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I. INTRODUCTION

A. The Problem

Almost all studies of transport and relaxation in porous media are
motivated by one central question. How are the effective macroscopic
transport parameters influenced by the microscopic geometric structure of
the medium?

My presentation will divide this central question into three subprob-
lems. The first subproblem is to give a quantitative geometric characteri-
zation of the complex porous microstructure. It will be discussed in
Sections II and 1. The second subproblem, treated in Sections IV and 'V,
is to calculate effective macroscopic transport properties from the
geometric characterization and the equations of motion for the phenom-
enon of interest. The third subproblem, known as the problem of
“upscaling,” Tuns as a common thread through all sections, and consists
in defining and controlling the macroscopic limit. The macroscopic limit is
a limit in which the ratio of a typical macroscopic length scale (e.g., the
sample size) to a typical microscopic length scale (e.g., grain or pore size)
diverges.

Distinguishing between the first and the second problem is con-
ceptually convenient and important. Geometric properties of porous
media are determined exclusively by the complex system of internal
boundaries that defines the microstructure. Geometric properties can be
calculated from a complete specification of the microstructure alone.
Physical transport and relaxation properties on the other hand also
require exact or approximate equations of motion describing the physical
phenomenon of interest. Often, this involves the relaxation of small
perturbations or the steady-state transport of physical quantities such as
mass, energy, charge, or momentum. The distinction between geometric
and physical properties of porous media has become blurred in the
literature [1, 2], and physical transport properties such as fluid flow
permeability or formation factors are sometimes referred to as geometric
characteristics. This can be understood because practically employed
experimental methods for observing the pore space geometry often
involve observations of relaxation and transport phenomena from which
the geometry is inferred by inversion techniques.

Geometric properties of porous media are observed in practice either
directly using light microscopy, electron microscopy, scanning tunneling
microscopes (STM), or indirectly from interpreting experimental mea-
surements of transport and relaxation processes such as fluid flow,
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Figore 1. Overview of measurement technigues for observing porous microstructures
and their range of sensitivity. The two lines of arrows at the bottom represent the DIN
definition of grain sizes and the IUPAC definition of pore sizes.

electrical conduction, mercury intrusion, or small angle X-ray/small angle
neutron scattering (SAXS/SANS). An overview over commonly used
methods is given in Fig. 1. The different methods are represented on a
length scale grid to indicate their ranges of applicability. The arrows in
the lower part of Fig. 1 represent the IUPAC recommendation for
classifying porous media into microporous, mesoporous, Or Macroporous
media, and the DIN classification of porous media into clay, silt, and sand
according to the grain size rather than pore size. Granular media with
grains larger than 1 mm are called gravels or boulders.

Loosely speaking, a porous medium may be characterized as a medium
containing a complex system of internal surfaces and phase boundaries.
These internal interfaces define pores with a finite pore volume [3] and
frequently a large surface area. Such a rough characterization applies also
to other heterogeneous media and composites. Therefore some authors
restrict the definition of porous media by requiring permeability [2],
connectedness [4, 5], or randomness {5] as defining properties for porous
media. Others [6-8], however, generalize the definition by including
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liquids into the purview. The precise definition of porous media adopted
for the present review will be given in Section IL.B.

B. Scope of Review

The study of transport and relaxation in porous media is scattered
throughout many fields of science and technology ranging from mathe-
matics {9, 10], through solid state physics [11-13] and materials science
[14-16], to applications in geology [17-19], hydrology [20,21], geo-
physics [22, 23], environmental technology [24-26], petroleum engin-
eering [27-29], or separation technology [30]. In recent years a large
number of books [2, 5, 31-38, 38a] and comprehensive reviews [8, 17, 22,
39-45] have discussed transport and relaxation in porous media. There-
fore, this chapter will try to emphasize those aspects of the central
questions that are complementary to the existing discussions.

As pointed out by Landauer {46] more emphasis is often placed on
calculational schemes for effective transport properties than on finding
general geometric characterizations of the medium that can be used as
input for such calculations. Consequently, this chapter puts more em-
phasis on the first subproblem of geometric characterization than on the
second subproblem of solving equations of motion for media with
correlated disorder. Geometrical characterizations of porous media are
treated in Section III, and they fall into two categories discussed in
Sections IIILA and III.B. The first category contains general theories
which attempt to identify general and well-defined geometric quantities
that can be used to distinguish between different classes of porous media.
The second category consists of specific models which attempt to idealize
one particular class of porous media by abstracting its most essential
geometrical features and incorporating them into a detailed model. The
main difference between the two categories is the degree to which they
specify the geometric microstructure. In general theories the micro-
structure remains largely unspecified while it is specified completely in
modeling approaches.

Dielectric relaxation and fluid transport are discussed in Section V as
representative examples for more general physical processes in porous
media. Transport and relaxation processes in porous media invariably
involve the disordered Laplacian operator V7 - (C(r)V), where V is the
Nabla operator, the superscript T denotes transposition, and the second
rank tensor field C(r) gives the fluctuating local transport coefficients.
Dielectric relaxation and single-phase fluid transport in porous media are
problems of practical and scientific interest, which show unexpected
experimental behavior, such as permeability—porosity correlations,
Archie’s law, or dielectric enhancement. The discussion in Section V will
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specifically address these issues. Methodically, the discussion in Section V
will emphasize homogenization and local porosity theory because they
allow one to control the macroscopic limit.

The upscaling problem as the controlled transition from microscopic to
macroscopic length scales will then become the focus of attention in
Section VI, which discusses two-phase fluid transport. The upscaling
problem for two-phase flow is largely unresoived. Recent work {47, 48]
has revisited the fundamental dimensional analysis {49] dating back more
than 50 years, and uncovered a tacit assumption in the analysis that could
help to resolve the upscaling difficultics. Thus the upscaling problem is
treated in Section VI merely by comparing the microscopic and macro-
scopic dimensional analysis, and not by calculating effective relative
permeabilities. Despite its simplicity the revisited dimensional analysis
allows quantitative estimates of fluid transport rates and gravitational
relaxation times based on the balance of viscous, capillary, and gravita-
tional forces in the macroscopic limit,

II. DEFINITION AND EXAMPLES OF POROUS MEDIA

A. Examples of Porous Media

Most materials are porous when viewed at an appropriate length scale.
Examples range from porous silicon, which is porous on the subnano-
meter scale, to limestone caves and underground river systems on the
kilometer scale. An anthology of examples illustrates the variability of
length scales and microstructures found in porous media.

Highly porous electrochemically etched silicon has recently found
much interest because of its visible luminescence, which is attributed to
its porous microstructure [12, 13, 50-54]. Figure 2 shows a transmission
electron micrograph of the microstructure of porous silicon [13]. Other
examples for microporous solids are zeolites.

Figure 3 shows a scanning electron micrograph (SEM} of a critical
point dried gel consisting of ultrahigh molecular weight polyethylene [55].
The gel was obtained from 2% solutions in decalin under agitated
conditions prior to gelation, and the fibrillar structure of the polyethylene
crystals reflects flow prior to gelation. Thermoreversible gels consist of a
macroscopic mechanically coherent network of macromolecules that is
formed and stabilized through interconnected crystals. These materials
are of considerable importance in the processing of high-performance
polymers with very high tensile strength [S55].

Figure 4 displays the microstructure of silicon nitride ceramics consist-
ing of elongated Si,N, grains embedded in a matrix of finer grains and a
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Figure 2. Transmission electron image of thin porous silicon layer showing irreguiar
columnar microstructure of solid silicon. Some columns, such as the one indicated by the
arrow, have cross-sectional diameter significantly less than 5 nm. [Reprinted with permission
from Nature, A. Cullis and L. Canham, 353, 335 (1991). Copyright © Macmillan Magazine
Limited.]

grain boundary phase. Silicon nitride ceramics with high strength have a
fine grained elongated microstructure, while materials with a high
fracture toughness are more coarse grained [15].

Wood is a strongly anisotropic natural porous medium exhibiting
cylindrical pores. Figure 5 shows an SEM of a partially cut and fractured
surface from Malaysian Nemesu wood, which gives an impression of the
irregularities within the material. The image shows tracheid cells of about
25 um in diameter and vessel elements that are roughly an order of
magnitude larger.

The large surface/volume ratio, which is characteristic for porous
media (see Section III.A), is essential for the function of the lung
consisting of some 300 million small air chambers. Figure 6 shows the
foamlike structure formed by the respiratory air chambers in the lung. As
emphasized by Weibel, biological porous media should not be viewed as
random [56}. The general difficuity of modeling porous media as random
or disordered media is further discussed in Section I1.B.2.

Building and construction materials such as cements and concrete are
porous media. Figure 7 shows an SEM of cement and lime mortar. Each
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Figure 3. Scanning electron micrograph of critical point dried gel of ultrahigh
molecular weight polyethylene. {Reproduced with permission from [55].)

dash in the dashed line visible in the image corresponds to 10 pm. The
micrograph shows an extended network of fissures whose properties
govern the moisture transfer and sorption properties of such materials
[57].

An understanding of transport and relaxation in rocks, soils, and other
geologically important heterogencous media is of crucial importance in
hydrology, exploration geclogy, petroleum engineering, and environmen-
tal research. Figure 8 shows a thin section of a clastic sandstone formed
by fluvial deposits. Sandstones and other sedimentary rocks have at-
tracted much research interest, and are among the best investigated
examples of porous media.

The variety of two component porous media is enormous. Most of the
following discussion will focus on irregular, random media. Regular and
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Figure 4. Scanning electron micrograph of a sintered silicon nitride (Si,N,} ceramic
[15].

ordered microstructures (such as in zeolites) may be considered as a
special case of irregular porous media.

B. Definition of Porous Media
1. Deterministic Geomelries

An n-component porous medium in d dimensions is defined as a compact
and singly connected subset S of R¢, which contains n closed subsets
P, C'S such that

S=P,U---UP (2.1)

0=V,(aP,) (2.2)

for all 1 =i =n. The set S is called the sample space and may represent,
for example, a piece of porous rock. The subsets PP, (i=1,...,n)
represent n different phases or components, such as different minerals or
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Figure 5. Scanning electron micrograph of Malaysian Nemesu wood (Shorea Pauci-
flora).

fluid phases contained in a rock. The symbol V,(G) denotes the d-
dimensional volume of a set GC R It is defined as

Vd(G)=ij(r)ddr (2.3)

where r is a d-dimensional vector, and d°r is the d-dimensional Lebesgue
measure. Thus V, denotes an area, and V| is a length. When there is no
danger of confusion V,(G) = V(G) will be used below. The characteristic
(or indicator) function of a set & is defined as

_J1 for r&G
XG(r)_{O for T€G (2.4)

and it indicates when a point is inside or outside of G. The sets aP; are
the phase boundaries separating the different components. The boundary
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Figure 6. Scanning electron micrograph of air chambers in a lung. {Reproduced with
permission from E. Weibel, “The non-statistical nature of biological structure and its
implications on sampling for stereology,” in Geometrical Probability and Biological
Structures: Buffon’s 200th Arniversary, E. Miles and J. Serra, Eds., Springer, Berlin, 1978,
p. 171. Copyright © Springer-Verlag, 1978).

operator 4 is defined on a general set G as the difference’ 3G = G\G. The
set G, called the interior of G, is defined as the union of all open sets
contained in G. The set  is called the closure of G and is defined as the
intersection of all closed sets containing G. The condition (2.2) excludes
fractal boundaries or cases in which a boundary set is dense. By replacing
the Lebesgue measure in Eq. (2.3} with Hausdorff measures some of
these restrictions may be relaxed [58-61].

''The settheoretic difference operation explains the use of the differential symbol a,
which may also be motivated by the fact that the derivative operator Vy,(r) applied to the
characteristic function y,(r) of a closed set PP yields the Dirac distribution concentrated on
the set aP.
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Figure 7. Scanning electron micrograph of a polished surface of mortar {magnification
200x). Reproduced with permisstion from {57].

Frequently, the different phases or components may be classified into
solid and fluid phases. An example is a porous rock. In this case, it is
convenient to consider the two-component medium in which all the solid
phases are collectively denoted as matrix space M, and the fluid phases
are denoted collectively as pore space P. The union of the pore and
matrix space $=P UM gives the full porous sample space S and the
intersection of P and M defines the boundary set PN M =3P = M. It
will usually be assumed that the boundary 3P of the pore or matrix space
is a surface in R®. This implies that V,(3P)=0 in agreement with Eq.
(2.2).

As an example consider a clean quartz sandstone filled with water. The
sets P and M can be defined using the density contrast between the
density of water p, =1gcm °, and that of quartz p,, =2.65 gem ™ [62].
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Figure 8. Thin-section micrograph of clastic sandstone from fluvial deposits in the
Statfjord formation 3130m below the bottom of the North Sea. The displayed section
measures roughly 2 cm across.

Let p(r, £) denote the total density in a small closed ball
B(r,e)={qER’:|q—r|=¢} (2.5)

of radius & around r. If lim_,, p(r, £) exists then the matrix and pore
space are defined as M= Q and P =W. Here

Q= {r€S: [lim p(r, £) — pol < Apo} (2.6)

W={reS:[lim o(r, &) ~ py| < Apu} (2.7)
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are the regions occupied by quartz and water, and Apg, Apy are the
uncertainties in the values of their densities py and py,. In practice, it may
happen that PUM# § and even the case PN M =40 is conceivable. An
example would be a muscovite overgrowth with a density of 2.82 gem™®
surrounding the quartz grains of the sandstone.

A generalization of the definition above is necessary if the pore space
is filled with two immiscible fluids (see Section VI). In this case the
fluid—fluid interface is mobile, and thus all the sets above may in general
become time dependent. The same applies when the matrix M is not rigid
and represents a deformable medium such as a gel.

Finally, it is of interest to estimate the amount of information
contained in a complete specification of a porous geometry according to
the definitions above. This will depend on the spatial resolution ¢ and on
the size L of the system. Assuming that the resolution is limited by
a=~10"""m and that L =~10"%m, the configuration of an n-component
medium in d dimensions is completely specified by roughly (L/a)" =~10%
numbers. For d =3 these are 0O(10°°) numbers.

2. Stochastic Geometries

a. Discrete Space. The irregular geometry of porous media frequently
appears to be random or to have random features. This observation
suggests the use of probabilistic methods. The idealization underlying the
use of statistical methods is that the irregular geometry is a realization
drawn at random from an ensemble of possible geometries. It must be
emphasized that an idealization is involved in discussing an emsemble
rather than individual geometries. It assumes that there exists some form
~of recognizable statistical regularity in the irregular fluctuations and
heterogeneities of the microstructure. This idealization is modeled after
statistical mechanics where the microstructure corresponds to a full
specification of the positions and momenta of all particles in a fluid while
the recognizable regularities are contained in its macroscopic equation of
state or thermodynamic potentials. The statistical idealization assumes
that the recognizable regularities of porous media can be described by a
suitable probability distribution on the space of all possible geometries.
Such a description may not always be the most obvious or most
advantageous [56], and in fact the merit of the stochastic description does
not lie in its improved practicability. The merit of the stochastic descrip-
tion lies in the fact that it provides the necessary framework to define
typical or average properties of porous media. The typical or average
properties, it is hoped, will provide a more practical geometric characteri-
zation of porous media.

