambient pres-
sure so that, depending on the pressure drop across the sample,
also oil can enter the sample during the water flood. [6.2.0.7]
The desaturation protocol (36) is a continuous mode displace-
ment where water is injected into continuous oil. [6.2.0.8] It
will be referred to as CO/WI for short.

[6.2.1.1] The CO/WI-protocol (36) requires to clean the sam-
ple after each step and refill it with oil. [6.2.1.2] This is costly
and time consuming. [6.2.1.3] Many capillary desaturation
experiments are therefore performed in discontinuous mode.
[6.2.1.4] In discontinuous mode the water injection rate QW is
increased in steps, and the initial configuration of step k is the
final configuration of step k − 1. [6.2.1.5] The initial oil con-
figuration O(t0) may or may not be percolating. [6.2.1.6] The
desaturation protocol

O(tk−1) = arbitrary, 1 ≤ k ≤M (38a)

W(tk−1) = arbitrary, 1 ≤ k ≤M (38b)

QO(t) = 0, tk−1 ≤ t ≤ tk (38c)

QW(t) = Qk χ
[tk−1,tk]

(t), tk−1 ≤ t ≤ tk (38d)

Qk ≤ Qk+1, 1 ≤ k ≤M − 1 (38e)

will be referred to as DO/WI (discontinuous oil/water injec-
tion). [6.2.1.7] Here tk is again chosen such that condition
(37) holds i.e. one waits sufficiently long until the oil produc-
tion OO(t) after step k − 1 has ceased. [6.2.1.8] For nonper-
colating fluid configurations the applicability of eq. (23) and
(28) is in doubt as emphasized in [40] and known from exper-
iment [10].

[6.2.2.1] To exclude gravity effects the water flow direction
is usually oriented perpendicular to gravity. [6.2.2.2] In addi-
tion the sample’s thickness parallel to gravity is chosen much
smaller than the width of the capillary fringe `W = Pb/(%Wg)
where %W is the mass density of water and g the acceleration
of gravity to minimize saturation gradients due to gravity.

[6.2.3.1] Finally, a new protocol, introduced in [5], is used
for application to experiment in the next section. [6.2.3.2]
In [5] the cylindrical sample was oriented vertically, parallel to
the direction of gravity in contradistinction to the conventional
setup. [6.2.3.3] The wetting fluid was injected from the bottom
against the direction of gravity. [6.2.3.4] The sample was
always wetted by a water reservoir at the top. [6.2.3.5] The
water pressure in the top reservoir was increasing during the
experiment due to water accumulation. [6.2.3.6] A period of
water injection was followed by a period of imaging the fluid
distributions. [6.2.3.7] The new injection protocol resulting
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from these procedures is defined as

|O(t0)| = (1− SW i) |P| (39a)

|W(t0)| = SW i |P| (39b)

O(tk−1) = arbitrary, 1 ≤ k ≤M (39c)

W(tk−1) = arbitrary, 1 ≤ k ≤M (39d)

QO(t) = 0 tk−1 ≤ t ≤ tk (39e)

QW(t) = Qk χ
[tk−1,tk]

(t), tk−1 ≤ t ≤ tk (39f)

Q2k = 0, 1 ≤ k ≤M/2 (39g)

Q2k−1 ≤ Q2k+1, 1 ≤ k ≤M/2 (39h)

[page 7, §0] where t2k+1 is chosen subject to condition (37). [7.
1.0.1] This protocol will be referred to as DO/IWI/G stand-
ing for discontinuous oil/interrupted water injection/gravity.
[7.1.0.2] Note, however, that the oil configuration was typi-
cally percolating at t = t0. [7.1.0.3] During the imaging in-
tervals [t2k−1, t2k] resaturation and relaxation processes may
have changed the original fluid configuration and saturation as
compared to the instant when the pump was switched off.

B. Application to mesoscopic experiments [5]

[7.1.1.1] This section applies concepts and results from the
preceding sections to recent highly advanced capillary desat-
uration experiments with simultaneous fast X-ray computed
microtomography [5]. [7.1.1.2] The experiments in [5] used
the DO/IWI/G-protocol defined in (39). [7.1.1.3] The experi-
ment had M = 5 steps with

Qk = 10k−2 µL/min = 1.6666× 10k−13 m3s−1 (40)

vWk =
Qk

φAS
= 4.17× 10k−8 ms−1. (41)

as injection rates, respectively phase velocities. [7.1.1.4]
After reaching stationary water flow without oil production,
the nonwetting phase saturations remaining inside the sample
were measured and found to be SO1 = 0.75, SO2 = 0.75,
SO3 = 0.5, SO4 = 0.3, SO5 = 0.2.

