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Abstract

We discuss correlated hopping motion in a dynamically disordered environment. Particles

of type A with hopping rate 1/τA diffuse in a background of B-particles with hopping rate

1/τB. Double occupancy of sites is forbidden. Without correlations the limit τB/τA → ∞
corresponds to diffusion on a percolating network, while the case τB = τA is that of self-

diffusion in a lattice gas. We consider also the effect of correlations. In general these will

change the transition rate of the A-particle to the previously occupied site as compared to

the rate for transitions to all other neighbouring sites. We calculate the frequency dependent

conductivity for this model with arbitrary ratio of hopping rates and correlation strength.

Results are reported for the two dimensional hexagonal lattice and the three dimensional

face centered cubic lattice. We obtain our results from a generalization of the effective

medium approximation for frozen percolating networks. We predict the appearance of new

features in real and imaginary part of the conductivity as a result of correlations. Crossover

behaviour resulting from the combined effect of disorder and correlations leads to apparent

power laws Reσ(ω) ∼ ωy with 0 < y < 1 over roughly one to two decades in frequency. In

addition we find a crossover between a low frequency regime where the response is governed

by the rearrangements in the geometry and a high frequency regime where the geometry

appears frozen. We calculate the correlation factor for the d. c. limit and check our results

against Monte Carlo simulations on the hexagonal and face centered cubic lattices for the

case τ = 1 and τ =∞. In all cases we find good agreement.
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[page 176, §1]

1. Introduction

[176.1.1] A large variety of dynamic phenomena in condensed systems can be described
by a lattice gas model. [176.1.2] Examples include transport in superionic solids, phase
separation in binary alloys, kinetics of spin models, diffusion in metal-hydrogen systems or
order-disorder phenomena in chemisorbed monolayers at surfaces [1–4]. [176.1.3] Moreover,
the popular model of hopping transport on a percolating network can be viewed as a
special case. [176.1.4] This is seen by considering a lattice gas with two species of particles,
A and B, for the case where the B-particles are frozen into some random configuration.
[176.1.5] If, as usual, the A-particles are allowed to hop only into vacant lattice sites then
the problem is that of diffusion in a frozen disordered environment. [176.1.6] Our interest
in this problem stems from a case in which the B-particles are not completely immobile,
but very slow compared to the A-particles. [176.1.7] The general objective in this paper
will be to calculate the transport coefficients for the A-particles.

[176.2.1] More specifically, we are motivated by the problem of calculating the frequency
dependent conductivity of β′′-alumina, a superionic conductor, well known for its ability
to transport a variety of cations [5]. [176.2.2] Na+/Bapp-β′′-alumina is a layered com-
pound where Na+-ions hop between the sites of a hexagonal lattice forming a stack of
two dimensional conduction planes [6]. [176.2.3] The activation energy for Na+ is roughly
0.35 eV while that for Bapp is approximately 0.58 eV [5]. [176.2.4] Thus at sufficiently
low temperatures the Bapp-ions are essentially frozen. [176.2.5] They play the role of the
B-particles in the lattice gas described above. [176.2.6] At higher temperatures the Bapp
become mobile. [176.2.7] Now the Na+-ions (A-particles) experience a dynamic instead
of a frozen disordered environment. [176.2.8] The fundamental parameter characterizing
the different time scales in the problem is the ratio τ = τB/τA between the charcteristic
hopping time τB of the Bapp and τA of the Na+-ions.

[176.3.1] Despite its conceptual simplicity the model contains many interesting features,
even if we neglect for the moment all interactions between particles, except, of course,
the hard core repulsion. [page 177, §0] [177.0.1] The hard core repulsion prevents double
occupancy of lattice sites. [177.0.2] In the limit τ → 1 the tracer diffusion coefficient for the
A-particle shows pronounced correlation effects [7]. [177.0.3] On the other hand in the limit
τ →∞ the system will exhibit a percolation transition [8]. [177.0.4] For low concentrations
of B-particles the Aparticles can diffuse along an infinite network of vacancies while at
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high concentrations they are confined to finite clusters, and there will be no long range
transport.

[177.1.1] Generally the system discussed above can be described by a many particle master
equation [1]. [177.1.2] This remains true even if interactions between particles are included.
[177.1.3] In the case of Na+/Bapp-β′′ alumina the Coulomb repulsion between the mobile
ions will be important. [177.1.4] Additional correlations can arise from lattice relaxation
effects, or from simultaneous hops of groups of ions. [177.1.5] The latter is a well known phe-
nomenon for the related β-alumina. [177.1.6] Clearly the problem has to be simplified even
if one resorts to a computer simulation. [177.1.7] A careful Monte-Carlo-study of the tracer
diffusion problem was carried out by Kehr, Kutner and Binder [7, 9–12]. [177.1.8] They
focussed on the case τ = 1 on a face centered cubic (fcc) lattice, and considered systems
with and without short range attractive/repulsive interactions. [177.1.9] Theoretical at-
tempts [13–15] have also concentrated on the case τ = 1 and were therefore unable to
reproduce the percolation transition for τ → ∞. [177.1.10] In this paper we present a
theory for general τ which allows to incorporate correlation effects arising from the blocker
dynamics or from other sources such as particle interactions.

[177.2.1] Let us first discuss the general framework of our approach. [177.2.2] Instead of
focussing on the case τ = 1 the basic idea is to start from the frozen problem, i. e. τ =∞.
[177.2.3] We discuss the diffusion of a single A-particle in the percolation geometry produced
by the immobile B-particles. [177.2.4] Interactions between the particles lead to correlations
for the random walk of the A-particle. [177.2.5] In general the effect of such correlations is
to change the transition probabilities to nearest neighbours of the particle [16]. [177.2.6] In
particular let us assume that the primary effect is to change the transition rate to the
site that was occupied before the last step. [177.2.7] Thus we assume that the A-particle
has a memory of its previous position, and consequently its random walk no longer has
the Markov property. [177.2.8] The corresponding problem on a regular lattice is well
known [17–20] and can be solved exactly. [page 178, §0] [178.0.1] This allows us to formulate
a generalized effective medium theory for the correlated hopping of an A-particle on the
frozen disordered network.

