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Abstract

The paper compares a theory for immiscible displacement based on distinguishing

percolating and non-percolating fluid parts (Physica A, 371, 209 (2006)) with exper-

imental observations from multistep outflow experiments (Water Resources Res, 27,

2113 (1991)). The paper focusses on hysteretic phenomena resulting from repeated

cycling between drainage and imbibition processes in multistep pressure experiments.

Taking into account the hydraulic differences between percolating and non-percolating

fluid parts provides a physical basis to predict quantitatively the hysterestic phenom-

ena observed in the experiment. While standard hysteretic extensions of the

traditional theory are nonlocal in time the theory used in this paper is

local in time. Instead of storing the pressure and saturation history it re-

quires only the current state of the system to reach the same quantitative

agreement.
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[page 681, §1]

1. Introduction

[681.1.1.1] A quantitative prediction of fluid saturation
profiles during immiscible displacement remains a fun-
damental open problem in the physics of porous media.
[681.1.1.2] Despite its well known limitations regarding
hysteresis and trapping phenomena, the traditional ap-
proach [2, 23, 20, 26] has remained the most popular
mathematical model for more than 70 years in applica-
tions such as reservoir engineering [13] or groundwater
hydrology [1].

[681.1.2.1] Many authors have emphasized the impor-
tance of hysteresis between drainage and imbibition [25,
7, 21, 18]. [681.1.2.2] Ad hoc extensions of the exist-
ing two phase flow model [21, 24, 19, 14] yield reason-
able agreement with laboratory measurements. [681.1.

2.3] However, the physical foundations for such hysteresis
models are not clear.

[681.1.3.1] A recent macroscopic theory of capillarity in
porous media [8] proposes to take into account the differ-
ent hydrodynamic properties of percolating (=connected)
and non-percolating (=not connected) fluid parts. [681.

1.3.2] This provides the physical basis for hysteresis in
our approach. [681.1.3.3] In the residual decoupling
limit, the traditional constitutive relations between rel-
ative permeability and saturation as well as between cap-
illary pressure and saturation are recovered including hys-
teresis [8, 9]. [681.1.3.4] Approximate analytical results
for a quasi-static displacement have been calculated in
[10]. In [11] and [5], numerical solutions were calculated
for experiments with a closed homogeneous column in
gravity. [681.1.3.5] Further, analytic and quasi analytic
solutions for the theory were developed in [4, 6, 12]. [681.

1.3.6] However, an explicit comparison with experimental
data is pending.

[681.1.4.1] The objective of this paper is to close this
gap. [681.1.4.2] We show that the theory is able to model
a laboratory experiment [15] with a porous column that
shows hysteretic behavior.

[681.1.5.1] The manuscript is structured as followed. [681.

1.5.2] First, we illustrate the experimental setup [15] that
has been used to illustrate hysteretic phenomena in fluid
distributions in porous media flow. [681.1.5.3] Sec-
tion 3 briefly presents the theory of percolating and non-
percolating phases and its mathmatical formulation for
incompressible immiscible two-phase flow. [681.1.5.4] In
Section 4 we discuss the numerical representation of the
experiment and its implementation. The results are pre-
sented and discussed in Section 5. [681.1.5.5] The paper
closes with concluding remarks.

Figure 1. Conceptual picture of the experimental setup and
the pressure protocols in the upper and lower reservoir vs.
time.

2. Experimental Setup

[681.1.6.1] The experimental setup of [15] consists of a
vertical cylindrical, 72 cm long column, whose side walls
are impermeable, filled with a homogeneous, isotropic
and incompressible porous medium, an unconsolidated
sandy material comprising approximately 97.5, 0.8
and 1.7% sand-, silt-, and clay-sized particles re-
spectively. [681.1.6.2] The two fluids considered here
are water and air and water is the wetting fluid. [681.

1.6.3] The top of the column is connected to the atmo-
sphere so that only air can enter the top of the
column. [681.1.6.4] The bottom of the column is con-
nected to a water tank and only water can enter from
the bottom. [681.1.6.5] The pressure in the tank is ad-
justable. [681.1.6.6] Initially, the porous column is com-
pletely water saturated and the pressure PW in the water
tank is chosen such that it compensates the water column
PW(t = 0) = 72 cmH2O(= 7.06 kPa) . [681.1.6.7] Hence,
the capillary fringe is located at the top of the column.
[681.1.6.8] The pressures in this section are given in cm
column of water because this translates one to one to the
position of the water table in the column. [681.1.6.9] Be-
low in Section 5 SI units are used. [681.1.6.10] Figure 1
gives a conceptual picture of the experiment. [681.1.6.11]

The column is drained by lowering the pressure in the
reservoir by ∆P = 5 cmH2O every ∆t = 10 min 13 times
until the water pressure reaches PW = 7 cmH2O. [681.1.