[7.1.2.1] The experiments were performed on sintered borosil-
icate glass commercially available as VitraPOR P2 from ROBU
Glasfilter Geräte GmbH (Hattert, Germany). [7.1.2.2] A qua-
dratic cross section of this porous medium with a sidelength
of 2.6 mm is shown in Figure 1 to illustrate its pore structure.
[7.1.2.3] The pore structure is less homogeneous than that of
certain natural sandstones often used for pore scale and core
scale studies. [7.1.2.4] A cylindrical specimen

S = [0, L]× {x ∈ R2 : |x| ≤ d} (42)

of this porous medium with diameter

d = 0.02523 m, (43a)

length

L = 0.08778 m (43b)

and total volume |S| = 4.3885 × 10−5 m3 was measured to
have a pore volume of |P| = 1.4090 × 10−5 m3 and a grain

volume of |M| = 2.9795 × 10−5 m3. [7.1.2.5] Its porosity
and Klinkenberg corrected air permeability

φ = 0.321 (44a)

k = 8.952× 10−12 m2 (44b)

correspond to a well permeable, medium to coarse grained
sandstone. [7.1.2.6] Mercury injection porosimetry was per-
formed on this sample. [7.1.2.7] It showed a breakthrough
pressure of PHg

b ≈ 2584 Pa resulting in a typical pore size of
roughly 56 µm if

σHg = 0.48 Nm−1 (45a)

ϑHg = 139◦ (45b)

are used for the surface tension and contact angle of mercury.
[7.2.0.8] The capillary desaturation experiments in [5] were
performed using n-decane as the nonwetting fluid O and water
with CsCl as contrast agent as the wetting fluid W. [7.2.0.9]
The mercury pressures can be rescaled with

σWO = 0.03 Nm−1 (46a)

ϑWO ≈ 35◦ (46b)

to the water/n-decane system according to

Pc(S) =
σWO cos(ϑWO)

σHg cos(ϑHg)
Pc

Hg(S) (47)

if Leverett-J-function scaling is assumed to to be valid. [7.2.
0.10] The rescaled mercury drainage pressure function in the
range up to 3086 Pa is shown in the upper part of Figure 2
with crosses. [7.2.0.11] For subsequent computations the im-
bibition curve and the relative permeabilties shown in Figure
2 had to be assumed theoretically, because experimental data
were not available. [7.2.0.12] The particular choice for their
functional form will influence the numerical results, but is not
important for our theoretical argument. [page 8, §0] [8.1.0.1]
The fluid viscosities were

µW = 0.89× 10−3 Pas (48a)

µO = 3.0× 10−3 Pas. (48b)

for water denoted W and n-decane denoted as O.

[8.1.1.1] The capillary desaturation experiments in [5] were
performed not on the full sample S, but on a small subset of S.
[8.1.1.2] That cylindrical subsample had

d = 0.004 m (49a)
L = 0.01 m (49b)

AS = 1.26× 10−5 m2 (49c)

where AS denotes the cross sectional area‡.

[8.1.2.1] The resulting microscopic capillary numbers were§

C̃aWk =
µWvWk

σWO
= 1.23× 10k−9 (50)

‡Assuming perfect isotropy the dimensionless aspect ratio matrix becomes
diagonal with Â = diag(1.99, 1.99, 0.25) according to eq. (28) in [40].
Because of the ratio ofAxx/Azz ≈ 8 it should be kept in mind that geometric
factors can change the force balance by an order of magnitude.
§These capillary numbers differ from those shown in Figure 1 of [5] by a

factor φ.
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FIGURE 2. Capillary pressure Pcj(S) and relative permeabilities
kri j(S) for drainage (symbols, j =dr) and imbibition (smooth solid,
j =im) i = W,O. The capillary pressure for drainage is obtained
from mercury porosimetry on VitraPOR P2 by rescaling according
to eq. (47) with a Leverett-J-function Ansatz. The imbibtion curve
and all relative permeabilities shown were specified theoretically, be-
cause experimental data were not available. Their values shown here
are typical and were used in all computations.