[178.1.1] Finally the B-particles are allowed to move, i. e. τ < ∞, and the A-particle now
experiences a dynamic disordered environment. [178.1.2] The solution to this dynamic
percolation problem can be expressed in terms of the solution for the frozen problem.
[178.1.3] The result is valid for arbitrary τ and allows to incorporate correlation effects
via the special transition rate for transitions to the previously occupied site. [178.1.4] The
main advantage of this approach is its simplicity. [178.1.5] The three main parameters
are the concentration of B-particles, p, the ratio of attempt frequencies, τ , and the ratio
between the hopping rates for return to previously occupied sites and transitions to other
neighbours, b. [178.1.6] The first two are essentially fixed from the experiment, while b can
be determined from a measurement of the conductivity at any single frequency, e. g. at
ω = 0.

[178.2.1] The objective of this paper, as mentioned in the beginning, is the calculation of
the frequency dependent conductivity for the A-particles. [178.2.2] In addition we wish to
evaluate the correlation factor for the selfdiffusion constant in the d. c. limit. [178.2.3] We
assume here that the B-particles do not contribute to the conductivity. [178.2.4] We will
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present results for the hexagonal and the fcc-lattice. [178.2.5] The first because of its
low coordination number and its relevance for Na+/Bapp-β′′-alumina. [178.2.6] The sec-
ond because of the possibility to compare with d. c. results from extensive Monte-Carlo
simulations in the literature.

[178.3.1] For the a.c. response we find a crossover between a low frequency regime dominated
by the effects of blocker motion, and at high frequency regime in which the blockers, or
equivalently vacancies, appear to form a frozen network. [178.3.2] In addition we predict
the appearance of novel features in the real and imaginary part as a result of correlations.
[178.3.3] In the d. c. limit we calculate the correlation factor for the self diffusion coefficient.
[178.3.4] It interpolates smoothly between the case τ = 0 and τ → ∞. [178.3.5] Although
our theory does not contain adjustable parameters for the uncorrelated case (b = 1) we
find good agreement with Monte-Carlo simulations by Kehr, Kutner and Binder [10, 11].
Our results will be presented in Section 5 and are then discussed in Section 6. [page 179,

§0] [179.0.1] In the next section we formulate our model. [179.0.2] In Section 3 we treat the
correlated random walk in a frozen disordered environment, and in Section 4 we use the
result from Section 3 as input for the dynamic problem.

2. Formulation of the Model

2.1. Correlated Hopping in a Frozen Percolation Network

[179.1.1] Consider the random walk of a single particle of type A in a percolating network
on a regular lattice. [179.1.2] We will always take the lattice constant of the underlying
lattice to be unity. [179.1.3] For simplicity we consider the case of bond percolation instead
of site percolation. [179.1.4] That is, the bonds of the regular lattice are assumed to be
blocked be B-particles (blockers) with probability p. [179.1.5] If a bond is blocked by a
B-particle it cannot be crossed by the A-particle (walker). [179.1.6] We assume that the
walker has a memory of its previous step. [179.1.7] It returns with a transition rate ωb, to
the previously visited site, and jumps with a rate ω to any other of the nearest neighbour
sites. [179.1.8] The ratio b = ωb/ω is a measure of the strength of the memory correlations.
[179.1.9] For b > 1 the walker returns preferentially to its previously visited site, and we will
refer to this case as “enhanced reversals”. [179.1.10] In the case b < 1 the walker tends to
avoid the previously visited site and this will be termed “reduced reversals”. [179.1.11] As
usual, we are interested in the autocorrelation function P (i, t) = P (~ri, t|r0, 0), i. e. the
probability density to find the walker at site i at time t if it started from site 0 at time 0.
[179.1.12] We will show below that the problem can be formulated as a system of second
order equations for the P (i, t) which reads

d2

dt2
P (i, t) + (γi + ωb − ω)

d

dt
P (i, t)

= ω
∑
j{i}

Aij
d

dt

[
P (j, t)− P (i, t)

]
+ ωγi

∑
j{i}

Aij
[
P (j, t)− P (i, t)

]
(2.1a)

where γi = ωb + ω(zi − 1) and zi is the coordination number of site i. [179.1.13] The
symmetric quantities Aij = Aji represent the bond disorder and are defined as

Aij =

{
1 if the bond [ij] is vacant,

0 if the bond [ij] is blocked.
(2.1b)
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[page 180, §0] [180.0.1] The summation in eq. (2.1a) runs over the nearest neighbour sites j
of site i. [180.0.2] Note that in the uncorrelated case, b = 1, eq. (2.1) reduces to the usual
master equation for a random walk on a bond percolation network if one replaces P (i, t)
by the sum of P and its derivative.

[180.1.1] Equation (2.1) has to be supplemented by initial conditions for P (i, t) and its
derivative. [180.1.2] Special attention has to be paid to the condition on d

dtP (i, t) and its
derivative. [180.1.3] The correct choice is

P (i, 0+) = δi0 (2.2a)

d

dt
P (i, 0+) =

[
ωb + ω(zi − 1)

] 1

zi

∑
j{i}

Aij
[
P (j, 0+)− P (i, 0+)

]
= γi/zi

∑
j{i}

Aij(δj0 − δi0) (2.2b)

where the symbol 0+ stands for the limit t → 0 from above. [180.1.4] Note that γi/zi is
the average transition rate out of the starting point.