6.12] After a relaxation period of ∆t = 50 min, the water
pressure is raised again in seven steps by ∆P = 5 cmH2O
every ∆t = 10 min and the column is imbibed again.
[681.1.6.13] After ∆t = 50 min, the water pressure is again
lowered by ∆P = 5 cmH2O every ∆t = 10 min for 5 times
and the column is drained again. [681.1.6.14] Finally,
∆t = 50 min later, the water pressure is raised again by
∆P = 5 cmH2O steps every ∆t = 10 min until it reaches
its initial value PW(t > 8 h) = 72 cmH2O. [681.1.6.15]

However, the original water content in the column is not
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recovered because a fraction of air remains trapped in the
medium [7].

[681.1.7.1] In the laboratory, water saturation and wa-
ter pressure have been measured at height x = 0.4 m,
x = 0.5 m, x = 0.6 m and x = 0.7 m from the bottom
of the column. [681.1.7.2] It may safely be assumed
that the air pressure is essentially hydrostatic and at-
mospheric for two reasons: Firstly, because of the high
viscosity and density contrast (µW = 0.001 kg m−1 sec−1,
µO = 18 × 10−6 kg m−1 sec−1 and %W = 1000 kg m−3,
%O = 1.2 kg m−3), and secondly, because the column is
short. [681.1.7.3] It is therefore concluded that the mea-
surement of water saturation and water pressure suffices
to determine the capillary pressure saturation relation-
ship.

3. Definition of the Model

[681.1.8.1] In this section, a brief summary of the mathe-
matical model is given. [681.1.8.2] The following equa-
tions are based on volume, mass and momentum
balance equations analogous to the foundations of
the traditional theory (see e.g. [9] for a succinct
but detailed parallel development). [681.1.8.3] It
is assumed that both fluids are incompressible and im-
miscible and that the lateral dimensions of the column
are small with respect to the capillary fringe. [681.1.8.4]

Hence, a one dimensional description is an appropriate
approximation. [681.1.8.5] The mass balances for the
four fluid phases (percolating water is identified by the
index 1, non-percolating water by 2, percolating oil by 3
and non-percolating oil by 4) read as

%Wφ
∂S1

∂t
+ %W

∂q1

∂x
= M1, (1a)

%Wφ
∂S2

∂t
+ %W

∂q2

∂x
= M2 = −M1, (1b)

%Oφ
∂S3

∂t
+ %O

∂q3

∂x
= M3, (1c)

%Oφ
∂S4

∂t
+ %O

∂q4

∂x
= M4 = −M3, (1d)

where t denotes time, x denotes position or height
along the column, φ denotes porosity, %W, %O denote
the density of water, respectively air, Si the saturation,
qi the volume flux and Mi the mass exchange term of the
phase i. [681.1.8.6] The mass exchange term accounts
for the fact that percolating and non-percolating phases
of the same fluid exchange mass by break-up and coa-
lescence. [681.1.8.7] The mass exchange terms take the
form

M1 = η2φ%W

(
S2 − S∗

2

S∗
W − SW

)
∂SW

∂t
, (2a)

M3 = η4φ%O

(
S4 − S∗

4

S∗
W − SW

)
∂SW

∂t
. (2b)

with the parameter functions

S∗
W = (1−min (SO im, (1− εM)SO)) Θ (∂tSW)

+ min (SW dr, (1− εM)SW) [1−Θ (∂tSW)] , (3a)

S∗
2 = min (SW dr, (1− εM)SW) [1−Θ (∂tSW)] , (3b)

S∗
4 = min (SO im, (1− εM)SO) [1−Θ (∂tSO)] ,

(3c)

where the parameter SO im is a limiting saturation for the
non-percolating air, SW dr a limiting saturation for non-
percolating water and Θ(·) denotes the Heaviside step
function. [681.1.8.8] Water saturation is given by SW =
S1+S2 and the air saturation by SO = S3+S4. [681.1.8.9]

The parameter εM ≈ 0 is a mathematical regularization
parameter. [681.1.8.10] It allows to simulate also primary
processes. [681.1.8.11] The volume fluxes of the phases
take the form


q1

q2

q3

q4

 = Λ


−∂xP1−%Wg

−∂x(P3 − γP ∗
2 S

γ−1
2 )−%Wg + Pa∂xS

−α
1

−∂xP3−%Og

−∂x(P1 − δP ∗
4 S

δ−1
4 )−%Og + Pb∂xS

−β
3

 ,

(4)

where P1, P3 denote the averaged pressures of the per-
colating phases, g the gravity acceleration, α, β, γ, δ,
Pa, Pb, P ∗

2 , P ∗
4 , are constitutive parameters. [681.