with k = 1, 2, 3, 4, 5. [8.1.2.2] To compute the macroscopic
capillary number from (28) the characteristic pressure Pb is
taken from the rescaled drainage curve in the upper part of
Figure 2 as

Pb ≈ 1753 Pa. (51)

[8.1.2.3] With this the macroscopic capillary numbers for the
L = 8.778 cm-sample are

CaWk =
µW φ vW L

k Pb
≈ 6.60× 10k−5 (52)

for k = 1, 2, 3, 4, 5, while

CaWk = 7.52× 10k−6 (53)

for the 1 cm-sample. [8.1.2.4] Note, that the width `W of the
capillary fringe of water

`W =
Pb

%Wg
≈ 0.179 m (54)

is around 18 cm, where % = 1000 kgm−3 is the density of
water and g is the acceleration of gravity.

[8.1.3.1] Figure 3 compares the experimental observations
to the theoretical predictions. [8.1.3.2] Assuming L to be
fixed, the theoretically predicted capillary desaturation curve
SO(CaW;F ) for fixed force balance F is obtained from the
solution S(CaW;F ) of eq. (27)

F = fW(S,CaW) (55)

as SO(CaW;F ) = 1 − S(CaW;F ). [8.1.3.3] Figure 3 shows
two capillary desaturation curves SO(CaW; 1) for water in-
jection into continuous oil according to the CO/WI-protocol
(36). [8.1.3.4] One curve (crosses) represents drainage, while
the solid curve represents imbibition. [8.2.0.5] Crosses are
computed using the rescaled mercury drainage pressures and
relative permeabilities for drainage shown in Fig. 2. [8.2.0.6]
The solid curve without symbols is computed from the imbi-
bition curves in Fig. 2. [8.2.0.7] The values of SO r = 0.15
and 1− SW i = 0.75 are indicated by dashed horizontal lines.

[8.2.1.1] If all assumptions underlying the traditional equa-
tions and the derivations of SO(CaW;F ) hold true, then the
experimental results are expected to fall in between the two
limiting drainage and imbibition curves. [8.2.1.2] To test
this expectation Figure 3 shows three experimental capillary
desaturation correlations. [8.2.1.3] The experimental values
SOk with k = 1, 2, 3, 4, 5 are plotted as squares against C̃aW k

from eq. (50), as triangles against CaW k from eq. (53), and
as circles against CaW k from eq. (52). [8.2.1.4] This com-
parison between theory and experiment rules out the use of
microscopic capillary number C̃aW k as abscissa in capillary
desaturation curves. [8.2.1.5] The misleading use of this num-
ber is still widely spread in current literature although it has
been criticized already in [9, 32]. [8.2.1.6] The comparison
with CaW k confirms the predictions of traditional two phase
flow theory as far as orders of magnitude are concerned. [8.2.
1.7] However, it must be emphasized that the comparison uses
the CO/WI-protocol for theory, but the DO/IWI/G-protocol for
experiment. [8.2.1.8] The theoretical predictions restrict cap-
illary desaturation curves to the region CaW < 1. [8.2.1.9]
This prediction is a consequence of the fact that the traditional
theory cannot account for disconnected nonpercolating fluid
parts. [page 9, §0] [9.1.0.1] Figure 3 represents, to the best
of our knowledge, the first example in which bounds for cap-
illary desaturation curves have been predicted based solely on
the constitutive functions of the traditional two phase flow the-
ory.

C. Predictions for new experiments

[9.1.1.1] This subsection introduces for the first time contin-
uous mode capillary saturation experiments in analogy to cap-
illary desaturation experiments. [9.1.1.2] The new saturation
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protocol is defined as

O(tk−1) = P, (56a)

W(tk−1) = ∅, (56b)

QO(t) = Qk χ
[tk−1,tk]

(t), tk−1 ≤ t ≤ tk (56c)

QW(t) = 0, tk−1 ≤ t ≤ tk (56d)

where 1 ≤ k ≤ M . [9.1.1.3] For each fixed k the time tk is
chosen such that

[tk−1, tk] \ suppOW(t) 6= ∅, (57)

holds, i.e. such that the water production has ceased. [9.1.
1.4] The saturation protocol (56) will be referred to as CO/OI-
protocol (continuous oil/oil injection). [9.1.1.5] To the best
of our knowledge such capillary saturation experiments with
CO/OI-protocol have not been performed.