[180.2.1] We now derive eq. (2.1) as the equations of motion for our correlated random walk.
[180.2.2] This will be done by a suitable reformulation of the equations for the correlated
random walk on the regular lattice [19], and subsequent generalization to the disordered
case. [180.2.3] Consider therefore the random walker on a regular lattice. [180.2.4] The
random walker has a memory of its previous step and as a consequence its walk is not
markovian, i. e. the transition probabilities are not completely determined by the currently
occupied site. [180.2.5] However a markovian description can be obtained by introducing
an enlarged state space with internal states which correspond to the previously occupied
sites [21]. [180.2.6] Therefore the central quantity is the probability density P (i, j, t) to find
the walker at site i at time t given that it arrived at i via a direct transition from site j.
[180.2.7] Thus j labels the previously occupied site or history. [page 181, §0] [181.0.1] Then
the symmetric probablity density P (i, t) is obtained from P (i, j, t) by a summation over
all possible histories

P (i, t) =
∑
j{i}

P (i, j, t) (2.3)

where the sum runs over all nearest neighbour sites j of site i. [181.0.2] The conditional
probability densities P (i, j, t) obey the master equation

d

dt
P (i, j, t) = ωb

[
P (j, i, t)− P (i, j, t)

]
+ ω

∑
k 6=i

[
P (j, k, t)− P (i, j, t)

]
(2.4)

where the sum runs over all nearest neighbours k of site j except for site i on the regular
lattice. [181.0.3] This is the starting point for deriving eq. (2.1).

[181.1.1] Equation (2.4) can now be reformulated by first writing it in a more symmetric
form. [181.1.2] Using eq. (2.3) we can rewrite eq. (2.4) as

d

dt
P (i, j, t) = (ωb − ω)P (j, i, t) + ωP (j, t)− γP (i, j, t) (2.5)

where γ = ωb+(z−1)ω, and z denotes the coordination number of the lattice. [181.1.3] Note
that eq. (2.5) reduces to the master equation for a random walk on a regular lattice if one
sets b = 1 and sums over all sites j which are nearest neighbours of site i. [181.1.4] Next we
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differentiate eq. (2.5) and sum over j. [181.1.5] We then employ it for i and j interchanged
to eliminate the term d

dtP (j, i, t) and find

d2

dt2
P (i, t) + γ

d

dt
P (i, t)

= (ωb − ω)γP (i, t) + ω
∑
j{i}

d

dt
P (j, t)− (ωb − ω)γ

∑
j{i}

P (j, i, t). (2.6)

[181.1.6] Solving eq. (2.5) for P (j, i, t) and inserting the result into eq. (2.6) one obtains a
closed second order equation for P (i, t)

d2

dt2
P (i, t) + (γ + ωb − ω)

d

dt
P (i, t)

= ω
∑
j{i}

d

dt

[
P (j, t)− P (i, t)

]
+ ωγ

∑
j{i}

[
P (j, t)− P (i, t)

]
(2.7)

where the summations, as before, run over all nearest neighbour sites j of site i. [page 182,

§0] [182.0.1] Eq. (2.7) contains the same information as eq. (2.4) but no longer involves the
directional quantities P (i, j, t). [182.0.2] This form can now be used to introduce disorder
and it leads directly to eq. (2.1). [182.0.3] We now turn to the introduction of a time
dependent network.

2.2. Correlated Hopping in a Dynamic Percolation Network

[182.1.1] Consider a system where the configuration of accessible sites fluctuates in time.
[182.1.2] We are interested in the case where the B-particles perform a random walk.
[182.1.3] Because we are dealing with bond percolation this random walk occurs on the
dual lattice. [182.1.4] In an elementary step a blocking bond swings around either one of
its end points through an angle ±2π/z where z is the coordination number of the under-
lying lattice. [182.1.5] It then occupies the new bond position if it is vacant. [182.1.6] This
process is repeated on the average after a time τB which is the characteristic time scale for
the blocker motion. [182.1.7] In Figure 2 we depict the possible rotations of a B-particle
for the case of a hexagonal lattice. [182.1.8] This model has been termed “dynamic bond
percolation” model [22]. [182.1.9] The characteristic hopping time for a single B-particle is
called τB. [182.1.10] The ratio τ = τB/τA between the typical hopping time of the blockers
and the walker will be the main variable characterizing the dynamics of the environment.

[182.2.1] Equation (2.1) must be generalized to allow for time dependent transition rates.
[182.2.2] Therefore we have to consider an equation of the form

d2

dt2
P (i, t) + (γi + ωb − ω)

d

dt
P (i, t)

= ω
∑
j{i}

Aij(t)
d

dt

[
P (j, t)− P (i, t)

]
+ ωγi

∑
j{i}

Aij(t)
[
P (j, t)− P (i, t)

]
(2.8a)

where now the coefficients A are time dependent,

Aij(t) =

{
1 if the bond [ij] is vacant at time t,

0 if the bond is occupied by a blocker at time t.
(2.8b)

[page 183, §0] [183.0.1] The time dependence of these coefficients could in principle be deter-
mined from the many particle master equation for all blockers. [183.0.2] However, because
that equation is much too complicated we will approximate the true time dependence by
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Figure 1. Blocker motion on the hexagonal lattice. Three possible elementary
rotations of a blocking bond around either one of its endpoints are indicated by
arrows. Full lines represent blocked bonds, dashed lines represent open bonds.

a simple renewal model in Section 4. [183.0.3] Equation (2.8) completes the formulation of
the model. [183.0.4] We remark here that other forms of a two step memory are possible
and may be useful for applications. [183.0.5] For example one can consider enhanced or
reduced transitions continuing in the same direction as the last step. [183.0.6] Such corre-
lations lead to more complicated equations, but they can be treated by the same general
approach presented here.

[183.1.1] We conclude this section with the formulas that will be used to calculate the
frequency dependent conductivity σ(ω) from P (i, t). [183.1.2] This is done via a generalized
Einstein relation which reads

σ(ω) =
ρe2

kBT
D(ω) (2.9a)

where ρ is the carrier density, e their electric charge, kB, the Boltzmann constant, T the
absolute tempreature, and D(ω) the generalized frequency dependent diffusion coefficient.
[page 184, §0] [184.0.1] D(ω) will be calculated in standard fashion from [23]

D(ω) = −ω
2

z

∫ ∞
0

∑
~ri,~r0

(~ri − ~r0)2e−iωtP (~ri, t|~r0, 0) dt (2.9b)

where P (~ri, t|~r0, 0) is the solution to eq. (2.8) or eq. (2.1) for the frozen case. [184.0.2] The
latter will be determined in the next section.

