ON FRACTIONAL DIFFUSION
AND CONTINUOUS TIME RANDOM WALKS*

R. HILFER

ABSTRACT. A continuous time random walk model is presented with long-tailed wait-
ing time density that approaches a Gaussian distribution in the continuum limit. This
example shows that continuous time random walks with long time tails and diffusion
equations with a fractional time derivative are in general not asymptotically equi-

valent.
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1. Introduction

[1.1.1] Given the connection (established in [1, 2]) between continuous time random walks
(CTRW) and diffusion equations with fractional time derivative

8(1

@p(r,t) = C, Ap(r,t), 0<a<l, (1)
it has been subsequently argued in the literature that all continuous time random walks
with long tailed waiting time densities ¥(t), i.e. with

Yty ~ 7Tt oo, (2)

are in some sense asymptotically equivalent to a fractional diffusion equation [3, 4, 5,
6, 7, 8]. [1.1.2] Let me first explain the symbols in these two equations. [1.1.8] Of
course the fractional time derivative of order « in (1) is only a symbolic notation (a
fpage 2, s0j definition is given in eq.(13) below). [2.0.4] Random walks on a lattice in
continuous time are described by p(r,t), the probability density to find a random walker
at the (discrete) lattice position r € R? at time ¢ if it started from the origin r = 0 at
time ¢t =0 [9, 10]. [2.0.5] In eq. (2) the waiting time distribution ¥ (t) gives the probability
density for a time interval ¢ between two consecutive steps of the random walker, and the
long time tail exponent « is the same as the order of the fractional time derivative in (1)
(see [1, 2] for details). [2.0.6] As usual A denotes the Laplacian and the constant C,, > 0
denotes the fractional diffusion coefficient.

[2.1.1] Despite early doubts, formulated e.g.in [11, p. 78|, many authors [3, 4, 5, 6, 7,
8] consider it now an established fact that proposition A “p(r,t) satisfies a fractional
diffusion equation” and proposition B “p(r,t) is the solution of a CTRW with long time
tail” are in some sense asymptotically equivalent. [2.1.2] Equivalence between propositions
A and B requires that A implies B and further that B implies A. [2.1.3] One implication,
namely that A implies B, was shown to be false in Refs. [12] and [13, p. 116ff] by showing
that fractional diffusion equations of order o and type 8 # 1 (0 < 8 < 1) do not have a
probabilistic interpretation.

[2.2.1] In this paper an example of a CTRW is given whose waiting time density fulfills
eq. (2) but whose asymptotic continuum limit is not the fractional diffusion equation (1)
(with the same «). [2.2.2] Naturally, the idea underlying the example can be widely
generalized.

2. Definition of Models

[2.3.1] Cousider first the integral equation of motion for the CTRW-model [9, 10]. [2.3.2]
The probability density p(r,t) obeys the integral equation

pe.8) = @) + [ 00 =) A = el 3)

where A(r) denotes the probability for a displacement r in each single step, and 1 (t) is the
waiting time distribution giving the probability density for the time interval ¢ between
two consecutive steps. [2.3.3/ The transition probabilities obey > A(r) = 1, and the
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function ®(t) is the survival probability at the initial position which is related to the
waiting time distribution through

<I>(t):1—/0 w(t) dt'. ()

[page 3, 0] Fourier-Laplace transformation leads to the solution in Fourier-Laplace space
given as [10]

11 —9(u)
Pl = T A

where p(k, u) is the Fourier-Laplace transform of p(r,t) and similarly for ¢ and A.

(5)

[3.1.1] Two lattice models with different waiting time density will be considered. [3.1.2] In
the first model the waiting time density is chosen as the one found in [1, 2]

i) = B (-5 ©)

To

where 0 < a < 1,0 < 7 < o0 is the characteristic time, and

o0 k
T
E = _— .
0.b(T) ,;:0 (k1 0) a>0,beC (7)

is the generalized Mittag-Leffler function [14]. /3.1.3/ In the second model the waiting
time density is chosen as
tafl

t)= — o,
¢2() 2¢72 )

where 0 < a <1,0 <7 < o0 and ¢ > 0 is a suitable dimensional constant.

(i) + % exp(—t/7) (8)

CT

[8.2.1] The waiting time density 1 (t) differs only little from 1 (¢) as shown graphically in
Figure 1. [3.2.2] Note that both models have a long time tail of the form given in eq. (2),
and the average waiting time [ t1;(t)dt diverges.