1.8.12] The parameters α, β, Pa, Pb are associated
with capillary potentials and γ, δ, P ∗

2 , P
∗
4 with the

energy stored in the interface between the non-
percolating phases and the surrounding percolat-
ing phases of the other fluid [9]. [681.1.8.13] A
generalized mobility matrix is denoted by Λ with
the coefficients

Λij = φ2SiSj [R̃
−1]ij , (5)

where [R̃−1]ij denote the components of the inverse of the
viscous coupling parameter matrix. [681.1.8.14] A com-
parison with the classical two-phase Darcy equa-
tions yields that R̃11 ≈ µW/k and R̃33 ≈ µO/k, where
k denotes the permeability of the porous medium.
[681.1.8.15] The system of equations is closed with the
volume conservation for incompressible fluids and incom-
pressible porous media

S1 + S2 + S3 + S4 = 1 (6)

plus a special form of the general self-consistent closure
condition [11, 5]
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Table 1. List of parameters with units and their numerical
values used for simulating the experiment. Note that εM is a
mathematical regularization parameter, i.e. the limit εM → 0
is implicit and it has been tested that the numberical results
do not change in this limit.

Parameters Units Values

φ 0.36
εM 0.01

W O W O
%W %O kg m−3 1000 1.2
SW dr SO im 0.13 0.21
η2 η4 6 4
α β 0.42 1.6
Pa Pb Pa 2700 3
γ δ 2.4 2.9
P ∗

2 P ∗
4 Pa 11000 3000

R11 R33 kg m−3 sec−1 3.83× 106 6.99× 104

R22 R44 kg m−3 sec−1 1016 1016

Rij , i 6= j kg m−3 sec−1 0

P3 = P1 +
1

2

(
PaS

−α
1 − PbS

−β
3 +γP ∗

2 S
γ−1
2 − δP ∗

4 S
δ−1
4

)
(7)

for the pressures of the percolating phases.

4. Simulation Setup

[681.1.9.1] In this section we discuss how the experiment
is represented mathematically. [681.1.9.2] The four mass
balance equations (1) are solved numerically. [681.1.

9.3] First, equations (6) and (7) are used to eliminate S4

and P3. [681.1.9.4] The primary variables are S1, S2, S3

and P1. [681.1.9.5] The mass balances are discretized in
space by cell centered finite volumes with upwind fluxes.
[681.1.9.6] They are discretized in time with a first or-
der implicit fully coupled scheme. [681.1.9.7] The corre-
sponding system of nonlinear equations is solved with the
Newton-Raphson method. [681.1.9.8] The whole scheme
is implemented in Matlab. [681.1.9.9] The simulation
is run with a resolution of one cell per centimeter, i.e.
with N = 72 collocation points. [681.1.9.10] Details
of the algorithm are given elsewhere [3].

[681.1.9.11] Dirichlet boundary conditions for the pres-
sure P1 of the percolating water phase are imposed at
the lower boundary (x = 0 m), where pressure is de-
termined by the water reservoir. [681.1.9.12] Dirichlet
boundary conditions for the atmospheric pressure P3 of
the percolating air phase are chosen at the upper bound-
ary (x = 0.72 m) of the column. [681.1.9.13] All the
other boundaries are impermeable so that the flux across
them must vanish.
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Figure 2. Illustration of the capillary pressure-saturation re-
lationship in the residual decoupling approximation of our
theory for the parameters given in Table 1 (solid lines) for
primary and secondary drainage and imbibition respectively.
Also shown are the primary and secondary drainage and the
secondary imbibition curve of the hysteresis model used in [15]
(dashed curves).

[681.1.9.14] The initial conditions are S1(x, 0) = 0.997,
S2(x, 0) = 0.001, S3(x, 0) = 0.001, S4(x, 0) = 0.001 for all
x ∈ [0 cm, 72 cm]. [681.1.9.15] Initial conditions for the
pressures are not required because of the implicit formu-
lation. [681.1.9.16] Before the protocol for the pressure
is started, the system is given one day under hydrostatic
water pressure conditions to equilibrate.