3. Frozen Disorder: Correlated Effective Medium

[184.1.1] In this section we develop an effective medium approximation to solve eq. (2.1)
with initial conditions (2.2) describing the correlated random walk of an A-particle in the
frozen background of blockers. [184.1.2] This is possible because the correlated walk on
the regular lattice can again be solved exactly. [184.1.3] We will derive a selfconsistent
equation similar to that for the generalized diffusion coefficient in the well known effective
medium treatment of random walks on a frozen percolating network [24–28]. [184.1.4] In
our case, however, the solution of the selfconsistent equation is only an intermediate step
from which the generalized diffusion coefficient has to be calculated [29].
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[184.2.1] We start by Laplace transforming eq. (2.1) and inserting the initial conditions.
[184.2.2] This gives

u(u+ γi + ωb − ω)Pi(u)− (u+ γi + ωb − ω)δi0 − (ωb − ω)
1

zi

∑
j{i}

Aij(δj0 − δi0)

= ω(u+ γi)
∑
j{i}

Aij
[
Pj(u)− Pi(u)

]
(3.1)

where we have written Pi(u) = P (i, u) =
∫∞
0

e−utP (i, t)dt to shorten the notation. [184.2.3]

For a selfconsistent treatment of the disorder we have to compare eq. (3.1) with the same
equation for the regular reference lattice where we allow the kernel A0(u) to be frequency
dependent. [page 185, §0] [185.0.1] The equation for the regular reference lattice then reads

u(u+ γi + ωb − ω)P 0
i (u)− (u+ γi + ωb − ω)δi0 − (ωb − ω)

1

zi

∑
j{i}

A0(u)(δj0 − δi0)

= ω(u+ γi)
∑
j{i}

A0(u)
[
P 0
j (u)− P 0

i (u)
]
. (3.2)

[185.0.2] We subtract eq. (3.2) from eq. (3.1) and insert a termA0
[
Pj(u)−Pi(u)

]
. [185.0.3] This

gives us[
u

ωA0

(
1 +

ωb − ω
u+ γi

)
+ zi

]
(Pi − P 0

i )−
∑
j{i}

(Pj − P 0
j )− ωb − ω

u+ γi

1

ωzi

∑
j{i}

∆ij(δj0 − δi0)

=
∑
j{i}

∆ij(Pj − Pi) (3.3)

where we have introduced ∆ij = (Aij − A0)/A0 and suppressed the dependence on u to
further shorten the notation. [185.0.4] We now define the lattice Greens function associated
with the reference lattice by[

u

ωA0

(
1 +

ωb − ω
u+ γi

)
+ zi

]
Gik −

∑
j{i}

Gjk = −δik. (3.4)

[185.0.5] Multiplication of eq. (3.3) by Gik, summation over i, and use of eq. (3.4) allows
us to rewrite eq. (3.3) as

(Pk − P 0
k ) +

∑
i,j

Gik
ωb − ω
u+ γi

1

ωzi
∆ij(δj0 − δi0) = −

∑
i,j

Gik∆ij(Pj − Pi). (3.5)

[185.1.1] As we are dealing with bond percolation it is convenient to switch from site related
quantities to bond related ones. [185.1.2] This is done by writing eq. (3.5) for a second
site l, and then forming the differences Qkl = Pk − Pl = −Qlk. [185.1.3] In terms of the
quantities Qkl one now has

Qkl = Q0
kl +

∑
[ij]

(Gik −Gil −Gjk +Gjl)∆ijQij (3.6)

− 1

2

∑
i,j

[
(Gik −Gil)

ωb − ω
u+ γi

1

ωzi
− (Gjk −Gjl)

ωb − ω
u+ γj

1

ωzj

]
∆ij(δj0 − δi0)

where the summations run over all bonds [ij]. [page 186, §0] [186.0.1] As usual [24–28] one
allows only a finite number of bonds (here only one bond) to fluctuate while all other bonds
are given their effective medium value. [186.0.2] In this 1-bond-approximation the bond
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[kl] can be chosen arbitrarily, and we choose it such that it does not touch the starting
point of the random walk, i. e. k 6= 0, l 6= 0. [186.0.3] Then eq. (3.6) is easily solved to give

Qkl =
1

1−∆kl(Gkk +Gll −Gkl −Glk)
Q0
kl. (3.7)

[186.0.4] Up to this point we have not made use of the fact that the reference lattice is
regular. [186.0.5] We assume now a regular lattice for the effective medium such that
zi = z for all sites. [186.0.6] In this case the solution of eq. (3.4) is recognized as the Greens
function for that lattice if one introduces the new spectral variable

ũ =
u

ωA0(u)

(
1 +

ωb − ω
u+ γ

)
(3.8)

instead of u.

[186.1.1] The self consistent equation is obtained by demanding to choose a frequency
dependent medium A0(u) such that it reproduces on average the behaviour of the original
system, i. e. we demand 〈Qkl〉 =

〈
Q0
kl

〉
where 〈 . 〉 denotes the average over all possible

congurations of the bond [kl]. Using this condition in eq. (3.7) we find

1 =

〈
1

1 + ∆kl

[
2
z + 2ũ

z Gii(ũ)
]〉 (3.9)

where we have also used the symmetry of the Greens function and eq. (3.4) to express
Gij(ũ) in terms of Gii(ũ). [186.1.2] The average in eq. (3.9) has to be taken with respect
to the probability density f(Akl) which was given in eq. (2.1) as f(Akl) = (1− p)δ(Akl −
1) + pδ(Akl). [186.1.3] Performing the average and introducing the notation pc = 2/z for
the percolation threshold one finds from eq. (3.9) the selfconsistent equation

A0(u) =
1− p− pc − pcũG(ũ)