[9.1.2.1] During the CO/OI-protocol the water phase is kept at
a sufficiently high ambient pressure so that water can enter the
sample while oil is injected. [9.1.2.2] If the ambient pressure
is sufficiently high and the oil injection rates are small, the re-
sulting displacement process is expected to show strongly in-
teracting mesoscopic cluster dynamics with numerous breakup
and coalescence processes of mesoscopic clusters.

[9.1.3.1] Applying the theoretical prediction from eq. (27)
yields capillary saturation curves SO(CaO;F ) for fixed force
balance F from solutions S(CaO;F ) of the equation

F = fO(S,CaO) (58)

as SO(CaO;F ) = 1−S(CaO;F ) analogous to capillary desat-
uration curves shown in Figure 3. [9.1.3.2] The theoretically
predicted bounding capillary saturations curves S(CaO; 1) for
drainage (crosses) and imbibition (solid curve) are displayed
in Figure 4 using again the function Pc, k

r
W, k

r
O shown in Fig-

ure 2. [9.1.3.3] Experiments following the CO/OI-protocol
are expected to fall in between these two limiting curves. [9.
1.3.4] Figure 4 shows that the region between the curves be-
comes narrow for CaO ≈ 0.1 or 0.3 ≤ SO ≤ 0.7 for the
chosen parameters. [9.1.3.5] In this region strongly interact-
ing mesoscopic clusters are expected to arise from strongly
fluctuating breakup ond coalescence of oil ganglia. [9.1.3.6]
This expectation is consistent with theoretical network model-
ing in [44] and with recent experimental observations of two
temporal regimes of percolating and nonpercolating fluid flow
during imbibition into Gildehauser sandstone in [45].

VIII. Discussion

A. Theoretical predictions

[9.2.1.1] This article has introduced theoretical predictions
from eq. (27) shown in Figure 3 for continuous mode capillary
desaturation that until now seem to have remained unnoticed
within the established traditional theory of twophase flow. [9.
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FIGURE 3. Two theoretical capillary desaturation curves
SO(CaW; 1) for water injection into continuous oil according
to the CO/WI-protocol (36) with force balance F = 1. One curve
(crosses) assumes drainage the other curve (solid) uses imbibition.
The lower plateau value of the imbibition curve (solid) is given by
the the zero of Pc

imb (see eq. (60)). At this saturation F = ∞
diverges and below it CaW cannot be expected to repesent the
correct force balance (due to breakup of the nonwetting phase into
disconnected ganglia). Crosses are computed using the rescaled
mercury drainage pressures and relative permeabilities for drainage
shown in Fig. 2. The solid curve without symbols is computed from
the imbibition curves in Fig. 2. Also shown are three experimental
capillary desaturation corrrelations plotting the experimental values
SOk with k = 1, 2, 3, 4, 5 as squares against C̃aW from eq. (50), as
triangles against CaW from eq. (53), and as circles against CaW from
eq. (52).

2.1.2] The predictions illustrated in Figure 3 provide a quanti-
tative basis to discuss deviations observed in capillary desat-
uration experiments. [9.2.1.3] They help to establish limits
of validity for the traditional theory as well as for continu-
ous mode desaturation. [9.2.1.4] Predictions require precise
knowledge of Pc(S), krW(S) and krO(S) emphasizing the im-
portance and need for reliable special core analysis of high
quality.

B. Protocol dependence

[9.2.2.1] The efficiency of residual oil recovery during water-
flooding depends not only on the balance of forces, but also
on other factors, such as the distribution of fluids inside the
medium and/or the desaturation protocol. [9.2.2.2] The differ-
ence between continuous mode and discontinuous mode desat-
uration is known in the literature and it may change the criti-
cal capillary number (breakpoint) by several decades (see e.g.
[40]). [9.2.2.3] The present paper suggests for the first time
equally strong differences between the DO/IWI/G-protocol
and the DO/WI-protocol. [9.2.2.4] For the latter protocol the
breakpoint is sometimes found decades above unity. [9.2.
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FIGURE 4. Theoretically predicted capillary saturation curves for oil
injection into continuous oil according to the CO/OI-protocol (56) at
F = 1. The curve with crosses corresponds to drainage, the solid
line without symbols to imbibition.