Before embarking on the definition of stochastic porous media I wish
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to emphasize a recent development in the foundations of statistical
mechanics [63-69], which concerns the concept of stationarity or homo-
geneity. Stationarity is often invoked in the statistical characterization of
porous media, although many media are known to be heterogenous on all
scales. Heterogeneity on all scales means that the geometrical or physical
properties of the medium never approach a large-scale limit but continue
to fluctuate as the length scale is increased from the microscopic
resolution to some macroscopic length scaie. Homogeneity or stationarity
assumes the absence of macroscopic fluctuations, and postulates the
existence of some intermediate length scale beyond which fluctuations
decrease {5]. Recent developments in statistical mechanics [63-69]
indicate that the traditional concept of stationarity is too narrow, and that
there exists a generalization that describes stationary but heterogeneous
macroscopic behavior. Although these new concepts are still under
development they have already been applied in the context of local
porosity theory discussed in Section ITILAS.
Consider a porous sample (e.g., cubically shaped) of extension or side
length L, and let a be the microscopic resolution. (For concreteness let
=10" iOrn as before.) Then there are N=(L/a)* volume elements
inside the sample space that are conveniently addressed by their position
vectors

ro=w g, = (ai, .. aly) (2.8)
with integers 1=i,,...,i,=L/a. Here r; is a shorthand notation for
r; .., A random conﬁguratxon or random geometry G of an n-com-
porlent medium is then given as an N-tuple G=(X,,...,Xy)=
(X(r)), ..., X(r,)), where the random variables X, €1, = {pp , . . . ,ppn}
defined as

X, = X(r)) = 2 pp Xz (r)) (2.9)

-

indicate the presence of phase P, for the volume element r; as identified
from its density value pp. The set I, ={pp, . ..,pp t is 2 set of
indicators, here the densities, which are used to label the phases. Of
course the density could be replaced by other quantities characterizing or
labeling the components. The discretization is always chosen such that
r,ZoP forall 1=i=Nand 1=j=n.

An n-component stochastic porous medium is defined as a discrete
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probability density on the set of geometries through

Bltss -5 %y) = Prob{G = (x,, .. ., xy))

=Prob{(X, =x) A~ A (Xy=xy)} (2.10)
where x, €1, ={pp, ... Pp, }. Expectation values of functions f(G)=
flxg, .. xN) of the random geometry are defined as

(f(G)> = (f(xls L st)> = 2 E f(xl, .. ,xN)p,(xl, [N ,xN)

x el el
(2.11)

where the sum is over all configurations of the geometry. Note the
analogy between Eq. (2.11) and expectation values in statistical mech-
anics. The analogy becomes an equivalence if u is a finite dimensional
normalized Boltzmann-Gibbs measure.

A stochastic porous medium is called stationary and homogeneous
(in the traditional sense) if its distribution wu(x,,...,xy)=
wlx(,), ..., x(r,)) is translation invariant, that is,

M(X(I'l), Tt ,JC(I'N)) = j.L(JC(l'l + q)! st JC(I'N + q)) (212)

for all N € N, g € R?. This traditional definition of stationarity is a special
case of the more general concept of fractional stationarity [63—69], which
is currently being developed to describe macroscopic heterogeneity.

A stochastic porous medium is called isotropic if its distribution is
invariant under all rigid euclidean motions, that is,

) - x(0) = pE(Rr), . ., X(Rr,)) (2.13)

for all N €N where R denotes a combination of rotation and translation.

The set of possible geometries contains n" elements. F(2)4r a two-
component porous cube of side length L =1 cm there are 2'° possible
configurations at the chosen resolution a = 107" m. Thus the complete
specification of a stochastic porous medium through wp(x,,...,xy) is
even less practical than specifying ali the volume clements of a particular
sample. This does not diminish the theoretical importance of the micro-
scopic geometry distribution p{x,,...,x,). In fact, it is even useful to
generalize it to continuous space where the required amount of data to
specify the distribution becomes infinite.

b. Continuous Space. Instead of discretizing the space it is possible to




TRANSPORT AND RELAXATION PHENOMENA IN POROUS MEDIA 315

work directly with the notion of random sets in continuous space. The
mathematical literature about random sets [10, 70, 71] is based on
pioneering work by Choquet [72].

To define random sets, recall first the concepts of a probability space
and a random variable [73-75]. An event E is a subset of a set O
representing all possible outcomes of some experiment. The probability
Pr(E) of an event is a set function obeying the fundamental rules of
probability Pr(Q®) = 1, Pr(E) =0 and Pr(U;_, £} =%, Pr(E) if E; NE; =
@ for i #j. Formally, the probability Pr is a function on a class ©© of
subsets of a set 0, called the sample space. If the collection of sets D for
which the probability is defined is closed under countable unions,
complements, and intersections, then the triple (O, D, Pr) is called a
probability space. The family of sets © is called a o algebra. The
conditional probability of an event F given the event G is defined as

Pr{EN G}

Pr(EG) = —prrgy -

Pr{G} #0 (2.14)

A random variable is a real valued function on a probability space.

Random sets are generalizations of random variables. The mathemati-
cal theory of random sets is based on the “hit-or-miss” idea that a
complete characterization of a set can be obtained by intersecting it
sufficiently often with an arbitrary compact test set and recording whether
the intersection is empty or not [10, 70]. Suppose that F denotes the
family of all closed sets in R? including the empty set §. Let % denote the
set of all compact sets. i is the smallest o algebra of subsets of & that
contains all the hitting sets F ,={FEF FNiK+#0}, where K is a
compact test set. An event in this context is the statement whether or not
a random set hits a particular countable family of compact subsets.

A random set X (more precisely a random closed set} is defined as a
measurable map from a probability space (O, ©, w) to (%, §) [10]. This
allows us to assign probabilities to countable unions and intersections of
the sets %, which are the elements of ¥. For example,

Pr(F,) = p(X ' (F)) (2.15)

is the probability that the intersection X N K is not empty. This probabili-
ty plays an important role in the geometric characterizations of porous
media based on capacity functionals [10, 72] discussed below. Note that
there exists no simple mathematical analogue of the expectation value
defined for the discrete case in Eq. (2.11). Its definition, which will not
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be needed here, requires the iniroduction of functional integrals on an
infinitely dimensional space, or the study of random measures associated
with the random set X [10].

While the expectation value is not readily carried over to the continu-
ous case, the concepts of stationarity and isotropy are straightforwardly
generalized. A random set X is called stationary if

PriXNK#@} =Pr{(X+r)nK=8} (2.16)

for all vectors r € R? and all compact sets iK. The notation G + r denotes
the translated set defined as

G+r={qt+r:qeG} (2.17)
for r&R? and G CR?. Using the analogous notation
RG={Rq:qEG} (2.18)

for R a rigid euclidean motion allows to define a random set to be
isotropic if

Pr{X N K@} = Pr{(RX) N K + @} (2.19)

for all rigid motions R and compact sets [{. For later reference the
notation

cG={cq:qEh} (2.20)

is introduced to denote the multiplication of sets by real numbers. The
traditional definition of stationarity presented in Eq. (2.16) is restricted
to macroscopically homogeneous porous media. It is a special case of the
more general concept of fractional stationarity that describes macroscopic
heterogeneity and is currently under development [63-69].

The mathematical definition of random sets in continuous space is even
less manageable from a practical perspective than its definition for a
discretized space. A complete specification of a random set would reqmre
the specification “all” compact or “all’” closed subsets of R“, which is in
practice impossible. Nevertheless, the definition is important to clarify the
concept of a random set.

III. GEOMETRIC CHARACTERIZATION

A complete specification of the microstructure of a realistic porous
medium is impractical, This section discusses possibilities for characteriz-
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ing porous media without specifying a porous geometry in all its detail.
As emphasized in the introduction, this is the main theoretical task.
There are two general approaches: One approach constructs simplified
seometric models for each specific porous medium of interest. The other
approach attempts to find general characterizations for large classes of
porous media that arc less specific but more widely applicable. This latter
approach will be discussed first.

A. General Geometric Characterization Theories

A general geometric characterization of porous media should satisty the
following requirements:

® It should be well defined in terms of geometric quantities.

® It should involve only parameters that are directly observable or
measurable in an experiment independent of the phenomenon of
interest.

»_It should not require the specification of too many parameters. The
required independent experiments should be simple and economical
to carry out. What is economical depends on the available data
processing technology. With current data processing technology a
characterization requiring more than 10'* numbers must be consid-
ered uneconomical.

® The characterization should be usable in exact or approximate
solutions of the equations of motion governing the phenomenon of
interest.

The foliowing sections discuss methods based on porosities &, correlation
functions S, (r), C,(r), local porosity distributions p(¢), pore size dis-
tributions I1(r), and capacities T(I). Table I collects the advantages and
disadvantages of these methods according to the specified criteria.

1. Porosity and Other Numbers

a. Porosity. The porosity of a porous medium is its most important
geometrical property. Most physical propertics are influenced by the
porosity.

The porosity &{S) of a two-component porous medium $=FUM
consisting of a pore space P (component one) and a matrix space M
{component two) is defined as the ratio

o(6) =25 3.1)
V.(S) :
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TABLE I
Advantages and Disadvantages of Different Geometric Characterization Methods for
Porous Media®

Characterization Well Defined Predictive Economical Easily Usable
&, ... Yes Yes Yes Yes
S, ... Yes Yes Yes Yes
S,...,(n=3) Yes Yes No Yes
e No No Yes Yes
pi{g) Yes Yes Yes Yes
T(IK) Yes No No No

* A geometrical characterization is called economical if it requires the specification of
less than 10" numbers. The parameter ¢,. .., stands for porosity and other numbers
defined in Section ITI.A.1. The correlation functions S, (r) and C,(r) are discussed in Section
II1.A2. The pore size distribution of mercury porosimetry II{r) is defined in Section
II1.A.3. The local porosity distributions u(¢} are discussed in Section III.A.5. The
capacities T(IK) are defined in Section III.A.6.

which gives the volume fraction of pore space. Here V,(P) denotes the
volume of the pore space defined in Eq. (2.3) and V4(S) is the total
sample volume. In the following, the shorthand notation V{G) = V;(G)
will often be employed.

The definition (3.1) is readily extend to stochastic porous media. In
that case V(P) and ¢ are random variables. If the medium is stationary,
then one finds using Eqgs. (2.3) and (2.11)

#) =i
-5y, e )
~ 7767 J. e d%
=_17(1§)L Prire P} d’r
= Pr(r, € P} = (xolro)) (3.2)

where the last line holds only if the medium is stationary. The vector ry in
the last line is an arbitrary point. Although the use of the expectation
value {---} from Eg. (2.11). requires an underlying discretization, a




TRANSPORT AND RELAXATION PHENOMENA IN POROUS MEDIA 319

continuous notation was used to indicate that the result holds also in the
continuous case. If the stochastic porous medium is not only stationary
but also mixing or ergodic, and if it can be thought of as being infinitely
extended, then the limit

= lim &(S)=(s) (3.3)

R(S)>w

exists and equals (¢ ). Here the diameter R(G) of a set G is defined as
R(G)=sup{jr, —r,| : 1, r, €&}, the supremum of the distance between
pairs of points. The notation ¢ =y,(r) indicates a spatial average while
(¢) = {xp(r)) is a configurational average.

Equation (3.3) always represents an idealization. Geological porous
media, for example, are often heferogeneous on all scales [5]. This means
that their composition or volume fraction ¢(R(S)) does not approach a
limit for R(S)— «. Equation (3.3) assumes the existence of a length scale
beyond which fluctuations of the porosity decrease. This scale is used
traditionally to define so-called ‘“‘representative elementary volumes™ [5,
76]. The problem of macroscopic heterogeneity is related to the remarks
in the discussion of stationarity in Section II.B.2. It will be taken up again
in Section III.AS.

The definition of porosity in Eq. (3.1) gives the so-called total porosity,
which has to be distinguished from the open porosity or effective porosity.
Open porosity is the ratio of accessible pore volume to total volume.
Accessible means connected to the surface of the sample.

The porosity of a simple porous medium S =P UM is related to the
bulk density pe, the density of the matrix material p,,, and the density of
the pore space material p, through

Pu " Ps
=¥ 75 4
¢ Pt — Pp (3.4

Therefore, porosity is conveniently determined from measuring densities
using liquid buoyancy or gas expansion porosimetry [1-3, 77}. Other
methods of measuring porosity include small angle neutron, small angle
X-ray scattering, and quantitative image analysis for total porosity [2, 43,
44, 77, 78]. Open porosity may be obtained from xylene and water
impregnation, liquid-metal impregnation, nitrogen adsorption, and air or
helium penetration [44, 77].

Porosity in rocks originates as primary porosity during sedimentation
or organogenesis and as secondary porosity at later stages of the
geological development [1]. In sedimentary rocks the porosity is further
classified as intergranular porosity between grains, intragranular or
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intercrystalline porosity within grains, fracture porosity caused by me-
chanical or chemical processes, and cavernous porosity caused by organ-
isms or chemical processes.

b. Specific Internal Surface Area. Similar to the porosity the specific
internal surface area is an important geometric characteristic of porous
media. In fact, a porous medium may be loosely defined as a medium
with a large “surface to volume” ratio. The specific internal surface area
is a quantitative measure for the surface/volume ratio. Often this ratio is
so large that it has been idealized as infinite [43, 78-85] and the
application of fractal concepts has found much recent attention [42, 58,
84, 86-91].

The specific internal surface S of a two-component porous medium is
defined as

V,(3P)
§ V.(S) (3.5)
where V,(9P) is the surface area, defined in Eq. (2.3), of the boundary
set oP. The surface area V,(oP) exists only if the internal surface or
interface 9P fulfills suitable smoothness requirements. Fractal surfaces
would have V,(3F") = and in such cases it is necessary to replace the
Lebesgue measure in Eq. (2.3) with the Hausdorff measure or another
suitable measure of the “size” of 3P [58-61].

The specific internal surface is a characteristic inverse length giving the
surface/volume ratio of a porous medium. Typical values for unconsoli-
dated sand are 2 X 10° m ™, and range from 10° to 10’ m ™’ for sandstones
[3, 92]. A piece of sandstone measuring 10 cm on each side and having a
specific internal surface of 10’ m™! contains the same area as a sports
arena of dimensions 100 x 100 m. This illustrates the importance of
surface effects for all physical properties of porous media.

Specific internal surface area can be measured by similar techniques as
porosity. Some commonly employed methods are given in Fig. 1 together
with their ranges of applicability. Particularly important methods are
based on physisorption isotherms [93, 94]. The interpretation of the
BET-method [93] is restricted to certain types of isotherms, and its
interpretation requires considerable care. In particular, if micropores are
present these will be filled spontaneously and application of the BET-
analysis will lead to wrong results {44]. Other methods to determine §
measure the two-point correlation function. As discussed further in
Section IILA.2 the specific internal surface area can for statistically
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homogeneous media be deduced from the slope of the correlation
function at the origin [95].