1− pc − pcũG(ũ)

with ũ given by eq. (3.8), and G(u) = Gii(u). [page 187, §0] [187.0.1] Partially solving for
A0 then leads to the functional equation

A0(u) =
1− p− pc − F (u,A0)

2(1− pc)

1±

{
1− 4(1− pc)F (u,A0)[

F (u,A0)− 1 + p+ pc
]2
}1/2

 (3.10a)

where

F (u,A0) = pc
u

ω

(
1 +

ωb − ω
u+ γ

)
G

{
u

ωA0(u)

(
1 +

ωb − ω
u+ γ

)}
(3.10b)

[187.0.2] This formulation has the advantage that it displays explicitly the two different
branches of the solution. [187.0.3] The decision which branch to use is made by enforcing the
correct limiting behaviour of σ. [187.0.4] This requires that we calculate first the generalized
diffusion coefficient D. [187.0.5] For that we must solve eq. (2.7). [187.0.6] Fourier-Laplace
transforming eq. (2.7) and using the initial conditions of eq. (2.1). [187.0.7] We obtain

P (~k, u) =

1
ωA0 + ωb−ω

u+γ
1
ω

(
1
A0 − 1

)
+ ωb−ω

u+γ
1
ωp(

~k)

u
ωA0

(
1 + ωb−ω

u+γ

)
+ z − zp(~k)

(3.11)

where ~k = (k1, . . . , kd) denotes the wave vector, and p(~k) is the usual characteristic function

of the random walk for the lattice under consideration, e. g. p(~k) = 1
d

∑d
i=1 cos ki for the

d-dimensional simple cubic lattices.
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[187.1.1] Now equation (2.9) can be employed to calculate the conductivity σ(ω). A straight-

forward calculation using p(~k)|~k=0 = 1 and ∇~kp(~k)|~k=0 = 0 leads to the generalized diffu-
sion coefficient [29]

D0(u) = p′′(0)A0(u)
ω

z
(b− 1 + z)

u
ω + z

u
ω + z + 2b− 2

(3.12)

as a function of u = iω. [187.1.2] Here p′′(0) denotes
(
∇~k
)2
p(~k)|~k=0, and we have used the

index 0 to indicate that eq. (3.12) is valid for the frozen case, i. e. τ = ∞. [187.1.3] With
equations (3.12) and (3.10) we have now derived the set of selfconsistent equations for the
frozen diffusion coefficient D0(u). [187.1.4] It remains to specify a particular lattice, and to
solve eq. (3.10) for the case of interest. [page 188, §0] [188.0.1] That will be done in Section 5
after we have discussed how to make use of these results for the dynamic disorder problem.

4. Dynamic Disorder: Renewal Approach

[188.1.1] So far we have discussed equation (2.1). [188.1.2] We now turn to equation (2.8),
i. e. we consider dynamic disorder. [188.1.3] The difficulty lies not so much in solving
eq. (2.8) but in specifying the stochastic coefficients A(t). [188.1.4] They are determined
by the random motion of all blockers. [188.1.5] Our general strategy will be to assume a
simpler form for the random process A(t), and then to find a solution for eq. (2.8) which
makes use of the solution for the frozen case, i. e. eq. (2.1).

[188.2.1] The basic idea is to approximate the actual correlated dynamics of the environ-
ment by a simple exponential renewal process. [188.2.2] Consider a single bond. [188.2.3] It
is either occupied or vacant, and switches randomly between these two states. [188.2.4] This
can be modelled by a two state Markov chain as suggested by Harrison and Zwanzig [30].
[188.2.5] Let 1/τr, be the switching frequency between the two states, i. e. τr is an effective
renewal time. [188.2.6] Then the probability to find the bond occupied by a blocker at
time t is easily seen to relax as p + p0 exp(−t/τr), where p0, is either 1 − p or −p de-
pending upon whether at time 0 the bond was occupied or not. [188.2.7] Thus, in this
model, the bonds flip randomly and independently between the two states. [188.2.8] Us-
ing a 1-bond effective medium approximation, as the one described above, Harrison and
Zwanzig [30] have shown that for this model the generalized diffusion coefficient is given by
D0(u+ 1/τr) where D0(u) is the diffusion coefficient for the corresponding frozen problem
(e. g. eq. (3.12)). [188.2.9] The same result, to which we will refer as the substitution rule,
had been obtained by Druger, Ratner and Nitzan [31] for a model in which full configura-
tions are renewed instead of single bonds. [188.2.10] This is not surprising because in the
1-bond-approximation the behaviour for the full lattice is calculated by considering only
the possible configurations of a single bond. [188.2.11] Let us therefore approximate the dy-
namics of the environment by an exponential renewal process for full lattice configurations
with renewal density

ψr(t) =
1

τr
e−t/τr . (4.1)

[page 189, §0] [189.0.1] The mean renewal time τr is now an effective renewal time which
should be proportional to τ , the ratio of jump rates between B- and A-particles, i. e.

τr = cτ. (4.2)

[189.0.2] The proportionality constant c contains the effects from correlations in the blocker
dynamics that are not taken into account by the renewal approach. [189.0.3] It is, however,
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not an adjustable parameter. [189.0.4] It will be determined below by comparison with well
known exact results for the limit p→ 1 (τ = 1, b = 1). [189.0.5] The substitution rule can
also be obtained from a simple probabilistic argument [22]. [189.0.6] Consider the inverse
Laplace transform D0(t) of D0(u) which was calculated in eq. (3.12). [189.0.7] As is well
known, D0(t) is the kernel of a generalized master equation [32]. [189.0.8] Therefore it can
be interpreted as a generalized time dependent transition rate, i. e. transition probability
per unit time. [189.0.9] It describes the frozen problem in a mean field picture and is the
proper kernel to use between renewal events. [189.0.10] Because the renewal process and
the random walk of the Aparticle are independent, the transition rate for the dynamic
problem at time t is the product of the corresponding rate for the frozen case and the
probability that there was no renewal up to time t, i. e.