2.5] Further studies of protocol dependence are encouraged to
corroborate and clarify such differences and their origin.

C. Plateau saturation

[9.2.3.1] If the saturation or desaturation process is experi-
mentally reproducible one expects for the CO/WI- and CO/OI-
protocols that [page 10, §0]

W(ti) ≈W(tj) (59a)

|W(ti)| ≈ |W(tj)| (59b)

S(ti) ≈ S(tj) ≈ Sp (59c)

holds in the limit where Qi → 0 and Qj → 0 are both very
small. [10.1.0.1] The saturation Sp denotes the plateau satu-
ration. [10.1.0.2] It is seen from Figures 3 as well as 4 that the
plateau saturation will in general differ from SO r. [10.1.0.3] It
fulfills either Sp ≥ 1− SW i or Sp ≤ Sz, where Sz is defined
as the zero

Pc
imb(Sz) = 0 (60)

on the capillary pressure curve for secondary imbibition. [10.
1.0.4] The actual value is expected to depend on the protocol.

D. Computation of Pb from image analysis

[10.1.1.1] The stationary pore scale pressure fields Pi(x̃) (i =
W,O) are generally assumed to represent equilibrium pres-
sures for local thermodynamic equilibrium although the sta-
tionary phase velocities vi may be nonzero. [10.1.1.2] Even
at vi = 0 the pressures cannot be constant throughout the pore
space P, because curved interfaces exist in local thermody-
namic equilibrium within P.

[10.1.2.1] The macroscopic capillary pressure Pc(S, v) from
eq. (24) measured in experiments for a sample with satura-
tion S at constant flow velocity v is typically measured using
pressure sensors located in the oil and water reservoirs out-
side the sample. [10.1.2.2] These pressure sensors average
the local equilibrium pressure field Pi(x̃) over the surface ∂D
of the sensor. [10.1.2.3] Assuming that the local equilibrium
pressures Pi(x̃;S) depend parametrically only on S, but are
independent of v, one has

Pc(S) =
1

|∂DO|

∫
∂DO

PO(x̃;S)d
2x̃

− 1

|∂DW|

∫
∂DW

PW(x̃;S)d2x̃ (61)

where ∂Di denote the sensor surface located in the reservoir of
phase i. [10.1.2.4] In [5] a pore scale capillary pressure Pc

∗∗

is computed from image analysis of oil clusters as a surface
area weighted average of mean curvatures over the fluid-fluid-
interface during the imaging intervals without flow (v = 0).
[10.1.2.5] In other words a formula such as

Pc
∗∗(S,0,Π;w) =

σWO

|∂(W ∩O)|

∫
∂(W∩O)

w(x̃)κ(x̃)d2x̃ (62)

with a weighting function w(x̃) was used to estimate Pb. [10.
2.0.6] The weighting function is based on estimating the fluid/
fluid interfacial area which in turn depends on the method and
parameters of discretizing the interface. [10.2.0.7] Here κ(x̃)
is the estimate of the local curvature of the interface. [10.2.0.8]
The computed capillary pressures Pc

∗∗(S, 0,Π;w) reported
in Figure 2(a) of [5] range between 250 Pa and 380 Pa. [10.
2.0.9] This would suggest a value of

Pb(Π;w) = 315 Pa (63)

for the characteristic pressure Pb. [10.2.0.10] We emphasize
that clusters at much higher local Pc have been observed in
the experiments. [10.2.0.11] The weighting function w em-
phasizes the largest cluster and this cluster had very low mean
curvature. [10.2.0.12] A precise mathematical relation be-
tween Pc and Pc

∗∗ cannot be given without a rigorous con-
nection between the microscopic Newton and Laplace law and
the macroscopic generalized Darcy law (cf. Section VI). [10.
2.0.13] Equations (61) and (62) above do not establish such
a connection because the domains of integration are disjoint,
i.e. ∂Di ∩ ∂(W ∩ O) = ∅. [10.2.0.14] The derivation of
macroscopic capillary properties of porous media expressed
through Pc(S) from microscopic knowledge of the curvature
field κ(x̃) remains a challenge.