2. Correlation Furnctions

Porosity and specific internal surface area are merely two numbers
characterizing the geometric properties of a porous medium. Obviously,
these two numbers are not sufficient for a full statistical characterization
of the system. A full characterization can be given in terms of multipoint
correlation functions [6, 8, 96-112]. '

The average porosity {¢) of a stationary two-component porous
medium is given by Eq. (3.2) as

(¢) = (xp(ry)) = Pr{r, €P} (3.6)

in terms of the expectation value of the random variable yp(r,) taking the
value 1 if the point r, lies in the pore space and 0 if not. This is an
example of a so-called one-point function. An example of a two-point
function is the covariance function C,(r,, r), defined as the covariance of
two random variables yp(r) and x,(r,) at two points r, and r,

Cy(ry, 1) = (Ixp(ro) — ) xe(r) — (e D - (3.7

For a stationary medium the covariance function depends only on the
difference r —r,, which allows to set r, =0 without loss of generality.
This gives

C() = (xp(0)xp ()} — <¢>2 (3.3)

Because y5(r) = xp(r) it follows that C,(0) = (¢ )(1 - {$)). The correla-
tion coefficient of two random variables X and Y is in general defined as
the ratio of the covariance cov(X, Y) to the two standard deviations of X’
and Y [73, 74]. It varies between 1 and —1 corresponding to complete
correlation or anticorrelation. The covariance function is often normal-
ized analogous to the correlation coefficient by division with C,(0) to
obtain the rwo-point correlation function

o oW
G:0=T0) T (61 - (@)

(3.9)

An illustration of a two-point correlation function can be seen in Fig. 14.
The porosity in Eq. (3.6) is an example of a moment function. The
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general nth moment function is defined as

S,e1- )= (11 ) (3.10)

i=1

where the average is defined in Eq. (2.11) with respect to the probability
density of microstructures given in Eq. (2.10). The covariance function in
Eqgs. (3.7) or (3.8) is an example of a cumulant function (also known as
Ussell or cluster functions in statistical mechanics). The nth cumulant
function is defined as

Gty r) = (1 Do) ~ 1) = ([T e - (9)1)
(3.11)
where the second quality assumes stationarity. The cumulant functions

are related to the moment functions. For n=1, 2, or 3 one has the
retations

C/(r)=0 (3.12)
Cy(r,,r,) =8,(r;,ry) — 5,(r)S,(r,) (3.13)

Ci(r,, 1o, 1) =85(r,, 15, 15) — S,(r,, 1,)8,(rs) — S,(ry, r3)5,(r,)
= 8,(r,, v3)8,(r) +28,(r )8 (r;)S:(r;) (3.14)

The analogous moment functions may be defined for the matrix space M
by replacing y, in all formulas with y;,. These functions have been calied
n-point matrix probability functions {105, 107] or simply correlation
functions [111]. From Eqgs. (2.10), (2.11) and (3.10) the probabilistic
meaning of the moment functions is found as

ST, T) = () xelr,)) =Pr(r, €P, . x, €P)
(3.15)

Therefore S, (r,,...,r,) is the probability that ail the points r,,...,r
fall into the pore space.

The case n =2 of the second moment is of particular interest. If the
pore space is stationary and isotropic then S,(r) = S,(|r}) and one has
$,(0)= (). If the porous medium is also mixing then S,(=) = (¢)*. It
the pore space P is three dimensional, and does not contain flat two-
dimensional surfaces of zero thickness, then its derivative at the origin is

n
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related to the specific internal surface area S through

ds,(r) s

SO =—"4" =77 (3.16)

r=

In two dimensions an analogous formula holds in which S is replaced with
a “‘specific internal length” and the denominator 4 is replaced with .

The practical measurement of two-point correlation functions is based
on Minkowski addition and subtraction of sets [10, 37]. The Minkowski
addition of two sets A and B in R is defined as the set

ADB={q+r:q€EA, reB} (3.17)

Note that A@ {r}=A+r is the translation defined in Eq. (2.17).
Therefore AGB = U g (A+ q) = U, 4 (B + 1) is the union of the trans-
lates (B +r) as r runs through A. The dual operation to Minkowski
addition is Minkowski subtraction defined as

ASB= N (A+q) = C(CASB) (3.18)

qeEB

where CA denotes the complement of A. With these definitions the
two-point function is given as

S,(r)=Pr{0EP, 1P} =Pr{0 PO (-B)} (3.19)

where B = {0, r} is the set consisting of the origin and the point r. This
formula is the basis for the statistical estimation of 5,(r) and G,(r) in
image analyzers from the area of the “‘eroded” set P& (—B). The
operation P— PG (—B) is called erosion of the set P with the set B and
it has been used in methods to define pore size distributions, which will
be discussed in Section HI.A.3. An example for the erosion of a pore
space image by a set {0,r} is shown in Fig. 9. The original image (shown
Fig. 12) is obtained from a cross-section micrograph of a Savonnier
oolithic sandstone. Two copies of the image are displaced relative to each
other by a vector r as indicated in Fig. 3.1. The two images are rendered
in gray, and their intersection is colored black. The area of the intersec-
tion is an estimate for S,(r).

The main advantage of the correlation function method for charac-
terizing porous media is that it provides a set of well-defined functions of
increasing complexity for the geometric description. In practice, one
truncates the hierarchy of correlation functions at the two-point func-
tions. While this provides much more information about the geometry
than the porosity and specific surface area alone, many important
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Figure 9. Erosion of a pore space image by the set {0, r} consisting of the origin ¢ and
a vector r. The vector -r is shown as an arrow in the image. The overlap of the two images is
rendered darker than the rest.

properties of the medium (such as its connectivity) are buried in higher
order functions.” Depending on the required accuracy a simple two-point
function for a three-dimensional stationary but anisotropic two-com-
ponent medium could be specified by 10°~10° data points, which would
be economical according to the criterion adopted previously. An n point
function with the same accuracy would require 10°" V-10°""Y data
points. Specifying five or higher point functions quickly becomes just as
impractical as specifying a given geometry completely.

3. “Pore Size” Distributions

In certain porous materials, such as wood (see Fig. 3), it is natural to
identify cylindrically shaped pores and to represent their disorder through
a distribution of pore diameters. In other media, such as systems with

*Two points are called connected if there exists a path between them that lies
completely inside the pore space. Therefore the probabilistic description of connectedness
properties requires multipeint correlation functions involving alt the points that make up the
path.
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cavernous or oomoldic porosity, it is possible to identify roughly convex
pore bodies analogous to convex sand grains dispersed in a uniform
background. If the radius R of the cylindrical capillaries or spherical pore
bodies in such media is randomly distributed, then the pore size dis-
tribution TI(r) can be defined as

TI() = Pr{R = r} (3.20)

giving the probability that the random radius R of the cylinders or
spheres is smaller than r. For general porous microstructures, however, it
is difficult to define “pores” or “pore bodies,” and the concept of pore
size distribution remains ill defined.

Nevertheless many authors have introduced a variety of well-defined
probability distributions of length for arbitrary media which intended to
overcome the stated difficuity [2, 3, 113-119]. The concept of pore size
distributions enjoys continued popularity in most fields dealing with
porous materials. Recent examples can be found in chromatography {120,
121], membranes. [122-124], polymers [125], ceramics [126—129], silica
gels [130-132], porous carbon [133, 134], cements [135-137], rocks and
soil science [138-143], fuel research [144], separation and adhesion
technology [30, 145], or food engineering [146]. The main reasons for this
popularity are adsorption measurements [30, 147, 148] and mercury
porosimetry [149-152].

a. Mercury Porosimetry. The “pore size distribution” of mercury
porosimetry is not a geometric but a physical characteristic of a porous
medium. Mercury porosimetry is a transport and relaxation phenomenon
43, 153], and its discussion would find a more appropriate place in
Section V. On the other hand “pore size distributions” are routinely
measured in practice using mercury porosimetry, and many readers will
expect its discussion in a section on pore size distributions. Therefore,
pore size distributions from mercury porosimetry are discussed already
here together with other definitions of this important concept.

Mercury porosimetry is based on the fact that mercury is a strongly
nonwetting liquid on most substrates, and that it has a high surface
tension. To measure the “pore size distribution” a porous sample S with
pore space P is evacuated inside a pycnometer pressure chamber at
clevated temperatures and low pressures [43]. Subsequently, the sample
is immersed into mercury and an external pressure is applied. As the
pressure is increased, mercury is injected into the pore space occupying a
subset Py, (P) of the pore space which depends on the applied external
pressure P The experimenter records the injected velume of mercury
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V([Py,(P)) as a function of the applied external pressure. If the volume of
the pore space V(P) is known independently then this gives the saturation
S (P)=V(Py,(P))/V(P) as a function of pressure. The cumulative
“pore size” distribution function Tl (r)=Pr{R=r} of mercury
porosimetry is now defined by

20y, cOs &
L) (3.21)

My, () =1- ng( .

For rocks a contact angle 8, = 135° and surface tension with a vacuum of
Oy =0.48 Nm~' are commonly used [1, 43, 153]. The definition of
I1,,,(r} is based on the equation

20y, cos 0
p, =—t (3.22)

cap r

for the capillary pressure P, which expresses the force balance in a
single cylindrical capillary tube. Equation {3.21) foliows from Eq. (3.22)
if it is assumed that the saturation history Sy, (P) is identical to that
obtained from the so-called capillary tube model discussed in Section
III.B.1. The capiliary tube model is a hypothetical porous medium
consisting of parallel nonintersecting cylindrical capillaries of random
diameter.

The fact that II,,(r) is not a geometrical quantity but a capillary
pressure function for drainage is obvious from its definition. It depends
on physical properties such as the nature of the injected fluid or wetting
properties of the walls. For a suitable choice of tube diameter the
function S, (P) of pressure could equally well be translated into a
distribution of the wetting angles 6. The parameter Sy (P) shows
hysteresis implying that the pore size distribution Iy (r) is process
dependent.

Although IT,,(r) is not a geometrical quantity, it contains much useful
information about the microstructure of the porous sample. An example
for the information obtained from mercury porosimetry is shown in Fig.
10 together with an image of the rock for which it was measured [1] 2 The
rock is an example of a medium with hollow pores. The correct
interpretation of the saturation history Sy, (P) obtained from mercury
porosimetry continues to be an active research topic [154-160].

b. Random Point Methods. Several authors [3, 113, 116] suggest defin-
ing the “pore size” by first choosing a point r € P at random in the pore

3 { MPa = 10 bar =10’ dyn cm ~* = 9.869 atm = 145.04 psi.
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Figure 10. (&) Crossed nicols image of Dolomite oncolithe. The image widih corre-
sponds to 2.3mm. The porosity is 11%, the permeability 11 md. (b) Capillary pressurc
curve for the rock shown in the image. The right axis shows the ‘‘pore size” scale.
{Reproduced with permission from J. Schopper, “Porositdt und Permeabilitat,” in Landolr—
Bdrnstein: Physikalische Eigenschaften der Gesteine, K.-H. Hellwege, Ed., Vol. V/ia,
Springer, Berlin, 1982, p. 184, Copyright © Springer-Verlag, 1982.)

space, then choosing a compact set [€ containing r, and finally enlarging
< until it first intersects the matrix space M. In its simplest version [3,
116} the set K is chosen as a small sphere B(r, £) of radius £ [see Eq.
(2.5)]. Then the pore size distribution IT, (x) of the random point method
is defined as the distribution function I ,(x)=Pr{R(r)=x} of the
random variable R(r) defined as

R(r) = inf{e : B(r, &) N M = 8} (3.23)

In a deterministic porous medium, R ts a random variable because r € is
chosen at random.

In a more sophisticated version of the same idea the set K is chosen as
a small coordinate cross whose axes are then increased independently
until they first touch the matrix space [2, 113]. This gives direction
dependent pore size distributions.

The main weakness of such a definition is that it is imprecise. This
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becomes apparent from the fact that the randomness of the pore sizes
R(r) does not arise from the irregularities of the pore space, but from the
random placement of r. Consider a regular pore space consisting of
nonintersecting spheres of equal radii R, centered at the vertices of a
simple (hyper)cubic lattice. Assuming that the points r are chosen at
random with a uniform distribution it follows that the pore size dis-
tribution II,, is not given by a & function at R, but instead as a uniform
distribution on the interval {0, R,]. More dramaticaily, exactly the same
pore size distribution is obtained for every pore space made from
nonintersecting spheres of equal radii, regardless of whether they are
placed randomly or not. In addition, IT,,(x) can be changed arbitrarily by
changing the distribution function governing the random placement of r.

A more precise formulation of the same idea is possible in terms of
conditional probabilities. In Section ITI.A.4 it will be seen that the vague
ideas underlying random point methods are given a precise definition in
the form of contact and chord length distributions {10, 37].

c. Erosion Methods. Another approach to the definition of a geometri-
cal pore size distribution [117-119] is borrowed from the erosion
operation in image processing [161, 162]. Erosion is defined in terms of
Minkowski addition and subtraction of sets introduced above in Egs.
(3.17) and (3.18). The erosion of a set A by a set B is defined as the map
A—AB(-B)=N,cg (A —q). The erosion was illustrated in Fig. 9 for a
pore space image and a set B= {0, r}.

The method for locating “pore chambers,” “pore channels,” and
“pore throats” suggested in [117] is based on eroding the matrix space M
of a two component porous medium. A ball B (0, ) is chosen as the
structuring element. The erosion M © (—B(0, £)) shrinks the matrix space
M. The erosion operation is repeated until the matrix space decomposes
into disconnected fragments. By continuing the erosion the pieces may
either fragment again or become convex. If a piece becomes convex it is
called a “grain.” The centroid of the convex grain is called a “grain
center.” Reversing the erosion process allows one to locate the point of
respectively first last contact of two fragments. Connecting neighboring
grain centers by a path through their last contact point produces a
network model of the grain space. After having defined a network of
grain centers and last contact points, the authors of [117] and their
followers [118, 119] suggest to erect contact “surfaces” in each contact
point. A contact plane is defined as a “minimum area cross section” of
M. Subsequently, a ball is placed at each grain center and continually
enlarged. When the enlargement encounters a surface plane the ball is
truncated at the surface plane and only its nontruncated picces continue
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to grow until the sample space is completely filled with the inflated grains.
The intersection points of three or more planes in the resulting tesselation
of space are defined to be pore chambers. The intersection lines of two
planes are called pore channels, and “minimal-area cross sections” of the
pore space P along the pore channels are called pore throats. The pore
throats are not unique and are sensitive to details of the local geometry.
The pore chambers and channels will in general not lic in the pore space.
A drawback of this procedure is that it is less unique than it seems at
first sight. The network constructed from eroding the pore space is not
unique because the erosion operation involves the set B as a structuring
element, and hence there are infinitely many erosions possible. The
resulting grain network depends on the choice of the set B, a fact that is
not discussed in {117, 119]. Figure 11 shows an example where erosion
with a sphere produces three grains while erosion with an ellipsoid
produces only two grains. The original set consists of the gray and black
region, the eroded part is coloured gray, and the residual set is colored
black. The theoretically described procedure for determining the network
was not carried out in practice [117]. Instead “subjective human pre-
processing” ([117], p. 4158) was used to determine the network.