[681.1.10.1] The parameters for the simulation are given
in Table 1. [681.1.10.2] They were obtained by fit-
ting the primary drainage curve of the capillary
pressure saturation relationship obtained in the
residual decoupling approximation [9] to the pri-
mary drainage curve of van Genuchten parametri-
zation that [15] obtained by a fit to data of the
first drainage process in the experiment. [681.

1.10.3] The van Genuchten parameters in [15] are
αdr =, 4.28× 10−4 Pa−1, αim =, 8.56× 10−4 Pa−1, ndr =
5.52, nim = 5.52, mdr = 0.82, mim = 0.82, Swi = 0.17,
Snr = 0.25. [681.1.10.4] The resulting capillary
pressure curves are compared in Figure 2. [681.

1.10.5] The viscous resistance coefficients were ob-
tained through R11 ≈ µW/k, R33 ≈ µO/k, where
k = 33.7× 10−12 m2 was again taken from [15]. [681.

1.10.6] The viscous resistance coefficients for the
non-percolating phases are assumed to be much
larger than those for the percolating phases R22, R44

� R11, R33. [681.1.10.7] For the time-scale of the
experiment the results do not depend on the nu-
merical values of the resistance coefficients given
in Table 1 [3].
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5. Results

[681.1.11.1] The results of the simulations are compared
with experimental data and the most sophisticated
model of [15] (previously developed in [22, 17]) in
Fig. 3 and 4. [681.1.11.2] Figure 3 shows the computed
time evolution of SW(x, t), S2(x, t), S4(x, t) at x = 0.4 m,
x = 0.5 m, x = 0.6 m and x = 0.7 m as continuous and
dashed lines. [681.1.11.3] The experimental data for SW
are shown as plus signs and circles and the simulation
results with the most sophisticated model of [15]
are represented by dash-dotted and dotted curves.
[681.1.11.4] There is good qualitative agreement at all four
positions.

[681.1.12.1] During the first two hours of the experiment,
the saturation decreases because of the lowered pressure

0 2 4 6 8 100

0.2

0.4

0.6

0.8

1

t / h

0 2 4 6 8 100

0.2

0.4

0.6

0.8
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Figure 3. Comparison of the water saturation SW(x, t) at
x = 0.4 m and x = 0.5 m (blue curves), and x = 0.6 m
and x = 0.7 m (red curves) from simulation and experiment.
Solid and dashed curves show our simulations and dot-
ted and dash-dotted curves the simulation of [15]. Ex-
perimental data is illustrated by red pluses (x = 0.7 m and
x = 0.6 m) and blue circles (x = 0.5 m and x = 0.4 m). Also
shown are results for S2(x, t) (the first dashed and solid
curves from the bottom of each graph) and 1−S4(x, t)
(the first dashed and solid curve from the top of each
graph).

in the water reservoir. [681.1.12.2] The instants at which
the capillary fringe passes the measurement points agree
at all four points between simulation and measurement.
[681.1.12.3] The decrease in water saturation induces a
production of non-percolating water. [681.1.12.4] The
corresponding decrease in non-percolating air is not vis-
ible in the graph because of the small amount of initial
non-percolating air. [681.1.12.5] The pressure does not
change between t = 2 h and t = 3.5 h. [681.1.12.6] Hence,
the rate of saturation change decreases and saturation
reaches an almost stationary value. [681.1.12.7] The
calculated water saturations of that plateau are slightly
smaller than the experimental ones. [681.1.12.8] Mea-
sured and predicted values during the first increase of
the reservoir pressure at around t ≈ 4 h show good agree-
ment excluding x = 0.70 m. [681.1.12.9] In contrast
to the simulated saturation, the measured saturation de-
creases at x = 0.70 m after an increase of the pressure at
the lower boundary. [681.1.12.10] This surprising effect
was not discussed in the experimental work [15] and the
lack of error bars makes an interpretation difficult (sim-
ilar experiments [16] by the same authors suggest error
bars of order ∆SW ≈ 0.1). [681.1.12.11] The increase
of water saturation induces a decrease of non-percolating
water and a production non-percolating air.

