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Abstract. A continuous time random walk model is presented with long-tailed wait-

ing time density that approaches a Gaussian distribution in the continuum limit. This

example shows that continuous time random walks with long time tails and diffusion
equations with a fractional time derivative are in general not asymptotically equi-

valent.
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1. Introduction

[1.1.1] Given the connection (established in [1, 2]) between continuous time random walks
(CTRW) and diffusion equations with fractional time derivative

∂α

∂tα
p(r, t) = Cα ∆p(r, t), 0 < α ≤ 1, (1)

it has been subsequently argued in the literature that all continuous time random walks
with long tailed waiting time densities ψ(t), i.e. with

ψ(t) ∼ t−1−α, t→∞, (2)

are in some sense asymptotically equivalent to a fractional diffusion equation [3, 4, 5,
6, 7, 8]. [1.1.2] Let me first explain the symbols in these two equations. [1.1.3] Of
course the fractional time derivative of order α in (1) is only a symbolic notation (a
[page 2, §0] definition is given in eq. (13) below). [2.0.4] Random walks on a lattice in
continuous time are described by p(r, t), the probability density to find a random walker
at the (discrete) lattice position r ∈ Rd at time t if it started from the origin r = 0 at
time t = 0 [9, 10]. [2.0.5] In eq. (2) the waiting time distribution ψ(t) gives the probability
density for a time interval t between two consecutive steps of the random walker, and the
long time tail exponent α is the same as the order of the fractional time derivative in (1)
(see [1, 2] for details). [2.0.6] As usual ∆ denotes the Laplacian and the constant Cα ≥ 0
denotes the fractional diffusion coefficient.

[2.1.1] Despite early doubts, formulated e.g. in [11, p. 78], many authors [3, 4, 5, 6, 7,
8] consider it now an established fact that proposition A “p(r, t) satisfies a fractional
diffusion equation” and proposition B “p(r, t) is the solution of a CTRW with long time
tail” are in some sense asymptotically equivalent. [2.1.2] Equivalence between propositions
A and B requires that A implies B and further that B implies A. [2.1.3] One implication,
namely that A implies B, was shown to be false in Refs. [12] and [13, p. 116ff] by showing
that fractional diffusion equations of order α and type β 6= 1 (0 ≤ β ≤ 1) do not have a
probabilistic interpretation.

[2.2.1] In this paper an example of a CTRW is given whose waiting time density fulfills
eq. (2) but whose asymptotic continuum limit is not the fractional diffusion equation (1)
(with the same α). [2.2.2] Naturally, the idea underlying the example can be widely
generalized.

2. Definition of Models

[2.3.1] Consider first the integral equation of motion for the CTRW-model [9, 10]. [2.3.2]

The probability density p(r, t) obeys the integral equation

p(r, t) = δr0Φ(t) +

∫ t

0

ψ(t− t′)
∑
r′

λ(r− r′)p(r′, t′) dt′ (3)

where λ(r) denotes the probability for a displacement r in each single step, and ψ(t) is the
waiting time distribution giving the probability density for the time interval t between
two consecutive steps. [2.3.3] The transition probabilities obey

∑
r λ(r) = 1, and the
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function Φ(t) is the survival probability at the initial position which is related to the
waiting time distribution through

Φ(t) = 1−
∫ t

0

ψ(t′) dt′. (4)

[page 3, §0] Fourier-Laplace transformation leads to the solution in Fourier-Laplace space
given as [10]

p(k, u) =
1

u

1− ψ(u)

1− ψ(u)λ(k)
(5)

where p(k, u) is the Fourier-Laplace transform of p(r, t) and similarly for ψ and λ.

[3.1.1] Two lattice models with different waiting time density will be considered. [3.1.2] In
the first model the waiting time density is chosen as the one found in [1, 2]

ψ1(t) =
tα−1

τα
Eα,α

(
− t

α

τα

)
, (6)

where 0 < α ≤ 1, 0 < τ <∞ is the characteristic time, and

Ea,b(x) =

∞∑
k=0

xk

Γ(ak + b)
a > 0, b ∈ C. (7)

is the generalized Mittag-Leffler function [14]. [3.1.3] In the second model the waiting
time density is chosen as

ψ2(t) =
tα−1

2cτ2
Eα,α

(
− tα

cτ2

)
+

1

2τ
exp(−t/τ) (8)

where 0 < α ≤ 1, 0 < τ <∞ and c > 0 is a suitable dimensional constant.

[3.2.1] The waiting time density ψ2(t) differs only little from ψ1(t) as shown graphically in
Figure 1. [3.2.2] Note that both models have a long time tail of the form given in eq. (2),
and the average waiting time

∫∞
0
tψi(t)dt diverges.