Figure 11. Erosion A@(—B) of a
set & by a set B for the cases where B is
a sphere or an ellipsoid. For a sphere the
eroded set (shown in black) has three
components while for an elipsoid it
consists of only two connected compo-
nents.
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d. Hydraulic Radius Method. The hydraulic radius method [2, 114, 115]
for determining pore size distributions is based on the idea of “sym-
bolically closing pore throats.” The definition of pore throats is given in
terms of ‘““cross sections” of the pore space. A cross-section C could be
defined as the intersection of a plane E(q, r,), characterized by its unit
normal q € 3B(0, 1) and a point r, in the plane, with the pore space P
and some suitable set G(q, r,) that represents the region of interest and
could depend on the choice of plane. In symbols C(q,r,) =P N E(q,r,) N
G(q, ry). A pore throat containing the point r, is then defined as

N AC (N )

3.24
acanqo,1) V,1(3C(q, ry)) (3.24)

where the minimum is taken over the unit sphere of orientations of the
planes. A pore throat is now defined as a local minimum of the function
C*(r,) as r, is varied over the pore space. This ideal definition has in
practice been replaced with a subjective choice of orientations based on
the assumption of isotropy [2, 114, 115]. After constructing all pore
throats of a medium the pore space becomes divided into scparate
compartments called “pore bodies” whose “size”” can then be measured
by a suitable measure such as the volume to the power one-third,

The definition of pore throats in hydraulic radius methods is very
sensitive to surface roughness. This is readily seen from an idealized
spherical pore with a few spikes. Another problem as remarked in [115],
page 586, is that ““the size of a pore body is not readily related in a unique
manner to any measurable physical quantity.”

4. Contact and Chord Length Distributions

Chord length distributions [163-166] are special cases of so-called contact
distributions [10, 37]. Consider the random matrix space M of a two
component stochastic porous medium and choose a compact set I
containing the origin 0. Then the contact distribution is defined as the
conditional probability

M, (x)=1—Pr{0 £ MD (—x¥K))|0 & M}

Pr{0ZM® (—xK)}
=1- =6 (3.25)
for x = 0. Here ¢ denotes the bulk porosity as usual. Two special choices
of the compact set I are of particular importance. These are the unit
sphere K =B(0, 1) C R® and the unit interval K =[0, 1]CR.
For a unit sphere K=18(0,1) the quantity 1—TIlg, ,(x) is the
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conditional probability that a fixed point in the pore space is the center of
a sphere of radius x contained completely in the pore space, under the
condition that the chosen point does not belong to M. If M is isotropic
and its boundary is sufficiently smooth, then the specific internal surface §
can be obtained from the derivative at the origin as [37]

d
S=¢ TEH(O,l)(x) o (3.26)

The spherical contact distribution Ilg, ,,(x) provides a more precise
formulation of the random point generation methods for pore size
distributions [3, 116] discussed in Section II1.A.3.b.

For the unit interval K =10, 1] the contact distribution Il ,,(x) is
related to the chord length distribution 11 (x) giving the probability that
an interval in the intersection of P with a straight line containing the unit
interval has a length smaller than x. This provides a more precise
formulation of the random point generation ideas in (2, 113]. The relation
between the contact distribution and the chord length distribution is given
by the equation

J7 (y —x)ydll (y)
J§ ydn (y)

where the denominator on the right-hand side gives the mean chord
length = | y dI1,,(y). The mean chord length is related to the specific
internal surface area through £ =4¢/S. In Section III.A.2 it was men-
tioned that the specific internal surface area can be obtained from the
two-point function [see Eq. (3.16)]. Therefore the mean chord length can
also be related to the correlation function through

¢
5:(0)

Oy ) =1- (3.27)

£=— (3.28)

Along these lines it has been suggested in [167] that the full chord length
distribution can be obtained directly from small-angle scattering experi-
ments.

Contact and chord length distributions provide much more geometrical
information about the porous medium than the porosity and specific
surface area, and are at the same time not as unnecessarily detailed as the
complete specification of the deterministic or stochastic geometry. De-
pending on the demands on accuracy a contact or chord length dis-
tribution may be specified by 10-1000 numbers irrespective of the




332 R. HILFER

. - - . - 24
microscopic resolution. This should be compared with 10** or 210
numbers for a fully deterministic or stochastic characterization.

5. Local Geometry Distributions

a. Local Porosity Distribution. Local porosity distributions, or more
generally local geometry distributions, provide a well-defined general
geometric characterization of stochastic porous media [168-175]. Local
porosity distributions were mainly developed as an alternative to pore
size distributions (see Section III.A.3). They are intimately related with
the theory of finite size scaling in statistical physics [64, 176—178].
Although fluctuations in the porosities have been frequently discussed {2,
3, 10, 37, 76, 179—182}, the concept of local porosity distributions and its
relation with correlation functions was developed only recently [168—175].
More applications are being developed [183, 184].

Local porosity distributions can be defined for deterministic as well as
for stochastic porous media. For a single deterministic porous medium
consider a partitioning % = {i,, . . . , i{,,} of the sample space S into M
mutually disjoint subsets, called measurement cells ;. Thus uM i ;=95
and I, NS, =@ if i #j. A particular partitioning was used in the 0r1g1nal
pubhcatlons [169-171, 178], where the I, are unit cells centered at the
vertices of a Bravais lattice supenmposed on S. This has the convenient
feature that the I, are translated copies of one and the same set, and they
all have the same shape. An example is illustrated in Fig. 12 showing a
quadratic lattice as the measurement grid in two dimensions superposed
on a thin section of an oolithic sandstone. The local porosity inside a
measurement cell I§; is defined as

V(PN
é(l;) =“L‘7(“R§Q=j} 2 xelr) (3.29)

i rl-EiKi

where the second equality applies in case of discretized space and M;
denotes the number of volume elements or voxels in [K;. Thus the
empirical one-cell local porosity density function is defined as

.
56390 =57 2 56 = 6(K,) (330)

where 8(x) is the Dirac § distribution. Obviously, the distribution
depends on the choice of partitioning the sample space. Two extreme
partitions are of immediate interest. The first arises from setting M = N,
and thus each [; contains only one individual volume element I; = {r;}

with 1=j=M=N. In this case ¢(I;) =0 or ¢(l;) =1, depending on
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Figure 12, Measurement lattice of squares superimposed on the discretized thin section
image of a sandstone. The pore space P is colored black, the matrix space is rendered white.

whether the volume element falls into matrix space (0}, or pore space
(1). This immediately gives

e s r D) = 8(S)8(e — 1) + (1 - $(S)3(8) (3.31)

where ¢(S) is the total porosity. The other extreme arises for M =1. In
this case K, =S and the measurement cell coincides with the sample
space. Hence

fid; {S})=8(¢ — ¢(S) (3.32)

Note that in both extreme cases the local porosity density is completely
determined by the total porosity ¢($), which equals ¢(S)= ¢ if the
sample is sufficiently large and mixing or ergodicity Eq. (3.3) holds.

For a stochastic porous medium the one-cell local porosity density
function is defined for each measurement cell as

#{g; 1) = (8(¢ ~ ¢(I€,))) (3.33)
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where I, € % is an element of the partitioning of the sample space. For
the finest partition with M =N and I, = {r;} one finds now using Eq.
(3.2)

(s {r;}) = Pr{X(r)) =1}8(¢ — 1) + Pr{X(r;) = 0}3(¢)
= (¢)8(p — 1) +(1—(¢))8(¢) (3.34)

independent of j. If mixing Eq. (3.3) holds, then ¢(S)=(¢) = ¢ if the
sample becomes sufficiently large, and the result becomes identical to Eq.
(3.31) for deterministic media. In the other extreme of the coarsest
partifion one finds

p(¢; S) = (8(¢ — #(S)) (3.35)

which may in general differ from Eq. (3.32) even if the sample becomes
sufficiently large, and mixing holds. This is an important observation
because it emphasizes the necessity to consider more carefully the infinite
volume limit $— R”.

If a large deterministic porous medium is just a realization of a
stochastic medium obeying the mixing property, and if the sets I, are
chosen such that the random variables ¢(l;) are independent, then
Gliwenkos theorem [185] of mathematical statistics guarantees that the
empirical one-cell distribution approaches u(¢; i) in the limit M — . In
symbols

lim 363 %) = w(; 1) (3.36)

where the right-hand side is independent of the choice of ;. Therefore u
and g are identified in the following. This identification emerges also
from considering average and variance as shown next,

Define the average local porosity ¢ = [y ¢pu(b) dep as the first moment
of the local porosity distribution. For a stationary (=homogeneous)
porous medium the definitions (3.33) and (3.29) immediately yield

3 = | du(e:6) do
= (d’(K;))
1
= ;1;2 (xp(r:))

= () (3.37)




TRANSPORT AND RELAXATION PHENOMENA IN POROUS MEDIA 335

where [, is a measurement cell. Similarly, the variance of local porosities
reads

—_— 1 —
@) b= | (6 ~BC sk db

= [ o7(a6 - 01))) 46 - 6°
= (6(K)") ~ (&(K,)*

= MLIZ <[Mj¢’ - zil Xu:v(rf)]2>
(9‘9}

EC(r r.).

r; rkEK

(3.38)

This result is important for two reasons. First, it relates local porosity
distributions to correlation functions discussed in Section III.A.2. Sec-
ond, it shows that the variance depends inversely on the volume M, of the
measurement cell. This observation reconciles Eq. (3.35) for stochastic
media with Eq. (3.32) for deterministic media because it shows that
u(d; K,) approaches a degenerate & distribution in the limit M, — .
Together with Eq. (3.37) and M;=N and M =1 for K; =S this shows
that Eqs. (3.35) and (3.32) become equivalent.

The n-cell local porosity density function w,(¢,, ..., ¢, Ky, ..., K)
is the probability density to find local porosity ¢, in measurement cell K,
¢, in IK,, and so on, until #. Formally, it is defined by generalizing Eq.
(3.33) to read

P«n(‘pls RN N ST Kn) = (5(¢1 - ¢(K1)) o '8((45" - d)(Kn)))
(3.39)

where the sets I§, . . ., [, € ¥ are a subset of measurement cells in the
partition %, Note that the n-cell functions u, are only defined for M > n,
that is, if there are a sufficient number of cells. In particular, for the
extreme case M =1 only the one-cell function is defined. In the extreme
case M = N of highest resolution (I; = {r;}) the moments of the n-cell
local porosity distribution reproduce the moment functions (3.10) of the
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correlation function approach (Section II1.A.2) as

1 1
e e GGt ()

Xdg, - -d,
= (xp(r;) -+ xe(r; ))
=8, o) (3.40)

where m = n must be fulfilled. This provides a connection between local
porosity approaches and correlation function approaches. Simultancous-
ly, it shows that the local porosity distributions are significantly more
general than correlation functions. Already the one-cell function p
contains more information than the two-point correlation functions §, or
C, as demonstrated on test images in {171].

The most important practical aspect of local porosity distributions is
that they are easily measurable in an independent experiment. Ex-
perimental determinations of local porosity distributions have been
reported in [173-175, 186]. They were obtained from two-dimensional
sections through a sample of sintered glass beads. An example from [175)
is shown in Fig. 13. The porous medium was made from sintering glass
beads of roughly 250 um diameter. Scanming electron migrographs
obtained from the specimen were then digitized with a spatial resolution
of 4.1 pm per pixel. The pore space is represented by black in Fig. 13 and
the total porosity is ¢ = 10.7%. The pixel-pixel correlation function of
the pore space image is shown in Fig. 14. The local porosity distribution
was then measured using a square lattice with lattice constant L. The
results are shown in Fig. 15 for measurement cell sizes of L = 40, 50, 60
and I = 80 pixels.

Measurements of the local porosity distribution from three-dimension-
al pore space images are currently carried out {183]. The pore space is
reconstructed from serial sections that are a standard, but costly,
technique to obtain three-dimensional pore space representations [2, 113,
114, 117, 162, 183, 188]. The advent of synchrotron microtomography [4,
119, 188a] promises to reduce the cost and effort.

b. Local Geometry Entropies. The linear extension L of the measure-
ment cells is the length scale at which the pore space geometry is
described. The length L. can be taken as the side length of a hypercubic
measurement cell, or more generally as the diameter R(K) = sup{|r, —
r,|:r,r, €K} of a cell [ defined as the supremum of the distance
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Figure 13. Pore space image of sintered 250-pm glass beads with total porosity of
10.7%. The pore space is rendered in black, the matrix space in white.
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Figure 14. Pixel-pixel porosity correlation function G,(r) for the image shown in Fig.
13. The distance r is measured in pixels corresponding to 4.1 pm per pixet {175].



338 R. HILFER

10 )
g0
2 s : ........ L = 40 pixels
= PO ~a— L =50 pixels
g 6l B E -~ == L=60pixels
T B e S P L = 80 pixels
=
g 41
[
&
— 2 "
o«
[ )
o W TS
1—7 0 "'. ) e s Y 1 s
0 0.1 0.2 0.3 0.4
Local Porosity

Figure 15. Local porosity probability density function p(¢; L) measured from square
shaped measurement cells from the image shown in Fig. 13. The dash-dotted line
corresponds to 1. = 40 pixels, the solid line to L =50, the dashed line to L =60 and the
dotted line to £ = 80 pixels. One pixels corresponds to 4.1 pm [175]

between pairs of points. As L—w the local porosity distribution ap-
proaches a 8 distribution concentrated at ¢ according to Egs. (3.32) and
(3.35). On the other hand, for £—0 it approaches two & distributions
concentrated at 0 and 1 according to Egs. (3.31) and (3.34). In both
limits the local porosity distribution contains only the bulk porosity
¢ ={p)=PH(S) as a geometric parameter. At intermediate scales the
distribution contains additional information, such as the variance of the
porosity fluctuations. This suggests a search for an intermediate scale L,
which provides an optimal description. Several criteria for determining
L* were discussed in [171]. One interesting possibility is to optimize an
information measure or entropy associated with p(¢; L) and to define
the entropy function

()= [ s LYlog (@ L) dé (3.41)

relative to the conventional a priori uniform distribution. The so-called
entropy length is then obtained from the extremality condition

du(d; L)

T =0 (3.42)

L=L*

That the entropy length L* exists and is well defined was first demon-
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Figure 16. Entropy function as a function of the linear size of the measurement cell in
pixels for the local porosity probability density functions obtained from the image shown in
Fig. 13. One pixel corresponds to 4.1 wm [175].

strated in [171] using synthetic computer generated images. Figure 16
shows the function I(L) calculated for the image displayed in Figure 13.
A clear minimum appears at L = 40 pixels corresponding to 164 pm.

A similar entropy analysis was recently discussed in [189] for thin-film
morphologies of composites. The entropy function H*(L) defined in
{189] is not equivalent to I(L) above because it is not additive. Neverthe-
less, it was recently found [184] that H*(L) and I(L) give the same value
of L%,

c. Local Specific Internal Surface Distributions. Local specific internal
surface area distributions are a natural generalization of local porosity
distributions. They were first introduced in [171] in the study of fluid
transport in porous media. Define the local specific internal surface area
in a cell K; as

v, BPUKI.
S(Kf):'_%(ﬁ@-lzﬁ%r;: Xop(E;) (3.43)

EK]—

which is analogous.to Eq. (3.29). Generalizing Eqs. (3.30) and (3.33) the
local specific internal surface area probability density is defined as

w(S; 1) = (8(S — S(K,))) (3.44)



340 R. HILFER

in analogy with Eq. (3.33). The joint probability density u(é, S; ;) to
find a local porosity ¢ and local specific internal surface areas in the
range ¢ to ¢ +dep and S to S+dS will be called local geometry
distribution. It is defined as the probability density

m(d, S;16) = (8(¢ — d(1,)) 8(S - S(K;))) (3.45)

The average specific internal surface area in a measurement region K is
then obtained from the local geometry distribution as

500 =] | Sute, 58 dg as (3.46)

and it represents an important local length scale.