E. Cooperative dynamics and inertial effects

[10.2.1.1] Inertial effects and cooperative dynamics of meso-
scaleclusters have been visualized using recent advances in X-
ray microcomputed tomography synchrotron beamlines [46].
[10.2.1.2] The cooperative dynamics is believed to be related
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to leading and trailing menisci connected via viscous pressure
gradients. [10.2.1.3] These inertial effects are not visible on
the scale of a single pore. [10.2.1.4] In a porous medium burst-
type events are observed as reported by [47] or [48]. [10.2.
1.5] In [46] it is shown that large events seem to be more fre-
quent than suggested by simple percolation models¶. [10.2.
1.6] While a single pore-scale event occurs over the millisec-
ond time scale [50], i.e. displacement in a single pore, the oc-
currence of multiple spatially correlated events have been ob-
served to decay over the second time scale [46]. [10.2.1.7]
These observations might possibly indicate the emergence of
a mesoscopic time or length scale intermediate between pore
size ` and system size L. [10.2.1.8] Recent experimental evi-
dence from [11] suggests that cluster lengths are flow rate de-
pendent and widely distributed, ranging from many hundreds
of pores down to a single pore. [10.2.1.9] If such a cluster
length or other mesoscopic length and/or time scale exists, its
upper and lower limits are unknown at present. [10.2.1.10]
This challenges also the interpretation of laboratory-based re-
sults.

IX. Conclusions

[10.2.2.1] This article has studied the process dependence of
capillary desaturation curves S(Ca) from the perspective of
established theory and uncovered several new results. [10.2.
2.2] It has introduced a mathematical expression for S(Ca) in
terms of relative permeabilities and normalized capillary pres-
sure functions that has apparently remained unnoticed so far.
[10.2.2.3] The article confirms the analysis of the traditional
equations of motion by [9,32] and accounts for all explicit and
implicit dependencies during desaturation experiments within
the limits of applicability of the generalized Darcy law and
capillary pressure hypothesis. [10.2.2.4] The following new
results have been obtained by combining Darcy’s law with
microscopic arguments. [10.2.2.5] Firstly, this article pro-
vides predictive bounds on capillary number correlations (cap-
illary saturation curves) for oil injection experiments. [page

11, §0] [11.1.0.1] Secondly, it proposes new capillary satura-
tion experiments with oil injection instead of water injection.
[11.1.0.2] Thirdly, the suggested novel CO/OI-protocol is ex-
pected to be dominated by flow processes involving mesoscale
cluster rearrangement. [11.1.0.3] This is expected to allow
for an evaluation and improved understanding of the emer-
gence or not of mesoscale behaviour with a new mescopic
length scale. [11.1.0.4] Fourthly, eq. (27) introduces a re-
lation between capillary desaturation curves and the product
kr(S)Pc(S) that seems to have remained unnoticed so far.
[11.1.0.5] Fifthly, the large variation of breakpoints in capil-
lary desaturation curves has for the first time been partially
explained as resulting from the factor kr(S)Pc(S) in eq. (27).
[11.1.0.6] Finally, the article analyzes the plateau saturation

¶Simple percolation models [49], while containing a diverging length
scale at the pecolation transition, are difficult to apply in the present context,
because of very strong geometric correlations and because invasion percola-
tion models are limited to the slow drainage limit.

and breakpoint in capillary desaturation curves. [11.1.0.7]
Based on the traditional two-phase flow theory the breakpoint
may vary by several decades. [11.2.0.8] It is found that this
variation depends not only on capillary number but also on
protocol, initial conditions, boundary conditions and other de-
tails of the capillary desaturation experiment.
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and S. Berg, Water Resources Research 50, 10.1002/2014WR015858
(2014b).

[47] W. Haines, The Journal of Agricultural Science 20, 97 (1930).
[48] F. Moebius and D. Or, Journal of Colloid and Interface Science 377, 406

(2012).
[49] D. Stauffer and A. Aharony, Introduction to Percolation Theory (Taylor

and Francis, London, 1992).
[50] D. DiCarlo, J. Cidoncha, and C. Hickey, Geophysical Research Letters

30, 1901 (2003).