[3.5.1] For both models the spatial transition probabilities are chosen as those for nearest-
neighbour transitions (Polya walk) on a d-dimensional hypercubic lattice given as

d
1
Ar) = o D Or ey + Or.oe; (9)
j=1

where e; is the j-th unit basis vector generating the lattice, o > 0 is the lattice constant
and dp s =1forr=sand ;s =0 for r #s.

[page 4, §1]
3. Results

[4.1.1] Tt follows from the general results in Ref. [1] that the first model defined by eqgs. (6)
and (9) is equivalent to the fractional master equation

Doy p(r,t) = Y w(r —x')p(r', 1) (10)

with intitial condition
p(r,0) = dr o (11)
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FIGURE 1. Waiting time densities v (t) for model 1 and 2 (t) for model
2witha=08r7=1sandc=1s"12

and fractional transition rates
Ar)—1
w(r) = (L

T
Here the fractional time derivative DS"+1 of order o and type 1 in eq. (10) is defined as [15]

[e% 1 ‘ N\—o a / /
D§a(.0) = s [ (4= ¢) Gl (13)

(12)

thereby giving a more precise meaning to the symbolic notation in eq. (1).

fpage 5, 1] [5.1.1] The result is obtained from inserting the Laplace transform of v (t)
1

— 14
¢1 (u) 1+ (Tu)o‘ ( )
and the Fourier transform of A(r), the so called structure function
1
Ak) = - ; cos(akj), (15)

into eq. (5). [5.1.2] This gives
1 (Tu)® uet
pr(ku) = u (1 + (Tu)> — )\(k)> ue —w(k) (16)

where the Fourier transform of eq. (12) was used in the last equality and the subscript
refers to the first model. [5.1.9/ Equation (16) equals the result obtained from Fourier-
Laplace transformation of the fractional Cauchy problem defined by equations (10) and
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(11). /5.1.4] Hence a CTRW-model with v, (¢) and the fractional master equation describe
the same random walk process in the sense that their fundamental solutions are the same.

[5.2.1] The continuum limit o, 7 — 0 was the background and motivation for the discussion
in Ref. [2]. [5.2.2] It follows from eq. (1.9) in Ref. [2] by virtue of the continuity theorem
[16] for characteristic functions that for the first model the continuum limit with

Ca = PL% 2dre (17)
o—0
leads for all fixed k, u to
o ) uocfl
pi(k,u) = ;li% pi(k,u) = m (18)
o—0
o2 /T%—=2dC,,

/5.2.3] Here the expansion cos(z) = 1 —22/2+2%/24 — ... has been used. [5.2.4] Therefore
the solution of the first model with waiting time density v (¢) converges in the continuum
limit to the solution of the fractional diffusion equation

Dy pi(r,t) = Co AP (r, t) (19)

with initial condition analogous to eq. (11).

[5.8.1] Consider now the second model with waiting time density 12 (t) given by eq. (8).
[5.3.2] In this case

1 1

= 20
() = e T 2 (20)
and
1 Ya(u) \
ku) =~ (1 (A\k) —1)—2W
palicn) = 3 (1 09 = 22
1 2+ Tu + cr?u® -t
=—(1—-(\k)—-1 21
U ( (A(k) )Tu + er?ue + 2073u”‘+1) (21)
1 1+ 1 o2k? B otk* N 2+ Tu + cr2u® -t
w Taye \ 2d 24d 7 (Tu)l=® + cT2- 4 213~y '
From this follows
pa(k,u) = lim pa(k,u) =0 (22)
730
02 /7% =2dC,

showing that the continuum limit as in eq. (17) with finite C\, does not give rise to the
propagator of fractional diffusion. [5.3.3] On the other hand the conventional continuum
limit with C; = limTﬁg 02 /(2dr) exists and yields

o—

— . 1
pa(k,u) = ll_% pa(k,u) = ut Ok (23)
a—0
o?/7—2dC;

the Gaussian propagator of ordinary diffusion with diffusion constant C'.
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4. Discussion

[5.4.1] The idea underlying the construction of the counterexample can be generalized.
[5.4.2] The freedom in the choice of the input functions ¢ (¢) and A(r) allows to construct
a wide variety of continuum limits. /5.4.5] This shows that the claims in [3, 4, 5, 6, 7, 8]
are too general.

[5.5.1] In summary the counterexample shows that a power law tail in the waiting time
density is not sufficient to guarantee the emergence of the propagator of fractional diffusion
in the continuum limit.
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