Of course, local geometry distributions can be extended to include
other well-defined geometric characteristics such as mean curvature or
topological invariants. The definition of the generalized local geometry
distribution is then obtained by generalizing Eq. (3.45).

d. Local Percolation Probability. In addition to the local porosity
distributions and local specific internal surface area distributions it is
necessary to characterize the geometrical connectivity properties of a
porous medium. This is important for discussing transport properties that
depend critically on the connectedness of the pore space, but are less
sensitive to its overall porosity or specific internal surface.

Two points inside the pore space P of a two-component porous
medium are called connected if there exists a path contained entirely
within the pore space which connects the two points. By using this
connectivity criterion a cubic measurement cell I is called percolating if
there exist two points on opposite surfaces of the cell which are connected
to each other. The local percolation probability AM(¢, $;K) is defined as
the probability to find a percolating geometry in a measurement cell K
whose local porosity is ¢ and whose local specific internal surface area is
S. In practice, the estimator for A(¢, S; [K) is the fraction of percolating
measurement cells which have the prescribed values of ¢ and S.

The average local percolation probability defines an important global
geometric characteristic

p(69= [ [ 26,5106, 5:00) do ds (3.47)

which gives the total fraction of percolating local geometries. 1t will be




TRANSPORT AND RELAXATION PHENOMENA IN POROUS MEDIA 341

seen in Sections V.B.4 and V.C.6 that p(I€) is an important control
parameter for the connectivity of the porous medium.

e. Large-Scale Local Porosity Distributions. This section reviews the
application of recent results in statistical physics [63—-69, 178, 190] to the
problem of describing the macroscopic heterogeneity on all scales. The
original definition (3.33) of the local porosity distributions depends on
the size and shape of the measurement cells, that is, on the partitioning 7
of the sample space. This dependence on the choice of a test set or
“structuring element” is characteristic for many methods of mathematical
morphology [10, 37, 71], and many of those discussed in Sections II1.A.3
and III.A.4. On the other hand, Section ITI1.A.5.a has shown that in the
limit of large measurement cells &(¥)—> the form of the local porosity
distribution w(é; i) becomes independent of [ and approaches one and
the same universal limit given by (¢ — ¢). This behavior is an expres-
sion of the central limit theorem. Local porosity distributions have
support in the unit interval, hence their second moment is always finite,
and the average local porosities must become sharp in the limit. It will be
seen now that this behavior is indeed characteristic for macroscopically
homogeneous porous media, while other Iimiting distributions may arise
for macroscopically heterogeneous media.

Consider a convex measurement cell K of volume V. Let b be the
random scale factor at which the pore space volume V(PP 1 bK) of the
inflated measurement cell b first exceeds V;, that is, define b as

b=inf{c=1:V(PNcK)=V,) (3.48)

Consider N mutually disjoint measurement cells I, (1 =i = N) all having
the same volume V(IK,) =V,. Let b, denote the scale factors associated
with the cells, and let V, = V(P M b,[K;) be the N values of the pore space
volumes. If the medium is homogencous there exists a finite correlation
length beyond which fluctuations decrease. Then the nonoverlapping cells
I§; can be chosen such that the inflated cells remain nonoverlapping, and
such that they are separated more than the correlation length. Then, the
N local porosities ¢(I€;) =V, /V, are uncorrelated random variables. For
macroscopically heterogeneous media the correlation length may be
infinite, and thus it is necessary to consider the limit ¥, — o of infinitely
large cells to obtain uncorrelated porosities. In [63-65, 178, 190] the
resulting ensemble limit N, V,— « has been defined and studied in detail.
In the present context the ensemble limit can be used to study the limiting




342 R. HILFER

distribution of the N-cell porosity

NVO N . -1
P(Ks, . - -,KN)=m=N[Z (p(I, ) ] (3.49)

obtained from the N measurcments. In the ensemble limit' the N
porosities ¢(I;) become independent but ill defined, because V(I,;)— .
This suggests that one instead considers the limiting behavior of the
renormalized sums of positive random variables

o= (2 )y - ¢, (3.50)

where D, > 0 and C,, are renormalization constants. Note that H(K) "=
1 for all i

If the sequence of distribution functions of the random variables ¢,
converges in the ensemble limit N—w and V,—>, then the limiting
distribution is given by a stable law [74]. The existence of this limit is an
indication of fractional stationarity [63-65, 68, 69, 178]. The limiting
probability density function for the variables ¢, is obtained along the
lines of [64] as

(G, 1) )

1 Dl.’m
he;w,C, D)= Hi?( (0, 1/w)

wlp — C) p—C
where ¢ = C and the parameters obey the restrictions 0<w <1, D=0
and C=1. The function )] appearing on the left-hand side is a
generalized hypergeometric function that can be defined through a
Mellin-Barnes contour integral [191]. The limiting local porosity density
is obtained as the distribution of the random variable ¢ = 1/, and reads

_ N 1 DY ¢ | (0,1)
webs @, C, D)= giq gy H:?(l—Cqb (O,l/m’)) (3.52)

for 0=¢ =1/C and u(¢) =0 for ¢ >1/C. The universal limiting local
porosity distributions u(¢; w, C, D) depend on only three parameters,
and are independent of the diameter or size of the measurement cells i,.
It is plausible that the limiting distributions will also be independent of
the shape of the measurement cells, at least for the classes and sequences
of convex measurement sets usually employed in studying the thermo-
dynamic limit [192].

Because the limiting distributions have their support in the interval
0=¢ =1/C all its moment exist, and one has ¢" =¢"(w, C, D). If the

(3.51)
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moments for n =1, 2, 3 can be inverted, then the parameters w, C, D
can be written as

w=w($ ¢5 ) C=C($ 6% 8°) D=D(d ¢ d°)
(3.53)

in terms of the first three integer moments. Figure 17 displays the form of
u(d; 1, 2, D) for various values of D. In the limit of small porosities
¢ — 0 the result (3.52) behaves as a power law

w(@) <™ (3.54)

Within local porosity theory this behavior can give rise to scaling laws in
transport and relaxation properties of porous media [170]. The impor-
tance of universal limiting local geometry distributions arises from the
fact that there exists a class of limit laws which remains broad even after
taking the macroscopic limit N— o, V,— . This is the signature of
macroscopic heterogeneity, and it occurs for w <<1. Macroscopically
homogeneous systems, corresponding to w = 1, converge instead towards
a & distribution concentrated at the bulk porosity &.
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Figure 17. Universal limiting local poresity density (3.52) for w =0.5, C=2, and

D=10.05,0.5, 1.0, 2.0, 5.0, 10.0. For D — 0 the density function is concentrated at ¢ =1/C,
and it vanishes generally for ¢ > 1/C.
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6. Capacities

While local porosity distributions (in their one-cell form) give a useful
practical characterization of stochastic porous media they do not char-
acterize the medium compietely. A complete characterization of a
stochastic medium is given by the so-called Chogquet capacities [10, 72].
Although this characterization is very important for theoretical and
conceptual purposes it is not practical because it requires to specify the
set of “all” compact subsets (see discussion in Section I1.B.2).

Consider the pore space P of a stochastic two-component porous
medium as a random set. Let & denote the family of all closed sets and %
the set of all compact sets as in Section II.B.2. For any KE X the
“hitting function” or capacity functional is defined as

T(K) = Pr{%, ) = Pr{P NI =6} (3.55)

where Pr is the probability law governing the random set P. Then T

has the following properties: (1) T(#)=0 and 0=T(K)=1. (2) If

,,...,K,, ... is a sequence of compact subset, then K, | K implies

T(K,) | K. (3) For all n the numbers S,(I; K,,..., K )=0 are

nonnegative where the S, are determined by the recursion relation
S, (1 K, 1) =S, (KK, L )

n

=8, (KUK K, ... K, ;) (3.56)
and Sy(IKK) =1— T(K). The number S (K; K;,...,K,) give the prob-
ability that PNIK is empty, but PN, is not empty for all i. The
functional 7(¥) is called an alternating Choquet capacity of infinite order
[10, 71}

Choquet’s theorem says that the converse is also true. Explicitly, if T
is a functional on %, then there exists a necessarily unique distribution Pr
in § with

Pr(F,) = T(K) (3.57)

for all KEX, if and only if 7 is an alternating Choquet capacity of
infinite order. This theorem shows that capacity functionals play the same
defining role for random sets in continuous space as do the numbers
ulx;, ..., xy) in Eq. (2.10) in the discrete case.

The main problem with this theoretically important result is that the
family of hitting sets %, is much too large for both practical and
theoretical purposes.
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B. Specific Geometric Models
1. Capillary Tubes and Slits

A simple model for porous media is the capillary tube model in which the
pore space is represented as an array of cylindrical tubes. The crucial
assumption of the model is that the tubes do not intersect each other.
Often it is also assumed that the tubes are straight or parallel to each
other. Consider a cubic sample S with side length L and volume
V(S)=L>. If there are N tubes of length L, that have circular cross
sections of radii @, (i =1, ..., N) the porosity becomes

m

L}

M=

¢ = La’ (3.58)

I
o

The specific internal surface on the other hand is given as

u|=1

i (3.59)

In a stochastic model the radii 4, and tube lengths L, arc chosen at
random according to a joint probability depsity II(a, L).

Several special cases are of particular interest. If the random radii a;
and tube lengths L, are chosen statistically independently, then the joint
density Il(a, L) factorizes as Tl(a, L)=1I (a)II,(L) into a “pore width
distribution™ I1,(a) and a “pore length distribution” I, (L). The average
porosity and average specific internal surface area become in this case

($)=2m(T )(a> (3.60)

(8) =m(T)H) T3 (361

where N/L? is the number of capillaries per unit area, and (7 )= (L)/L
is the average tortuosity factor obtained by averaging the dimensionless
tortuosity 7, defined for each tube as

.T=

(3.62)

|~
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Moreover, in this case the ratio

() _(a’)

(8) " 2(a)

is a characteristic length independent of the tortuosity and sample size.
Two further special cases arise from setting all radii equal to each other,
a,=a or all lengths to the system size, L,=L. H L, =L the tortuosity
factor in Egs. (3.60) and (3.61) is unity, and Eg. (3. 63) holds unchanged.
If the a, are chosen statistically independently, then for large N the
average porosny is related to the variance of the specific internal surface
according to

(3.63)

(8) == (57— (5)%) (3.64)

In the case where all radii are equal, a; = a, the relation (3.63) simplifies
to

{(¢)

($)

Although this relation holds only in a special case it has become the basis
for defining the so-called hydraulic radius

(3.65)

[NSJ R~

area of cross section
Ry = L - ; (3.66)
S perimeter of cross section

as a characteristic length scale of porous media [1, 2]. The hydraulic
radius concept was used in Section III.A.3.d for defining pore size
distributions. The capillary tube model and the hydraulic radius concept
play an important role for fluid flow through porous media, and will be
discussed further in Section V.C.2,

A model that is closely related to the capillary tube model is obtained
by considering N slits, that is, N parallel planes of width b,, instead of
tubes. All slits are assumed to be parallel, and hence nonintersecting. The
resulting capillary slit model has a porosity

I N
=fzq (3.67)
and specific internal surface area
2N
S= I (3.68)
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independent of the widths of the slits. Here the specific internal surface is
independent of the distribution of widths. As in the capillary tube model
one also finds a relation

(¢) _ (b

¢ =4 (3.69)
similar to Eq. (3.65) for the model of capiliary slits. The model may be
generalized by allowing small undulations and smooth fluctuations of the
slits.

2. Grain Models

Grain models of various sorts have long been studied in optics [179, 193],
colloids [194, 195, phase transitions [196], and disordered systems [197].
An important class of grain models are random bead packs [198-204],
which provide a reasonable starting point for modeling unconsolidated
sediments. In grain models, either the pore or the matrix space are
represented as an array of convex grains [107-109, 205-209]. The grains
could be regularly shaped such as spheres, cubes or ellipoids, or more
irregularly shaped convex sets. They may be positioned randomly or
regularly in space, and they may have equal or varying diameters. If the
grains are placed randomly their centroids are assumed to form a
stochastic point process. For a Poisson point process the centers or
centroids of the grains are placed randomly and independently in space
such that the number N(B) of points inside a set B is Poisson distributed
with point density g. For a Poisson point process the whole distribution is
determined by its density ¢. if B, ..., B, are n disjoint bounded sets,
then the numbers N(B,), ..., N(B,) are independent Poisson random
variables with joint probabitity distribution

Pr{N(B,)=N,,...,N(B,)=N,}

Ny+---+N N N,
0 1 an(B ) IV(B”) 7
= NN oRP(eVu(B) + e +V(B,))

(3.70)

The Poisson point process with constant density is stationary and
isotropic. The contact distribution IIy(x), defined in Section ILA.4, for
the Poisson point process can be obtained from the so-called void
probability that there is no point inside I as

M (x) =1 - Pr{N(xK) = 0} = 1 — exp(—oV,(xK)) (3.71)
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A simple class of grain models is obtained by attaching compact sets to
the points of a Poisson point process. The compact sets are called primary
grains. Spheres of constant radius are examples. Important generaliza-
tions are obtained by randomizing the primary grains. An example would
be spherical grains with random radii. More generally, it is possible to use
as grains independent realizations of a random compact set as defined in
Section I1.B.2.b. If G, denote the independent realizations of the grains
and r; the points of a Poisson point process, then a grain model is
obtained as the set

8

P=J(G,+r,) (3.72)
1

i

if the grains are interpreted as pores. If the grains are matrix then [P has
to be replaced by M. The grain model is uniquely characterized by its
capacity functional T(I)=Pr{PNIK#@} defined in Section IILA.6. If
G, denotes an independent realization of the primary grains, and K a
compact set, then the capacity functional can be shown to have the form
[10, 37]

T(K) = 1 —exp[—o(VA(=Go) ®K))] (3.73)

where (- - -) denotes the expectation value with respect to the distribution
of primary grains, and the Minkowski addition & of sets was defined in
Eq. (3.17). The porosity of a grain model is obtained as

(¢)=1—exp[—o{Vi(G\))] (3.74)

where G, is again a typical primary grain. The covariance function
defined in Eqgs. (3.7) and (3.8) reads

D) =2(¢) ~ L+ (1= ($)) exple(Vi(G, N (Go —D))] (3.75)

and it determines the specific internal surface according to Eqgs. (3.16)
and (3.13). The contact distribution IT, (x} for a compact set K is given as

T(x) = 1 = exp]—o({Vi( G ®xK)) — (Va(Go)))] (3.76)

where the interior GG of a set was defined in Section I1.B.1 and x = 0.
Two simple classes of grain models are obtained by randomly placing

penetrable or impenetrable spheres of radius R and number density p.

Specializing Eq. (3.74) to spherical grains of equal diameter one obtains

(@) = exp(—47R’0/3) (3.77)
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for the porosity of fully penetrating spheres. The relation

(¢)=1-4wR%0/3 (3.78)

applies to hard spheres of radius R [108]. The specific internal surface
area of overlapping spheres reads

§ = 47R%0 exp(—47R>0/3) (3.79)
and for hard spheres
S=4mxR% (3.80)

is obtained [108].