D(t) = D0(t)

[
1−

∫ t

0

ψr(t
′)dt′

]
= D0(t)e−t/τr . (4.3)

[189.0.11] From this one recovers the substitution rule by Laplace transformation. [189.0.12]

Using eq. (4.2) we get

D(u) = D0

(
u+ 1

cτ

)
(4.4)

as our final result.

[189.1.1] To proceed we have to specify a particular lattice of interest, and solve eq. (3.10).
[189.1.2] Before doing so we comment briefly on the relation to our previous continuous
time random walk approach to the same problem [22]. [page 190, §0] [190.0.1] Here, as in our
previous work we have attempted to find a framework in which correlation effects resulting
purely from the dynamics of the environment can be incorporated. [190.0.2] In the present
paper we have attacked the problem by considering random walks with memory which has
the additional advantage that other types of correlations can be considered. [190.0.3] In
our previous CTRW-approach we have attempted to incorporate correlation effects into the
waiting time distribution by way of crude probabilistic and physical arguments about the
nature of the deblocking mechanism. [190.0.4] This was based on the fact that the effective
medium waiting time distribution below pc is not normalized. [190.0.5] Consequently the
distinction between the case above pc and below persisted, and it was necessary to utilize
the substitution rule of eq. (4.3) to treat the case above pc. [190.0.6] In addition our previous
approach was limited to the case τ � 1. [190.0.7] Its main advantage was to exhibit the
theoretical possibility of a sequential deblocking mechanism resulting in a nonmonotonous
waiting time density and interesting consequences for the conductivity. [190.0.8] On the
other hand our present approach applies for all τ and p. [190.0.9] It allows for other
sources of correlations, and gives relatively good quantitative results. [190.0.10] This will
be demonstrated in the next section.

5. Results

[190.1.1] The results for ω = 0 will be expressed via the so called correlation factor f .
[190.1.2] It is a measure which is often used to characterize the amount by which the self
diffusion coefficient of a tracer particle in a lattice gas differs from its mean field value
given by the vacancy concentration. [190.1.3] All results will be presented and discussed
with the conventions ω = 1, p′′(0) = 1, and assuming a unit lattice constant. [190.1.4] In
these dimensionless units f is defined by the equation D(0) = f(1− p) or, more generally,

f =
D(0)

D(∞)
(5.1)
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because for our hopping models (1− p) = D(∞). [190.1.5] In the limit p→ 1 exact results
for the correlation factor are known for the case τ = 1 (and b = 1) [11, 13, 14]. [page 191,

§0] [191.0.1] For the hexagonal lattice one has f = 1/3, while f = 0.781.. for the fcc lattice.
[191.0.2] These values will be used below to determine c in eq. (4.2).

[191.1.1] We now have to solve eq. (3.10) in conjunction with eqs. (3.12) and (4.4) for the
cases of interest, the hexagonal and face centered cubic lattice. [191.1.2] The lattice Greens
functions for these situations are well known and can be expressed in terms of the complete
elliptic integral of the first kind

K(m) =

∫ π/2

0

(1−m sin2 φ)−1/2dφ. (5.2)

[191.1.3] For the hexagonal lattice we have

G(x) = − 2(3 + x)

π(2 + x)3/2(6 + x)1/2
K

(
16(x+ 3)

(x+ 2)3(x+ 6)

)
. (5.3)

For the fcc lattice the Greens function is given by

G(x) = − 1

π2
(4 + x)−1K(x+)K(x−) (5.4)

where

x2± =
(

4 +
x

4

)−2{ 1

16

[(
4 +

x

4

)1/2
−
(x

4

)1/2]4
+

[(
4 +

x

4

)1/2
±
(

3 +
x

4

)1/2]}
. (5.5)

[191.1.4] We now solve eq. (3.10) iteratively on the computer. [191.1.5] We stop the itera-
tion when the maximal relative error between two consecutive solutions falls below 10−8.
[191.1.6] The resulting A0(u) is then used to calculate D(u) according to eqs. (3.12) and
(4.4). [191.1.7] The results are displayed in Figures 2 through 10.

[191.2.1] First we determine the proportionality constant c in eq. (4.2). [191.2.2] This is
achieved by requiring that the calculated correlation factor reproduces the known exact
results for the limit p = 1, τ = 1, b = 1. [191.2.3] We find chcx ≈ 1.00 for the hexagonal
lattice, and cfcc ≈ 0.16 for the fcc lattice. [191.2.4] These numbers are difficult to determine
numerically, and we estimate the error to be roughly 0.03. [191.2.5] In all subsequent
calculations we then use these values for c.

[page 193, §1] [193.1.1] In Figure 2 we have extracted the correlation factor from D(0) and
plotted it versus blocker concentration p. [193.1.2] All curves are for the uncorrelated case,
i. e. b = 1, on the fcc lattice. [193.1.3] We give results for τ = 0.1, 1, 10, 100, 1000 and
τ = ∞. [193.1.4] The crosses are the results of the Monte Carlo simulation for the case
τ = 1 taken from Ref. [7]. [193.1.5] The circles are MC-results for τ = ∞ and were
taken from Ref. [10]. [193.1.6] Clearly there will be a discrepancy for this case because
our results are approximate and for bond percolation while the simulation is exact and for
site percolation. [193.1.7] An immediate problem is the value of pc for which the effective
medium theory gives pc = 1/6 while the exact value is pc = 0.198.. [8]. [193.1.8] If we
simply use the exact value for pc in our calculation we obtain the dashed line displayed
in Fig. 2 which is found to be in good agreement. [193.1.9] In Fig. 3 we plot f vs. p
for the hexagonal lattice. [193.1.10] Here the simulations have been taken from Ref. 10.
[193.1.11] Keeping in mind that there are no free parameters (remember b = 1) we find very
good agreement for both lattices. [193.1.12] However, additional simulation data especially
for τ in the range 1 < τ <∞, and a more accurate determination of c are required to fully
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Figure 2. Correlation factor f as function of blocker concentration p for the face
centered cubic lattice (b = 1, c = 0.16). The crosses are the simulation results of
Ref. [7] for the case τ = 1. The circles are simulation results from Ref. [10] for the
case τ =∞. The dashed line is obtained by using the exact value pc = 0.198... from
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from Ref. [12] for the case τ = 1.
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evaluate the quality of the theoretical results. [page 194, §0] [194.0.1] We now turn to the
results for our primary objective, the frequency dependent diffusion coefficient.