[681.1.13.1] The subsequent evolution of the saturation
shows qualitatively similar phenomena upon changing the
pressure. [681.1.13.2] Note, that the spatiotemporal evo-
lution of the saturation requires an infinite number of
scanning curves in traditional hysteresis modelling, i.e.
when the process changes between drainage and imbibib-
tion as a function of time and position. [681.1.13.3]

Here in our model a single set of parameters is sufficient,
and there is no need to know scanning curves beforehand.
[681.1.13.4] At the end of the experiment water is almost
completely connected at all four measurement positions,
while most of the air is disconnected and trapped. [681.

1.13.5] The trapped air prevents the complete filling of
the column with water and indicates the irreversibility of
the process.

[681.1.14.1] Figure 4 illustrate the hysteretic drainage
and imbibition processes in the Pc − SW plane. [681.

1.14.2] It shows Pc(SW) obtained by eliminating x and
t from the measurements of −P1(x, t) and SW(x, t) at
x = 0.4 m, x = 0.5 m, x = 0.6 m and x = 0.7 m. [681.1.

14.3] The lines of the simulations indicate the time evo-
lution which is compared to the time discrete observations
in the experiment. [681.1.14.4] Experimental and simu-
lated data agree qualitatively. [681.1.14.5] The values at
SW ≈ 0.99 corresponds to the minimum in the pressure
protocol of the water reservoir (see Figure 1) at the start
of the experiment. [681.1.14.6] The decrease in water
saturation induces an increase in Pc during the primary
drainage and the curves of all four positions coincide with
the experimental data. [681.1.14.7] The point with the
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Figure 4. Comparison of measured and simulated capil-
lary pressure saturation relation Pc(SW(x, t)) at x = 0.4 m,
x = 0.5 m (blue curves) and x = 0.6 m, x = 0.7 m (red
curves). Solid and dashed curves show our simulations
and dotted and dash-dotted curves the simulation of
[15]. Experimental data is illustrated by red pluses (x = 0.7 m
and x = 0.6 m) and blue circles (x = 0.5 m and x = 0.4 m).

lowest saturation of each primary drainage branch cor-
responds to the instant when the pressure in the water
reservoir is increased again. [681.1.14.8] The deviations
between simulation and experiment at x = 0.7 m and
x = 0.5 m originate from the mismatched saturations (see
Fig. 3). [681.1.14.9] The following imbibition discloses
the hysteretic nature of the process as the curves at the
four different positions follow different scanning curves.
[681.1.14.10] Also the subsequent drainage yields differ-
ent drainage scanning curves. [681.1.14.11] This branch
of the curve is difficult to identify in the experimental
data at x = 0.7 m and x = 0.6 m but matches well at the
other two locations. The final imbibition yields satura-
tion SW ≈ 0.8 and the curves at all four positions almost
coincide again.

[681.1.15.1] The figures show that the quality of our
results is comparable to the most sophisticated model
used in [15]. [681.1.15.2] However, in our theory the
hysteresis in saturation profiles is due to the natural
assumption that breakup and coalescence rates

are proportional to the rate and direction of sat-
uration change, whereas in their models, the hys-
teresis is nonlocal in time and inserted directly by
hand into the constitutive functions. [681.1.15.3]

The good quality of the results is surprising because it is
evident that some of our assumptions such as the incom-
pressibility of air and the incompressible porous medium
are questionable. [681.1.15.4] We remark also, that the
lack of error bars for the experimental data makes an
interpretation difficult.

6. Conclusions

[681.1.16.1] In summary, we presented a comparison of
experimental observations with theoretical predictions for
a theory of twophase flow in porous media based on the
hydraulic differences between percolating and non-perco-
lating fluid parts. [681.1.16.2] It was shown that tak-
ing into account these differences renders the modeling
of a multistep outflow capillary pressure saturation rela-
tion measurement possible with one single set of param-
eters. [681.1.16.3] In contrast to most of the hysteretic
extension of the standard theory for two-phase flow in
porous media, the underlying theory has a physical foun-
dation. [681.1.16.4] We therefore conclude that per-
colation of fluid phases may be the physical reason for
hysteresis between drainage and imbibition during im-
miscible displacement.
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Appendix

[681.1.16.5] This appendix considers some compu-
tational aspects of our theory to aid readers simu-
lating experiments with hysteresis. [681.1.16.6] It
clarifies fundamental differences (locality vs. non-
locality) between the theory presented here and a
traditional hysteresis model. [681.1.16.7] The nat-
ural assumption in eq. (2) , that breakup or coa-
lescence of ganglia is proportional to the rate and
direction of saturation changes, is neither equiv-
alent nor related to the traditional hysteretic ex-
tensions of capillary pressure or relative perema-
bilities.