A basic question of stereology concerns the “unfolding” of three-
dimensional information from planar sections [210]. For a stationary
Poisson distributed grain model with spherical grains of random diameter
the problem of calculating the probability density p,(r) of the diameters
of spheres from the probability density p,(r) of section circles was solved
long ago [211, 212]. The spatial and planar distributions are related
through an Abel integral equation

P (x )
py(r) = f i (3.81)
where the mean-sphere diameter a is given by

a=% [Lm%pz(r) dr] B (3.82)

The solution to this equation is

2ar 4 Z(X)] dx (3.83)

pilr) == f \/—dx[ x

for = 0. In the special case where all spheres have the same constant
diameter a the probability density of section circle diameters is given as

r

pa{r) = ;VET‘TZ)

with 0= r=a. The average diameter of the section circles is a, = 7wa/4,
and its variance is o> = (32 — 3w")a’/48. Another interesting special case

(3.84)
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is when the diameters of the spheres are distributed according to

¥ Is 2
pfr) = Fexp[—@)—] (3.85)
for r =0, which gives a mean-sphere diameter ¢ = bV /2, In this case,
the distribution reproduces itself, that is, p,(r) = p,(r).

Even the simplest grain model with penetrable spheres of equal
diameter and Poisson distributed centers still poses unsolved problems.
At low-dimensionless densities p = (47/3)R’p the grains form isolated
bounded sets. Here R is the radius of the spheres and g their number
density. As the dimensionless density is increased the grains begin to
overlap and ultimately “percolate,” which means that an unbounded
connected component appears. This continuum percolation transition
between a state without unbounded connected component and a state
where the strains percolate to infinity is a phase transition of order larger
than 2 in the sense of statistical mechanics {64, 213]. It continues to be the
subject of much research in recent years [214-219].

A different parallel with statistical mechanics emerges if the grains are
identified with the particles in statistical mechanics [6—-8, 208]. This
identification suggests peneralizations of the underlying uncorrelated
Poisson point process, which corresponds to an ideal gas of noninteract-
ing particles, by adding interactions between the points. A large variety
of new models such as hard-sphere models or Gibbs point fields [34, 37]
emerges from this generalization,

3. Network Models

Network models represent the most important and widely used class of
geometric models for porous media [155, 157, 187, 220-233]. They are
not only used in theoretical calculations but also in the form of mi-
cromodels in experimental observations [157, 234-238]. For random bead
packs a random network model has recently been derived starting from
the microstructure [200, 204]. Network models arise generally and
naturally from discretizing the equations of motion using finite difference
schemes. As such they will be discussed in more detail in Section V.

A network is a graph consisting of a set of vertices or sites connected
by a set of bonds. The vertices or sites of the network could, for example,
represent the grain centers of a grain model. If the grains represent pore
bodies the bonds represent connections between them. The vertices can
be chosen deterministically as for the sites of a regular lattice or randomly
as in the realization of a Poisson or other stochastic point process.
Similarly, the bonds connecting different vertices may be chosen accord-
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ing to some deterministic or random procedure. Finally, the vertices are
“dressed” with convex sets such as spheres representing pore bodies, and
the bonds are dressed with tubes providing a connecting path between the
pore bodies. A simple ordered network model consists of a regular lattice
with spheres of equal radius centered at its vertices that are connected
through cylindrical tubes of equal diameter. Very often the diameters of
spheres and tubes in a regular network model are chosen at random. If a
finite fraction of the bond diameters is zero, one obtains the percolation
model.

4. Percolation Models

The purpose of this section is not to review percolation theory but to
introduce the concept of a percolation transition, and to collect for later
reference the values of percolation thresholds. The name “percolation™
derives from fluid flow through a coffee percolator, and it has been used
extensively to model various aspects of flow through porous media [41,
113, 153, 154, 156, 226, 239-243]. Invasion percolation has become a
frequently studied model for displacement processes in porous media [42,
244~246, 246a]. Percolation theory itself is a well-developed branch in the
theory of disordered systems and critical phenomena, and the reader is
referred to [197, 213, 247, 248] for thorough information on the subject.

Percolation as a geometrical model for porous media is closely related
both to grain models and to network models. The model of spherical
grains attached to the points of a Poisson process is also known as
continuum percolation or the “swiss cheese” model [213]. Site percola-
tion is an abstract version of a grain model, while bond percolation may
be seen as an abstraction from network models. The distinguishing
feature of percolation theory from other models is its focus on a sudden
phase transition associated with the connectivity of random media.

The simplest model of percolation is bond percolation on a lattice. In
bond percolation the bonds of a regular (e.g., simple cubic) lattice are
occupied randomly with connecting (=conducting) elements (e.g., tubes)
with a certain occupation probability p. Alternatively, one removes a
fraction 1 — p of bonds at random from a fully occupied infinite lattice.
Two lattice sites are called connected if there exists a path between them
traversing only bonds occupied by connecting elements. A set of con-
nected bonds is called a cluster. In an infinitely large system there exists a
critical occupation probability p,. above which there exists an unbounded
connected cluster, while below p,, all clusters are finite and bounded. If
the connecting elements are cylindrical tubes of fixed or variable diam-
eter, then the resulting network model of a porous medium would be
permeable above p,. and impermeable below p,, .
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Similarly, site percolation may be viewed as a lattice version of a grain
model. In site percolation the sites of the underlying regular lattice are
occupied randomly with spherical pore bodies of radius at least one-half
the lattice constant. Two nearest-neighbor sites are called connected if
they are both occupied. As in bond percolation there exists a critical
occupation probability p,. separating a2 permeable connected regime from
an impermeable regime.

These basic bond and site percolation models may be modified in many
ways. The underlying lattice may be replaced with an arbitrary regular or
random graph. The radii of tubes and pores may be randomized, and the
connectivity criterion may be changed. Table II shows the values of the
critical occupation probabilities (thresholds) for bond and site percolation
for some common two- and three-dimensional lattices [213]. The table
also lists the coordination number of each latiice defined as the number of
bonds meeting at an interior lattice site.

The transition between the permeable and impermeable regime
becomes a phase transition in the limit of an infinitely large lattice. The
role of the order parameter is played by the percolation probability P(p)
defined as the probability that a given point belongs to an infinite cluster.
The correlation length £( p) is defined from the correlation function giving
the probability that a site at distance r from a given site is occupied and
connected to the given site. The correlation length measures the typical
size of a cluster, and it diverges as p approaches p,.

Similar to network models percolation arises naturally in the study of
transport and relaxation phenomena. Effective medium theories dis-

TABLE 11
Values of the Bond p,, and Site p,. Percolation Thresholds for Various Two- and Three-
Dimensional Lattices®

Lattice Type Dimension  Coordination Poe Pec
Honeycomb 2 3 1—2sin(w/18)=0.6527 (.6962
Square 4 i 0.592746
Triangular 2 6 2 sin{w/18) = 0.3473 3
Diamond 3 4 0.3886 0.4299
Simple cubic 3 6 0.2488 0.3116
Body centered cubic 3 8 0.180 0.246
Face centered cubic 3 12 0.119 0.198

“ Also given is the coordination number defined as the number of bonds meeting at an
interior lattice site.
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cussed in Sections V.B.3 or V.C.6 contain an underlying percolation
transition.

5. Filtering and Reconstruction

Recently, a new type of geometric models has appeared [118, 171,
249-252], which is based on image processing techniques. These models
attempt to reconstuct a porous medium with prespecified statistical
characteristics such as its porosity ¢ and two-point correlation function
S,(r) [249, 250]. This is achieved through real space or Fourier space
filtering of random fields. To this end a two- or three-dimensional random
function assigning an independent random number to each point in space
is convoluted with a smoothing kernel. Alternatively, the Fourier trans-
forms of the two functions are multiplied and backtransformed to obtain
the smoothed image. In [249, 250, 252] it has been argued that such
reconstructed images resemble the structures observed in sedimentary
rocks or Vycor glass. In {171] such models have been used to test the
microstructural sensitivity of local porosity distributions (discussed in
Section II1.A.5) on models with identical two-point correlation functions.

The motivation for studying reconstructed porous media is to generate
precisely known microgeometries whose transport properties can then be
calculated numerically [249, 252]. As shown in {171} two media with the
same porosity and correlation function may still show significant differ-
ences in their geometric characteristics. More importantly, the porosity
and two-point correlation function are not sufficient to determine the
connectivity of a medium. The connectivity controls the transport, and
therefore it is unclear to what extent reconstructed porous media are
useful for predicting transport or relaxation properties.

6. Process Models

The geometric models discussed in the previous sections do not account
for the fact that the pore space configuration is often the result of a
physical process. This suggests the use of dynamic process models that
describe the formation of the porous medium. While such models are
employed routinely for unconsolidated bead packs [199, 201, 202, 253]
they are relatively rare for consolidated porous media. The so-called
bond shrinkage model [254] was developed for sedimentary rocks. In this
model one starts from a random resistor network on a simple cubic lattice
in d dimensions. Each resistor in the model represents a cylindrical tube
with radius r; in a corresponding network model on the lattice. Next, a
tube element is randomly chosen and its radius is reduced by a fixed
tactor x with 0 <<x << 1. The radius of the shrunk element is then xr,. The
shrinkage process may be repeated as often as necessary to reach a
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specified porosity or until some other criterion is satisfied depending on
the modeling purpose. The condition x>0 guarantees that the model
remains connected at all times if the shrinkage is repeated a finite number
of times. Because x > 0 the bond shrinkage model does not give rise to a
percolation threshold.

The so-called grain consolidation model {255, 256] does give rise to a
percolation threshold. In the grain consolidation model one starts from a
grain model with nonoverlapping grains G,. The grains are then allowed
to grow. In the simplest version [255] the grains form a regular cubic
lattice of spheres. As the grains grow the porosity is reduced and more
and more narrow constrictions between grains are closed. Thus the
system becomes impenetrable at a finite porosity. For a regular simple
cubic lattice of spheres the percolation threshold appears at a critical
porosity of ¢, = 0.0349 [255]. This value is much smaller than the values
p,.~0.2488 or p,. =~0.3116 in Table II for bond and site percolation. If
the grains are grown from a random bead pack the critical porosity is
found to be ¢_ = 0.03. This value is again much smaller than the threshold
¢, =~0.17 in continuum percolation [257, 258].

Another process model, called local porosity reduction model, was
introduced in [170]. Consider a simple regular lattice (e.g., simple cubic)
with lattice constant L superimposed on a porous medium as shown in
Fig. 12. The lattice cells are the measurement cells of local porosity
theory defined in Section IIILA.5. In the simplest example, one may
assume that all measurement cells have the same initial porosity ¢, and
specific internal surface area S;. The consolidation process is modeled by
picking at random a particular cell and reducing its porosity by a factor 7,
and its specific surface by a factor s. This operation is repeated until a
desired average porosity ¢ has been reached. It is assumed that the local
percolation probability function A(¢, $) is unaffected by the consolidation
operations. The final state of the porous medium can be described by
assigning to each cell the random integer n giving the number of times a
local consolidation operation was performed on that cell. The random
variable # is Poisson distributed, and this observation allows one to find
the local porosity distribution as [170]

1 P\ InAlinr _
plg, L) = T(In(r/b,)/1n ) (E;) exp(—n) (3.86)

where

Ingd—Ing,

r—1 (3.87)

ﬁ:
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and T'(x) denotes Eulers gamma function. A similar consideration could
be performed for the specific internal surface distribution. In many
consolidation processes the reduction factors are not independent. For
grain consolidation models this is illustrated by Eqgs. (3.77)-(3.80),
relating the porosity and specific surface through the sphere radius.
Similarly, if a crack is closed by an applied external pressure this will
reduce the porosity but not the surface area, as long as the possibility of
crushing the crack profile is neglected. Therefore, in this case s = ro=1.
Similarly, if a void space is uniformly cemented by precipitation of
minerals from the pore fluids this implies the relation s = r*"* between the
reduction factors. The simple relation

s=r" (3.88)

summarizes several idealized processes such as crack compaction, a =0,
shrinkage of capillarics, a =1, shrinkage of voids, « = %, and void filling,
a=1

IV. DEFINITION AND EXAMPLES OF TRANSPORT

A. Examples

This section begins the discussion of physical processes in porous media
involving the transport or relaxation of physical quantities, such as
energy, momentum, mass, or charge. As discussed in the introduction,
physical properties require equations of motion describing the underlying
physical processes. Recurrent examples of experimental, theoretical, and
practical importance include:

e The disordered diffusion equation

aT(r, £)

o=V (DEWT(, ) (4.1)

where r€S, D(r) = k(r)/(c,(r)/p(r)) >0 is the thermal diffusivity
tensor, T(r, {) is the space—time dependent temperature field, p(r) is
the density, x(r) the thermal conductivity, and ¢, (r) the specific heat
at consiant pressure. The superscript T denotes transposition. If the
tensor field D(r) is sufficiently often differentiable the equations are
completed with boundary conditions at the sample boundary 25.
For the microscopic description of diffusion in a two-component
porous medium $ =P UM whose components have diffusivities Dy
and Dy, the diffusivity field D(r) has the form D(r) = Dpxp(r) +
Dy, xi(7), which is not differentiable at 9. In such cases, additional
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boundary conditions are required at the internal interface of, and
the equation is interpreted in the sense of distributions [239].
Typical values for sedimentary rocks are wy=~1...6 Wwm™' K™,
pu=1...3gem™, and ¢, ~0.8...1.2kJkg 'K ™"

The Laplace equation with variable cocfficients
VT (CrW(r)) =0 (4.2)

where C(r) is again a second rank tensor field of local transport
coefficients, u(r) is a scalar ficld, r €S, and the same remarks apply
as for the diffusion equation with respect to differentiability of C(r)
and boundary conditions. For constant C(r) the equation reduces to
the Laplace equation Au = 0. If the medium is random the coeffi-
cient matrix C is a random function of r. Equation (4.2) is the basic
equation for Section IV.B. It is frequently obtained as the steady-
state limit of the time-dependent equations such as the diffusion
equation (4.1). Other examples of Eq. (4.2) occur in fluid flow,
dielectric relaxation, or dispersion in porous media. In dielectric
relaxation u is the electric potential and C is the matrix of local
(spatially varying) dielectric permittivity. In diffusion problems or
heat flow u is the concentration field or temperature, and C the
local diffusivity. In Darcy flow through porous media u is the
pressure and C is the tensor of locally varying absoiute per-
meabilities.

The elastic wave equation is a system of equations for the three
components w,(r, 1) (i=1, 2, 3) of a vector displacement field

B’ur, t) g [ dulr, 1)
—a =v’ Au(r, 1) + (vﬁ —-v}) —67{ (2—:1 —**"-——'—‘Jari (4.3)

where v, is the compressional and v, the shear wave velocity of the
material,

Maxwells equations in SI units for a medium with real dielectric
constant &', magnetic permeability ', real conductivity ¢’ and
charge density p

V- (e'5 Elr, 1)) = p(r, 1) (4.4)
V- (u'uH(r, 1)) =0 (4.5)
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VX E(r 1) = 5 (1 oH(r, 1) (4.6)

V x H(r,t) = o'E(r, 1) +§; {e'e,E(r, 1)) (4.7)

for the electric field E(r, £), magnetic field H(r, ) supplemented by
boundary conditions and the continuity equation

ap(r, 1)

YR V-a'E(r,t)=0 (4.8)

Here £, =8.8542x 107 Fm™' is the permittivity and p,=4m X
107" Hm ' is the magnetic permeability of empty space.

e The Navier—Stokes equations for the velocity field v(r, f) and the
pressure field P(r, r) of an incompressible liquid flowing through the
pore space

a
p—8§+p(v’"-V)v=n Av + pgVz — VP (4.9)

viev=0 (4.10)

where p is the density and p the viscosity of the liquid. The
coordinate system was chosen such that the acceleration of gravity g
points in the z direction. These equations have to be supplemented
with the no-slip boundary condition v =0 on the pore-space bound-
ary.