[194.1.1] We consider first the uncorrelated case (b = 1) on the fcc-lattice. [194.1.2] In
Figure 4 and Figure 5 we plot ReD(ω) over ten decades in frequency on a log-log plot.
[194.1.3] Figure 4 corresponds to a blocker concentration p = 0.9 which is below the per-
colation threshold for vacancies, and shows the results for τ = 1, 103, 106, 109 and ∞.
[194.1.4] Figure 5 has p = 0.8 and τ = 1, 10, 100, 1000,∞. [194.1.5] From Figure 4 we
see immediately that below the percolation threshold D(ω) vanishes quadratically with
frequency for τ = ∞. [194.1.6] This behaviour is well known from the analysis of the EM
theory for the frozen case. [194.1.7] For τ < ∞ we find a crossover to a constant pro-
portional to 1/τ . [194.1.8] This could have been expected because the blocker motion now
allows the Aparticle to get through the network although the vacancy concentration at each
instant is below pc. [194.1.9] The mobility of the A-particles will be completely determined
by the mobility of the blockers. [page 197, §0] [197.0.1] The crossover frequency is seen to
vary as ωτ ∼ τ−1/2. [197.0.2] This will be discussed further in the next section. [197.0.3] On
the other hand above the vacancy threshold Figure 5 shows that the effect of the blocker
rearrangement is only noticeable for τ values smaller than roughly 104. [197.0.4] Indeed
one expects that the effect of blocker motion will become negligible if 1/τ is much smaler
than the d. c. conductivity in the frozen case which is proportional to 1− p− pc.

[197.1.1] In Figures 6 and 7 we now turn to the correlated case, i. e. b 6= 1. [197.1.2] Again
we consider the fcc-lattice and plot the real (Fig. 6) and imaginary (Fig. 7) part of D(ω) for
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Figure 4. Real part of the genaralized diffusion coefficient ReD(ω) for the fcc-
lattice as a function of frequency ω in a logarithmic plot for several values of τ and
p = 0.9, b = 1 (C = 0.16).
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Figure 5. Real part of the genaralized diffusion coefficient ReD(ω) for the fcc-
lattice as a function of frequency ω in a logarithmic plot for several values of τ and
p = 0.8, b = 1 (c = 0.16).

the two concentrations p = 0.8 and p = 0.9 with fixed τ = 100 but variable b. [197.1.3] We
have chosen b = 0.1, 0.5, 1, 2, 10 for the correlation factor. [197.1.4] The case b = 1 is
included as a reference and has been distinguished graphically by a dashed line. [197.1.5] As
before the real part approaches a constant as ω → 0 irrespective of p because τ is finite.
[197.1.6] A new phenomenon however is the appearance of nonmonotonous behaviour for
b = 0.1. [197.1.7] In this case ReD(ω) is found to increase at low frequencies, and to
decrease at high frequencies thereby exhibiting a maximum at a finite frequency. [197.1.8] In
general ReD(ω) is found to decrease as b → 0 at high frequencies, and to increase at low
frequencies. [197.1.9] The reverse is seen for b→∞. [197.1.10] This will also be discussed
in the next section in more detail. [197.1.11] For the imaginary part of D(ω) we find a
change of sign for sufficiently small b < 1. [197.1.12] See for example the case p = 0.8,
b = 0.1. [197.1.13] On the other hand for p = 0.9, b = 0.1 there is no change of sign in the
imaginary part while the real part still shows a maximum.

[197.2.1] The same calculations have been performed for the hexagonal lattice. [197.2.2]

The results are displayed in Figures 8 and 9. [197.2.3] The only difference lies in the
parameter values. [197.2.4] We have chosen different concentrations, p = 0.5, 0.7, b = 0.1
and fixed τ at τ = 10. [197.2.5] The results show qualitatively the same behaviour as for
the fcc-lattice.
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[197.3.1] In Figure 10 we have plotted some results for the correlated case (b 6= 1) in a log-
log plot. [197.3.2] We show ReD(ω) for p = 0.7, τ = 100 and b = 1, 2, 10 on the hexagonal
lattice. [197.3.3] We note that as a consequence of the correlations the crossover into the
constant high frequency limit is smeared out and resembles a power law over more than a
decade in frequency. [197.3.4] This is particularly apparent for the case b = 2.
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Figure 10. Real part of D(ω) for the hexagonal lattice plotted logarithmically
against frequency for p = 0.7, τ = 100 and b = 1, 2, 10. The slope of the straight
line is roughly 0.5.

[page 198, §0] [198.1.1] For reference we have included a straight line into the graph whose
slope is found to be roughly 0.5. [198.1.2] We remark that such a power law behaviour for
the frequency dependent conductivity is often found experimentally in disordered systems.
[198.1.3] As a particular example we mention Na-β-alumina where the ionic transport is
also known to be highly correlated [34].

6. Discussion and Conclusions

[198.2.1] We begin with the discussion of the crossover in σ(ω) as a result of the mobility
of the blockers. [198.2.2] As a general fact we note that the blocker motion introduces
a crossover from a low frequency regime dominated by the blocker rearrangement to a
high frequency regime in which the disorder appears frozen. [198.2.3] For small frequen-
cies Reσ ∼ 1/τ while in the high frequency regime σ behaves as for the frozen case.
[198.2.4] This is independent of the correlations introduced by b.