[681.1.17.1] The origin of hysteresis in the present
theory (see [9, 10]) differs fundamentally from tra-
ditional hysteresis models such as the model uti-
lized in [15]. [681.1.17.2] Traditional hysteresis
models require to store for each location inside the



7

sample the pressure and saturation history (i.e.
the reversal points, where the process switches
between drainage and imbibition). [681.1.17.3]

In our theory such pressure and saturation his-
tories are not needed. [681.1.17.4] Instead, con-
trary to traditional hysteresis models, our theory
allows to compute the future state of the porous
medium, given only the knowledge of its present
state. [681.1.17.5] In other words: While tradi-
tional hysteresis models are nonlocal in time (and
thus require to memorize the systems history),
our theory is local in time.

[681.1.18.1] In practical computations the local-
ity of our theory translates into reduced storage
requirements and a more straightforward imple-
mentation. [681.1.18.2] Table 2 below lists the
fields (i.e. the position and time dependent quan-
tities) necessary to compute the future time evo-
lution of the system.

[681.1.19.1] Both approaches need a pressure and
saturation field at the present time instant t. [681.

1.19.2] Our theory needs in addition the unknowns
S2, S4 to completely specify the present state of
the system. [681.1.19.3] This amounts to two ad-
ditional state variables at each collocation point.
[681.1.19.4] Traditional hysteresis models need in
addition 2l(xi) historic values, one for pressure
and one for saturation, at each collocation point
xi. [681.1.19.5] The number l(xi) is the number
of time instants tj(xi), j = 1, ..., l(xi) at which re-
versals occur at position xi, i = 1, ..., N . [681.1.

19.6] A reversal is a switching between drainage
and imbibition at the collocation point xi. [681.1.

19.7] The number l(xi) depends on the nesting or
not of scanning curves. [681.1.19.8] The number
l(xi) and the time instants tj(xi) are not known
in advance. [681.1.19.9] In [15] it is assumed ad
hoc that nested loops do not occur and that the
last two reversals are sufficient to avoid pumping
effects. [681.1.19.10] This uncontrolled approxima-
tion might fail for experiments with cyclic pres-
sure changes where nested scanning loops are ex-
pected to occur locally. [681.1.19.11] In the general
case [15] expect that the last four or five reversals
are sufficient.

[681.1.20.1] Finally, it may be of interest for practi-
cal computations that the model of [15] postulates
explicitly and implicitly numerous functional rela-
tions between the variables and unknowns charac-
terizing the state of the system. [681.1.20.2] Exam-
ples are not only the capillary pressure-saturation
relationship or the relative permeability-saturation
relation, but also the functional relations between
the various effective, apparent, entrapped and his-

toric saturations and pressures Sw, Sw, hnw, Snt,

Table 2. List of unknowns needed at a given time instant
t to compute the future time evolution for the mathematical
model in this paper as compared to the mathematical model
of [15]. Quantities corresponding to each other appear in the
same row. The arguments xi denote N discretized positions,
i.e. collocation points i = 1, ...N of the numerical simulation.
The notation of in the right column follows [15], the notation
in the left column is that of this paper. The time instants
tj(xi), j = 1, ..., l(xi) are the time instant of the j-th reversal
at position xi. The number l(xi) of reversals (nested scanning
curves) depends on position xi.

this theory [15]

SW(xi, t) Sw(xi, t)
S2(xi, t) —
S4(xi, t) —
P3(xi, t) hnw(xi, t)

—
∆
Sw1(xi, t1) = 1

— ∆
hnw1(xi, t1) = 0

—
∆
Sw2(xi, t2(xi))

— ∆
hnw2(xi, t2(xi))

... ...

—
∆
Sw l(xi)−1(xi, tl(xi)−1(xi))

— ∆
hnw l(xi)−1(xi, tl(xi)−1(xi))

—
∆
Sw l(xi)(xi, tl(xi)(xi))

— ∆
hnw l(xi)(xi, tl(xi)(xi))

Snr,
∆
hnwj and

∆
Swj appearing in [15]. [681.1.

20.3] The functional forms for these relationships
are postulated purely theoretically and have, ap-
parently, been tested by inverse fitting but not
yet by a direct experimental test. [681.1.20.4] The
large number of such functional relations and the
freedom to parametrize them results in so many
possible fit parameters for the model of [15] that a
meaningful comparison to other approaches based
on the number of free fit parameters becomes dif-
ficult.
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