In the following, mainly the equations for fluid transport and Maxwells
equation for dielectric relaxation will be discussed in more detail.
Combining fluid flow and diffusion into convection--diffusion equations
yields the standard description for solute and contaminant transport [21,
24, 26, 260-262].

B. General Formulation

Transport and relaxation processes in a three-dimensional two-com-
ponent porous medium § =P UM (defined above in Section I1I) may be
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formulated very broadly as a system of partial differential equations

du,(r) 8", (r)
Fp(rl,rz,...,ul(r),uz(r),..., or o r R =0 reP
_ i j
A, (r) a’ur)
FM(risrb'--7u1(r)7u2(r)5"~: ar. "'“’Br-ark"" =0 I'EM
i i
i, (r) 0%u,(r)
Fw(rl,rz,. s (m), (), .., 3 aran, =0 reaP
J J
(4.11)
for n unknown functions u,{r) with i=1,...,n and r={(r,...,r,)E

R®. Here the unknown functions u, describe properties of the physical
process (such as displacements, velocities, temperatures, pressurcs,
electric fields, etc.), and the given functions Iy, F,, and F,, depend on a
finite number of its derivatives. The function F,, provides a coupling
between the processes in the pore and matrix space. The main difficulty
arises from the irregular structure of the boundary. The formulation may
be generalized to porous media with more than two components. For a
stochastic porous medium the solutions u,(r) of Eq. (4.11) depend on the
random realization, and one is usually interested in the averages {u,(r)).
Some authors [2, 41] have recently emphasized the difference between
continuum descriptions such as Eq. (4.11) and discrete descriptions such
as network models. Section V will show that discrete formulations arise as
approximations and reduce to the continuum description of the same
phenomenon in an appropriate limit.

V. TRANSPORT AND RELAXATION IN TWO COMPONENT
MEDIA

The calculation of effective macroscopic physical properties from a
geometrical characterization of the microstructure is the second subprob-
lem of the central question discussed in the introduction. This section wiil
focus on single-phase fluid transport and dielectric relaxation in porous
media as representative examples for this general problem. The third
subproblem of passage between microscopic and macroscopic length
scales that has played an important role in Section III.A.5 will become
more prominent in this and Section VI. The upscaling probiem appears in
the present section as the need to find effective macroscopic equations of
motion from averaging the underlying microscopic equations of motion.
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Successive spatial averaging allows passage to larger and larger length
scales, and it can be carried out using systematic expansions in the ratio
of length scales or self-consistent effective medium theories. The idea of a
self-consistently determined homogeneous reference medium is cental to
the definition of an effective macroscopic physical property. Asymptotic
expansions in the ratio of a microscopic length scale to a macroscopic
scale are known as homogenization theory, and will be discussed in
Sections V.C.3 and V.C.4. Their purpose is to provide a systematic
method of identifying useful macroscopic reference properties. Once a
useful macroscopic description is identified, a generalized form of
effective medium theory can be employed to calculate the effective
macroscopic properties.

A. Effective Transport Coefficients
1. Definition

A large number of transport and relaxation processes in porous media are
governed by the disordered Laplace equation (4.2) with variable co-
efficients C(r) for a scalar field P(r)

Vi (CEVPE) =0 (5.1)

within the sample region S=PUM. This “equation of motion” for P
must be supplemented with suitable boundary conditions on the sample
boundary S, and, if C(r) is discontinuous across d[¥, also on the internat
boundary aP. By introducing the vector field v(r), Eq. (5.1) may be
rewritten as

v(r) = —C{r)VFP(r)

5.2

vievm =0 -2)
These equations can be used as the microscopic starting point although,
as shown in Section V.C.3 for the case of fluid flow, they may hoid only in
a macroscopic limit starting from a different underlying microscopic
description. Equations (5.1) or (5.2) appear in many transport and
relaxation problems for porous and heterogeneous media. For Darcy flow
in porous media P is the pressure, C=K/n is the quotient of absolute
hydraulic permeability and fluid viscosity, and v is the fluid velocity field.
For dielectric relaxation P becomes the electrostatic potential, v becomes
the dielectric displacement, and C becomes the dielectric permittivity
tensor. In diffusion or dispersion problems P is the concentration field, v
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TABLE III
Quantities Corresponding to P, v, and C in Bq. {5.2) for Different Transport and
Relaxation Problems in Porous Media

Problem Type P v C

Fluid flow Pressure Velocity Permeability /viscosity
Electrical conduction Voltage Current Conductivity
Dielectric relaxation Potential Displacement Dielectric permittivity
Diffusion (dispersion) Concentration Particle flux Diffusion constant

corresponds to the diffusion flux, and C becomes the diffusivity. Table 11
summarizes the translation of P, v, and C into various problems.

For a homogeneous and isotropic medium the transport coefficients
C(r) = C1, where 1 denotes the identify, are independent of r, and Eq.
(5.1) reduces to a Laplace equation for the field P. For a random medium
the transport coefficients are random functions of r and the solutions P(r)
and v(r) depend on the realization of C(r). The averaged solutions {P(r))
and (v(r)) are therefore of primary inierest. The tensor of effective
transport coefficients is C defined as

(v(r)) = —CV(P(r)) (5.3)

and it provides a relation between the average fields. The ensemble
averages { f(r)) in the definition can be replaced with spatial averages
defined by

Fisy | fOx0 d'r (54

where f stands for P or v. Both the ensemble and the spatial average
depend on the averaging region S, and a residual variation of f or {f) is
possible on scales larger than the size of S. In the following it will always
be assumed that f= (f) if S is sufficiently large. The ensemble average
notation will be preferred because it is notationally more convenient.

The purpose of introducing effective macroscopic transport coefficients
is to replace the heterogeneous medium described by C(r) with an
equivalent homogeneous medium described by €. If C is known, then ail
the knowledge accumulated for the homogeneous problem can be utilized
immediately, and, for example, the average field v can be obtained simply
from solving a Laplace equation for P. -
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2. Discretization and Networks

If the function C(r) is known, then Eq. {(5.1) can be solved to any desired
accuracy using standard finite difference approximation schemes. To this
end the sample space S of linear extension & is partitioned into cubes [K,.
The cubes are centered on the sites r, of a simple cubic lattice with lattice
spacing L. Other lattices may also be employed. The lengths L and Z
obey I << %. The total number of cubes is N = (Z/ LY.

For a stationary and isotropic medium with C(r) = ¢(r)1 the discretiza-
tion of Eq. (5.1) gives a system of linear equations for the pressure
variables at the cube centers P, = P(r;)

2 cy(P—P)=0 (5.5)

for cubes r, not located at the sample boundary. The boundary conditions
at the sample boundary give rise to a nonvanishing right-hand side of the
linear system if r, is the center of a cube located close to 8S. The local
transport coefficients c; are given as

cy (L) =cl(r; +1;)/2) (5.6)

if r, and r; are nearest neighbors. If r, and r; are not nearest neighbors
the local coefficient vanishes, ¢, =0. Because the location of the cube
centers r, depends on the resolution L the coefficients ¢, in the network
equations depend on L and on the shape of the measurement cells IK,.

The numerical solution of the discretized equations (5.5) can be
obtained by many methods including relaxation, successive overrelaxa-
tion, or conjugate gradient schemes, transfer matrix calculations, series
expansions, or recursion methods [40, 248, 263-267]. If the function c(r)
is known, then the solution to Eq. (5.1) is recovered in the limit L->0 to
any desired accuracy. Within a certain class of lattices the limit is known
to be independent of the choice of the approximating discrete lattice. To
actually perform this limit, however, the function c(r) must be known to
arbitrary accuracy.

In most experimental and practical problems the function c(r) is either
completely unknown or not known to arbitrary accuracy. Therefore, it is
necessary to have a theory for the local transport coefficients ¢, (L) as a
function of the resolution L of the discretization. At present, the only
resolution dependent theories seem to be local porosity theory [168-175]
and homogenization theory [38, 268-271], which will be discussed in
more detail below. The basic idea of local porosity theory is to use the
local geometry distributions defined in Section III.A.5 and to express the
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local transport coefficients in terms of the geometrical quantities charac-
terizing the local geometry. The basic idea of homogenization theory is a
double scale asymptotic expansion in the small parameter L/Z.

The discretized equations (5.5) are network equations. This explains
the great importance and popularity of network models. In the more
conventional network models [155, 157, 187, 220, 223, 225-233] the
resolution dependence is neglected altogether. Instcad one assumes a
specific model for the local transport coefficients ¢, such that the global
geometric characteristics (porosity, etc.) are reproduced by the model.
Three immediate problems arise from this assumption:

e The connection with the underlying local geometry is lost, although
the local value of the transport property depends on it.

e In the absence of an independent measurement of the local
transport coefficients they become free fit parameters. Popular
stochastic network models assume log normal or binary distributions
for the local transport coefficients.

® Without a model for the local geometry an independent experimen-
tal or calculational determination of the local transport coefficients
for one transport problem (say fluid flow) cannot be used for
another transport problem (say diffusion) although the equations of
motion [Eq. (5.1)] have the same mathematical form for both cases.

All of these problems are alleviated in local porosity theory or homogeni-
zation theory, which attempt to keep the connection with the underlying
local geometry.

3. Simple Expressions for Effective Transport Coefficients

While a numerical solution of the network equations (5.5) is of great
practical interest, its value for a scientific understanding of heterogeneous
media is limited. Analytical expressions, be they exact or approximate,
are better suited for developing the theory because they allow to extract
the general model independent aspects. Unfortunately, only very few
exact analytical results are available [272-275). The one-dimensional case
can be solved exactly by a change of variable. The exact result is the
harmonic average

e={cH™ (5.7

where the average denotes either an average with respect to w(c), the
probability density of local transport coefficients, or a spatial average as




TRANSPORT AND RELAXATION PHENOMENA IN POROUS MEDIA 363

defined in Eq. (5.4). In two dimensions the geometric average

<C>1!2

<C71>1.’2

has been obtained exactly using duality in harmonic function theory [272]
if the microstructure is homogeneous, isotropic, and symmetric. It was
later rederived under less stringent conditions [273] and generalized to
isomorphisms between associated microstructures [274].

Most analytical expressions for effective transport properties are
approximate. In general dimensions, approximation formulas such as
[275-277]

c=exp{logc) = (5.8)

~ <C>(d—l).’d
or [278, 279]
&= (C(I—ZM)>U{1—2/d} (5.10)

have been suggested, which reduce to the exact results for d=1 and
d = w_Various mean-field theories also provide approximate estimates for
the effective permeabilities. The simplest mean-field theory

e={c) (5.11)

is obtained from Egs. (5.9} or (5.10) by letting d—c. Another very
important approximation is the self-consistent effective medium approxi-
mation which reads

for a d-dimensional hypercubic lattice. For other regular lattices the
factor d — 1 in the denominator has to be replaced with (z/2) — 1, where
z is the coordination number of the lattice. Note thatford=1and d >
the effective medium approximation reproduces the exact result.

To distinguish the quality of these approximations it is instructive to
consider a probability density w(c) of local transport coefficients which
has a finite fraction p=1—-1lim,_, [ w(c)dc of blocking bonds. In
dimension d > 1 this implies the existence of a percolation threshold
0 < p, <1 below which ¢ =0 vanishes identically (see Table II for values
of p,). Among the expressions (5.7)-(5.12) only the effective medium
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approximation (5.12) is able to predict the existence of a transition. The
predicted critical value p,=1/d, however, is not exact as seen by
comparison with Table II.

Another method for calculating the effective transport coefficient ¢ will
be discussed in homogenization theory in Section V.C.4. The resulting
expression appears in Eq. (5.87) if one sets K=cl. It is given as a
correction to the simplest mean-field expression (5.11). The correction
involves the fundamental solution of the local transport problem [Eq.
(5.88)]. In practice, the use of Eq. (5.87) is restricted to simple periodic
microstructures [268, 280]. If the microstructure is periodic it suffices to
obtain the fundamental solutions within the basic period, and to extend
the average in Eq. (5.87) over that period. If the microstructure is not
periodic then the solution of Eq. (5.88) and averaging in Eq. (5.87)
quickly become as impractical as solving the original probiem, because
c(r) is then unknown.

B. Dielectric Relaxation
1. Maxwell Equations in the Quasistatic Approximation

Consider a two component medium $ = [P U M. The substances filling the
sets P and M are assumed to be electrically homogeneous and character-
ized by their real frequency dependent conductivity o'(w) and dielectric
function ¢'(@). The real dielectric function &'(r, w) and conductivity
o'(r, w) of the composite are then given as

£'(r, ©) = £p(0)xp(r) + £3,(@)xp(r) (5.13)
o'(r, ) = op(w)xp(r) + oy (@)x,() (5.14)

in terms of the functions ez{w), g,(¢) and op(w), oy {w) characterizing
the dielectric response of the constituents.

The propagation of electromagnetic waves in the composite medium is
described by the macroscopic Maxwell equations (4.4)—(4.8). In the
following, the magnetic permeabilities are assumed to be unity to simplity
the analysis. The time variation of the fields is taken to be proportional to
exp(—iwt). Fourier transforming and inserting Eq. (4.8) into Eq. (4.4)
yields V- D(r, @) = 0, where the frequency-dependent displacement field

D(r, @) = (s’(r, @), + ’i%‘i’l)la(r, ©) (5.15)

combines the free current density and the polarization current. In the
quasistatic approximation one assumes that the frequency is small enough
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such that the inductive term on the right-hand side of Faradays law (4.6)

can be neglected. By introducing the complex frequency dependent

dielectric function

o'(r, w)
@

e(r, w) = &'(r, ) +ig"(r, w) = '(r, w)ey + i (5.16)

the electric field and the displacement are found to satisfy the equations

V- D(r, w)=0 (5.17)
VX E(r,w)=0 (5.18)
D(r, ®) = &(r, w)E(r, w) (5.19)

in the quasistatic approximation. If the electric field is replaced by the
potential these equations assume the same form as Eq. (5.2}, and hence
the methods discussed in Section V.A can be employed in their analysis.

The neglect of the induced electromagnetic force is justified if the
wavelength or penetration depth of the radiation is large compared to the
typical linear dimension of the scatterers. If the scattering is caused by
heterogeneities on the micrometer scale, as in many examples of interest,
the approximation will be valid well into the infrared region.