[page 199, §1] [199.1.1] In the last section we had found from Figure 4 that the crossover
frequency ωτ between the two regimes behaves as ωτ ∼ τ−1/2. [199.1.2] This can be
understood from the model of independently fluctuating bonds. [199.1.3] In this model each
bond switches independently between its two states, closed and open, with a relaxation
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time τ . [199.1.4] Let the system be in a stationary state at t = 0, i. e. when the walker
starts. [199.1.5] The number of bonds that have remained in the same state since t = 0
decreases exponentially with time. [199.1.6] We define the crossover time as the average
time after which the walker first encounters a bond that has switched at least once since
t = 0. [199.1.7] The walker can cross a bond repeatedly as long as the bond has not
switched since the start of the walk. [199.1.8] If the walker makes n steps then the average
length of the time interval during which all of the it crossed bonds remain in their original
state is τ/n. [199.1.9] The crossover occurs when this time equals the number of steps,
i. e. when n · 1 ∼ τ/n, where the charcteristic hopping time of the walker is again assumed
to be 1. [199.1.10] This immediately gives the observed τ−1/2 behaviour.

[199.2.1] Next we discuss the effect of correlations, i. e. the case b 6= 1. [199.2.2] At high
frequencies the conductivity is determined mostly by the conductance (i. e. transition rate)
of the last bond that was passed. [199.2.3] This conductance is increased resp. decreased
per definitionem by a factor b. [199.2.4] Thus the limiting high frequency value of σ(ω) will
be increased for enhanced reversals, b > 1, resp. decreased for reduced reversals, b < 1.

[199.3.1] At low frequencies the walker explores a much larger region, and it will begin to
feel the existence of the percolation threshold. [199.3.2] Assume for the moment that the
blocker conguration is frozen, i. e. τ =∞. [199.3.3] Let us consider rst the case 1− p− pc,
i. e. when there is an infinite network of vacancies. [199.3.4] To estimate whether the
d. c. conductivity σ(0) is enhanced or not, consider the limiting cases b→ 1 and b→∞ for
a lattice of low coordination, e. g. the linear chain. [199.3.5] In the limit b→∞ the particle
moves deterministically to the right or to the left depending upon its initial conditions.
[199.3.6] For b → ∞ the particle will oscillate between two sites. [199.3.7] Therefore we
expect that σ(0) will be decreased for b > 1, and increased for b < 1.

[page 200, §1] [200.1.1] A different situation arises for 1− p > pc (still with τ =∞) because
now σ(0) = 0. [200.1.2] For reduced reversals (b < 1) the particle has a higher probability
of fully exploring all the dead ends of the percolating network than for the enhanced
reversals (b > 1). The exploration of the dead ends will however not contribute to the
d. c. conductivity, and we therefore expect σ(0) to be decreased for b < 1, and increased
for b > 1.

[200.2.1] From these qualitative arguments one expects by continuity that for 1 − p >
pc there will be at least one point of intersection between ReD(ω, b = 1, τ = ∞) and
ReD(ω, b 6= 1, τ = ∞). [200.2.2] For 1 − p < pc there may be no point of intersection
or an even number of them. [200.2.3] This is confirmed by the calculations. [200.2.4] For
1−p < pc and τ =∞ there are two points of intersection. [200.2.5] If b < 1 the conductivity
is decreased in the very low frequency regime, increased at intermediate frequencies, and
again decreased at high frequencies relative to its value for b = 1. [200.2.6] For small enough
b a maximum can arise at a finite frequency. [200.2.7] On the other hand for b > 1 the
conductivity is increased at very low frequencies then decreased, and finally again increased
at high frequencies. [200.2.8] For the case 1− p > pc and τ =∞ we find exactly one point
of intersection. [200.2.9] For b < 1 the conductivity is increased at low frequencies, and
decreased at high frequencies as compared to its value for b = 1. [200.2.10] The reverse is
true for b > 1.
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[200.3.1] The maximum for b → 0 arises from the competing effects of disorder induced
correlations and memory induced correlations. [200.3.2] The memory correlations tend to
enhance the low frequency conductivity over the values at high frequencies just as they do
for the regular lattices [17–20]. [200.3.3] On the other hand the disorder has the opposite
effect. [200.3.4] At high frequencies i. e. short time scales the memory correlations prevail,
while at very low frequencies (i. e. on long time scales) the disorder is dominant.

If now one allows also blocker motion, i. e. for finite τ , an additional crossover arises for
1−p < pc. [200.4.1] At very low frequencies the diffusion is controlled by the slowly moving
vacancies which can occupy every site in the underlying regular lattice, and σ(0) will be
nonzero. [200.4.2] One therefore expects that σ(0) is increased for b < 1, and decreased for
b > 1, as for a regular lattice. [page 201, §0] [201.0.1] Thus in this should be three points of
intersection with the curve for b = 1. [201.0.2] This is indeed borne out by the numerical
solution although it is a small effect as seen in Figure 10 for the case of the hexagonal
lattice.

[201.1.1] In summary, in this paper we have analyzed the correlated hopping of an A-particle
in a background of mobile B-particles. [201.1.2] We have calculated the corresponding
frequency dependent diffusion coefficient using the substitution rule and a generalized ef-
fective medium theory for correlated diffusion. [201.1.3] We have found a rich variety of
new features especially below the vacancy percolation threshold. [201.1.4] The simultane-
ous presence of several crossover frequencies gives rise to a complicated structure of the
frequency dependent response. [201.1.5] In particular we find the possibility of a maximum
in the real part at finite frequency, or apparent power law behaviour over more than a
decade in frequency as a consequence of disorder and correlations. [201.1.6] Our model has
a wide range of applicability. [201.1.7] As an example we refer back to the introduction
and point out that our approach can be used to model the simulation results of Refs. [10]
or [11] for lattice gases with short range attractive or repulsive interactions by employing
the correlation parameter b. [201.1.8] Here we have applied our approach in the d. c. limit to
existing Monte-Carlo simulation data of A-B-lattice gases for the uncorrelated case (b = 1).
[201.1.9] We have found remarkably good agreement.
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