[3.3.1] For both models the spatial transition probabilities are chosen as those for nearest-
neighbour transitions (Polya walk) on a d-dimensional hypercubic lattice given as

λ(r) =
1

2d

d∑
j=1

δr,−σej
+ δr,σej

(9)

where ej is the j-th unit basis vector generating the lattice, σ > 0 is the lattice constant
and δr,s = 1 for r = s and δr,s = 0 for r 6= s.

[page 4, §1]

3. Results

[4.1.1] It follows from the general results in Ref. [1] that the first model defined by eqs. (6)
and (9) is equivalent to the fractional master equation

Dα,1
0+ p(r, t) =

∑
r′

w(r− r′)p(r′, t) (10)

with intitial condition

p(r, 0) = δr,0 (11)
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Figure 1. Waiting time densities ψ1(t) for model 1 and ψ2(t) for model
2 with α = 0.8, τ = 1 s and c = 1 s−1.2.

and fractional transition rates

w(r) =
λ(r)− 1

τα
. (12)

Here the fractional time derivative Dα,1
0+ of order α and type 1 in eq. (10) is defined as [15]

Dα,1
0+ p(r, t) =

1

Γ(1− α)

∫ t

0

(t− t′)−α ∂
∂t
p(r, t′)dt′ (13)

thereby giving a more precise meaning to the symbolic notation in eq. (1).

[page 5, §1] [5.1.1] The result is obtained from inserting the Laplace transform of ψ1(t)

ψ1(u) =
1

1 + (τu)α
(14)

and the Fourier transform of λ(r), the so called structure function

λ(k) =
1

d

d∑
j=1

cos(σkj), (15)

into eq. (5). [5.1.2] This gives

p1(k, u) =
1

u

(
(τu)α

1 + (τu)α − λ(k)

)
=

uα−1

uα − w(k)
(16)

where the Fourier transform of eq. (12) was used in the last equality and the subscript
refers to the first model. [5.1.3] Equation (16) equals the result obtained from Fourier-
Laplace transformation of the fractional Cauchy problem defined by equations (10) and
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(11). [5.1.4] Hence a CTRW-model with ψ1(t) and the fractional master equation describe
the same random walk process in the sense that their fundamental solutions are the same.

[5.2.1] The continuum limit σ, τ → 0 was the background and motivation for the discussion
in Ref. [2]. [5.2.2] It follows from eq. (1.9) in Ref. [2] by virtue of the continuity theorem
[16] for characteristic functions that for the first model the continuum limit with

Cα = lim
τ→0
σ→0

σ

2dτα
(17)

leads for all fixed k, u to

p1(k, u) = lim
τ→0
σ→0

σ2/τα→2dCα

p1(k, u) =
uα−1

uα + Cαk2
. (18)

[5.2.3] Here the expansion cos(x) = 1−x2/2 +x4/24− ... has been used. [5.2.4] Therefore
the solution of the first model with waiting time density ψ1(t) converges in the continuum
limit to the solution of the fractional diffusion equation

Dα,1
0+ p1(r, t) = Cα∆p1(r, t) (19)

with initial condition analogous to eq. (11).

[5.3.1] Consider now the second model with waiting time density ψ2(t) given by eq. (8).
[5.3.2] In this case

ψ2(u) =
1

2 + 2cτ2uα
+

1

2 + 2τu
(20)

and

p2(k, u) =
1

u

(
1− (λ(k)− 1)

ψ2(u)

1− ψ2(u)

)−1
=

1

u

(
1− (λ(k)− 1)

2 + τu+ cτ2uα

τu+ cτ2uα + 2cτ3uα+1

)−1
(21)

=
1

u

{
1 +

1

ταuα

(
σ2k2

2d
− σ4k4

24d
+ ...

)(
2 + τu+ cτ2uα

(τu)1−α + cτ2−α + 2cτ3−αu

)}−1
.

From this follows

p2(k, u) = lim
τ→0
σ→0

σ2/τα→2dCα

p2(k, u) = 0 (22)

showing that the continuum limit as in eq. (17) with finite Cα does not give rise to the
propagator of fractional diffusion. [5.3.3] On the other hand the conventional continuum
limit with C1 = limτ→0

σ→0
σ2/(2dτ) exists and yields

p2(k, u) = lim
τ→0
σ→0

σ2/τ→2dC1

p2(k, u) =
1

u+ C1k2
. (23)

the Gaussian propagator of ordinary diffusion with diffusion constant C1.
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4. Discussion

[5.4.1] The idea underlying the construction of the counterexample can be generalized.
[5.4.2] The freedom in the choice of the input functions ψ(t) and λ(r) allows to construct
a wide variety of continuum limits. [5.4.3] This shows that the claims in [3, 4, 5, 6, 7, 8]
are too general.

[5.5.1] In summary the counterexample shows that a power law tail in the waiting time
density is not sufficient to guarantee the emergence of the propagator of fractional diffusion
in the continuum limit.
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