2. Experimental Observations for Rocks

The electrical conductivity of rocks fully or partially saturated with brine
is an important quantity for the reconstruction of subsurface geology from
borehole logs [281, 282]. The main contribution to the total conductivity
og of a sample S = P UM of brine-filled rock comes from the electrolyte
The contribution oy, from the rock matrix is usually negligible.* The
electrolyte filling the pore space contributes through its intrinsic elec-
trolytic conductivity o, as well as through electrochemical interactions at
the interface. The total dc conductivity of the sample is written as

54(0) = 3 54(0) + e 0) (5.20)

where ap,(0) is the dc conductivity of the electrolyte (usually salt water)
filling the pore space P and o,,(0) denotes the conductivity resulting
from the electrochemical boundary layer at the internal surface [283]. The
surface conductivity o,p(0) correlates well with the specific internal
surface S and indirectly with other quantities related to it. The factor F is

4 . . - - . . - -
Nonvanishing matrix conductivity does, however, occur in veinlike ores.
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called electrical formation factor. If the salinity of the pore water is high
or electrochemical effects are absent, the second term in Eq. (5.20) can
be neglected and the formation factor becomes identical with the
dimensionless resistivity of the sample normalized by the water resistivity.
In the following, the formation factor will be used synonymously for the
dimensionless inverse dc conductivity F = [a'(0)]".

The formation factor is usually correlated with the bulk porosity ¢ in a
relation known as ““Archie’s first equation™ [284]

F=¢ ™" (5.21)

where the so-called cementation index m scatters widely and often obeys
1.3=m=2.5 [281, 282]. Smaller values of m are associated empirically
with loosely packed media, while higher values are associated with more
consolidated and compacted media. Equation (5.21) implies not only an
algebraic correlation between a purely geometric quantity ¢ and a
transport coefficient F, but it also states that porous rocks do not show a
conductor—insulator transition at any finite porosity.

The experimental evidence for the postulated algebraic correlation
(5.21) between conductivity and porosity is weak. The available range of
the porosity rarely spans more than a decade. The corresponding
conductivity data scatier widely for measurements on porous rocks and
other media [188, 254, 281, 285~288]. The most reliable tests of Archies
law have been performed on artificial porous media made from sintering
glass beads [254, 285, 287]. These media have a microstructure very
similar to sandstone and are at the same time free from electrochemical
effects. A typical experimental result for glass beads is shown in Fig. 18
[287]. Note the small range of porosities in the figure. The existence of
nontrivial power law relations in such samples is better demonstrated by
correlating the conductivity with the permeability [170, 284]. In other
experiments on artificial media a mixture of rubber balls and water is
successively compressed while monitoring its conductivity [217, 289].
These experiments show deviations from the pure algebraic behavior
postulated by Eq. (5.21). If the cementation ‘“‘exponent” in Eq. (5.21) is
assumed to depend on ¢, then it increases at low porosities in agreement
with the general trend that higher values correspond to a higher degree of
compaction.

A much better confirmed observation on natural and artificial porous
rocks is dielectric enhancement caused by the disorder in the micro-
structure [89, 287, 290—295]. Dielectric enhancement due to disorder has
been studied extensively in percolation theory and experiment {40, 296,
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Figure 18, Log-log plot of formation factor versus porosity for sintered glass beads
with 200-300-pm diameter. The solid line is a fit to F =a¢p " with a=10.33 and a
cementation exponent m = 2.2 while the dashed line represents the results 2 =0.30 and
m =23 on the same system in [254]. (Reproduced with permission from [287].)

297]. An example is shown in Fig. 19 for the sintered glass bead media
containing thin-giass plates. In these media interfacial conductivity and
other electrochemical effects can be neglected [287}. The frequency is
plotted in units of wy = oy /(gyey) the relaxation frequency of water.
Although salt water and glass are essentially dispersion free in the
frequency range shown in Fig. 19 their mixture shows a pronounced
dispersion, which exceeds the values of the dielectric constants of both
components. Similar results can be found in [287]. In [295] the dielectric
response of a large number of sandstones and carbonates is given in terms
of the empirical Cole—Cole formula [298]. Interestingly, the corre-
sponding temporal relaxation function appears within the recent theory of
nonequilibrium systems [64], which is the same theory on which the
macroscopic local porosity distributions in Section III.A.5 were based.
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Figure 19. Log-log plot of the real part of the dielectric function versus normalized
frequency w/w,, where g, = o4/{e,84) is the relaxation frequency of water for samples with
porosities close to 5%. The different symbols denote different concentrations of thin glass
plates p defined as the ratio of the mass of the glass plates divided by the total mass of glass
in the sample [362].

3. Theoretical Mixing Laws

a. Spectral Theories. Dielectric mixing laws express the frequency
dependent dielectric function or conductivity of a two-component mixture
in terms of the dielectric functions of the constituents [31, 35, 40, 46].
Spectral theories express the effective dielectric function in terms of an
abstract pole spectrum which is independent of the dielectric functions &
and g, of the two constituents filling the pore and matrix space [293,
299-309]. Theoretically, the effective diclectric function may be written
as

(5.22)

o an
§=5M(1—2 S_b)
=1
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where

5= (1 —i)_l (5.23)

Em

The constants a, and b, are the strength and location of the poles and
they reflect the influence of the microgeometry. Unfortunately, these
parameters do not have a direct geometrical interpretation, although
under the assumption of stationarity and isotropy two sum rules are
known that connect integrals of the pole spectrum with the bulk porosity
[40].

b. Geometric Theories. The simplest geometric theories for the effec-
tive dielectric function # are mean-field theories. In these approxi-
mations, a small spherical cell with a randomly valued diclectric constant
¢ is embedded into a homogeneous host medium of dieiectric constant &,.
Then the electrical analogue of Eq. (5.3) becomes

. — g, £—§g, -1
£ % (1+2< ¥ 2 >)(1_<s+2s;,>) (524)
where the average denotes an ensemble average using the probability

density w(e) of &. A two-component medium S=P UM can be repre-
sented by the binary probability density

w(e) = $8(e — £p) + (1~ $)8(e — £41) (5.25)

containing ¢ as the only geometrical input parameter. The Clausius—
Mossotti approximation [46, 310] for a two- -component medium is ob-
tained by setting £, = &, in the limit ¢— 0 or &, = &, in the limit d—1in
Eq. (5.24). In the former case one obtains

E— &y - Ep T Ey
£ +2gy ¢ £p + 26y (5.26)

which will be a good approximation at low porosities. Note that the
Clausius—Mossotti approximation is not symmetrical under exchanging
pore and matrix. A symmetrical and also self-consistent approximation is
obtained from Eq. (5.24) by setting ¢, = £. This leads to the symmetrical
effective medium approximation for a two-component medium

_ Ep—E o Egg T E
¢ e r2s T =0 G.27)
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which also could have been derived from using Eq. (5.25) in Eq. (5.12).
The effective medium approximation is a very good approximation for
microstructures consisting of a smail concentration of nonoverlapping
spherical grains embedded in a host. Recently, much effort has been
expended to show that the effective medium approximation (EMA)
becomes exact for certain pathological microstructures [311]. The so-
called asymmetrical or differential effective medium approximation is
obtained by iterating the Clausius—-Mossotti equation, which gives the
effective conductivity to lowest order in ¢ [285, 312, 313]. One finds the
result

( T () g) (5.28)

Ep T Ey

for spherically shaped inclusions.

The symmetric and asymmetric effective medium approximations can
be generalized to ellipoidal inclusions because the electric field and
polarization inside the ellipsoid remain uniform in an applied external
field [40, 310, 312]. For aligned oblate spheroids whose quadratic form is
(x/b,)* + (y/b,)* +(z/b;)’ =1 with b, = b, the effective medium theory
for a two-component composite results in two coupled equations

_ £p — & _ &g, — &
¢ 1+ A(ep,~ &) t-é) 1+A£(£M‘-_‘§i) =0 (3:29)
where the index i =1 denotes vertical conductivities and the index i=2

denotes horizontal conductivities. The two equations in Eq. (5.29) are
coupled through '

L.
A=— (5.30)
&
2L,=(—L) (5.31)
L,=(e "’ +e ")e—arctan e} {5.32)
b3E
e=\-21_1 (5.33)
bie,

with 1 =L, =1. The generalization of the asymmetric effective medium
theory [Eq. (5.28)] to aligned spheroids with depolarization factor L was
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given in [285] as

ihalTH (i'—’l)L - & (5.34)

Ep— &y \ £

For spheroids with identical shape but isotropically distributed orienta-
tions

£ — gy sp)[sL(l-Lw(HaL)]
Ep — Ey N E
(5—3L)ep + (1 + 3L )&, \ (20-3L)2(1+30)(5-30))
(5—-3L) +(1+3L)ey

=¢
(5.35)

was obtained in [205, 292, 314]. Equation (5.34) will be referred to as the
Sen—Scala—Cohen model (SSC) and Eq. (5.35) will be called the uniform
spheroid model (USM).

Recently, local porosity theory has been proposed as an alternative
generalization of effective medium theories [168-175]. The simplest
mean-field theories [Eqgs. (5.26)-(5.28)] are based on the simplest
geometric characterization theories of Section IILLA.1. The theories are
usually interpreted geometrically in terms of grain models (see Section
1I1.B.2) with spherical grains embedded into a homogeneous host
material. The generalizations (5.29), (5.34), and (5.35) are obtained by
generalizing the interpretation to more general grain models. Local
porosity theory on the other hand is based on generalizing the geometric
characterization by using local geometry distributions (see Section
1I1.A.5) rather than simply porosity or specific surface area alone. In
Section II1.A.5 two different types of local geometry distributions were
introduced: Macroscopic distributions with infinitely large measurement
cells defined in Eq. (3.52), and mesoscopic distributions with measure-
ment cells of finite volume defined in Eq. (3.33). For a mesoscopic
partitioning % of the sample using a simple cubic lattice with cubic unit
cell K the self-consistency equation of local porosity theory for £ reads

fo l:-:;((j))-:;é Mo: K) +%(1 —Me; K))]u(tﬁ; i) dd =0

(5.36)

where A(¢;[K) is the local percolation probability defined in Section
HI.LAS5.d, and £(d) and g,(¢) are the local dielectric functions of
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percolating or conducting (index ) and nonpercolating or blocking
(index B) measurement cells. In Eq. (5.40) it is assumed that the local
dielectric response depends only on the porosity, but this may be
generalized to include other geometrical characteristics.

Equation (5.36) has two interesting special cases. For a cubic measure-
ment lattice (z = 6) in the limit L -0 in which the side length L of the
cubic cells is small the one-cell local porosity distribution is given by Eq.
(3.31) or (3.34) if the medium is mixing. Inserting Eq. (3.31) or (3.34)
into Eq. (5.36) and using A(0)=0, A(1)=1, &.(0)=¢£,(0)=¢g,, and
£c(1) = gx(1) = g, yields Eq. (5.27) for traditional effective medium
theory. Note, however, that in the limit L— 0 the local porosities become
highly correlated rendering a description of the geometry in terms of the
one-cell function w(¢; ) more and more inadequate. This argument
does not apply in the opposite limit L— < in which the measurement
cells i become very large. For stationary media, the local porosities in
nonoverlapping measurement cells are uncorrelated in the limit L oo,
For stationary and mixing media the local porosity distribution

lim (93 bK) =3( ~ 6) (5.37)

becomes concentrated at a single point according to Eq. (3.32) or (3.35).
Assuming, as before, that the limit is independent of the shape of K
Equation (5.36) reduces to

EC(‘E)_E 53(‘5)_5 _
e(d) 1 28 @z 0 G®

which is identical to Eq. (5.27) except for the replacement of ¢ by A(&),
gy DY £5(&), and £, by £.(¢). Repeating the same differential replace-
ment arguments [285) that lead to Eq. (5.28) for A(¢) instead of ¢ gives
a differential version of mesoscopic local porosity theory in the limit
L—x

M) +(1-A(4))

E-eal®) (2l ®)_,
e ) -3

Note that the limiting equations (5.38) and (5.39) for L — o contain
geometric information about the pore space that goes beyond the bulk
porosity and is contained in the function A(¢).

As discussed in Section III.A.5.e the 8 distribution is not the only
possible macroscopic limit. Macroscopically heterogeneous media are
described by the limiting macroscopic local porosity densitics
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n(¢; @, C, D) defined in Eq. (3.52). The & distribution 3(¢ — &) is
obtained in the limit @ — 1 or in the degenerate case arising for D =0,
The macroscopic form of local porosity theory for the effective dielectric
constant is given by the integral equation

L [ fﬁ)); 75 AB)+ :f(((f)); —(1- A(qb))]
X pl; @, C,D)de =0 (5.40)

with w(¢; w, C, D) defined in Eq. (3.52) and w#1 and D #0. If the
parameters @ = w(d, ¢%, "), D =D(,¢°, ¢°), and C=C(¢, ¢°, ¢°),
are expressed in terms of the moments according to Eq. (3.53) the
resulting effective dielectric function &= &(¢, ¢*, ¢°) is found to be a
function of the bulk porosity and its fluctuations. This observation
indicates the possibility to study Archie’s law within the framework of
local porosity theory.

4. Archie’s Law

Archie’s law [Eq. (5.21)] concerns the effective de conductivity, o'(0),
and can be studied by replacing ¢ with o’(0) in all the formulas of Section
V.B.3. For notational convenience the shorthand notation o'(0) = o will
be employed in this section. Archie’s law can then be discussed by
replacing & with ¢ throughout and setting o, = 0. From the Clausius—
Mossott] formula (5.26) one obtains the relation

_ 24

(5.41)

[¥FY]
|
A=

which reproduces Archie’s law (5.21) with a cementation exponent
m = 1. The symmetrical effective medium approximation (5.27) gives

. Op . -
o= (Bd—1) (5.42)
for ¢ >1 and =0 for ¢ =1. Thus the symmetrical effective medium
theory predicts a percolation transition at ¢, =1 and does not agree with
Archie’s law (5.21) in this respect. The same conclusion holds for the
anisotropic generalization of the symmetric theory to nonspherical inclu-
sions given in Eq. (5.29).

For the asymmetric effective medium theory in its simplest form (5.28)
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one finds
F=apd’’ (5.43)

consistent with Archies law (5.21) with cementation exponent m =3,
This expression has found much attention because it yields m # 1 [205,
285, 312, 314, 315]). There are, however, several problems with Eq.
(5.43). Its derivation implies that the solid component is not connected
[312]. The experimentally observed behavior is often not algebraic, and if
a power law is nevertheless assumed its exponent is often very different
from 2. Most importantly, the frequency dependent theory does not
predict sufficient dielectric ephancement. The first problem can be
circumvented by generalizing to a three-component medium [313, 316],
the second can be overcome by considering nonspherical inclusions [205,
285, 312, 314, 315]. As an example the generalization to nonspherical
grains [Eq. (5.34)] gives

=o' U (5.44)

with 1 =L =1, and the uniform spheroid model gives a similar result.
The most serious problem, however, is the fact pointed out in {285, 292]
that Eq. (5.28) cannot reproduce the frequency dependence of & and the
observed dielectric enhancement. This will be discussed further in Section
V.B.5.

Local porosity theory contains geometrical information above and
beyond the average porosity ¢. Consequently, it predicts more general
relationships between porosity and conductivity. In its simplest form Eq.
{5.38) leads to

UC(;’) GBA(E) - 1) (5.45)

&:

which may or may not have a percolation transition depending on
whether the equation

Ad) = (5.46)

i

has a solution 0< ¢, <1 that can be interpreted as a critical porosity.
Therefore, the percolation threshold can arise at any porosity including
¢.=0. This fact reconciles percolation theory with Archie’s law. Note
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also that the behavior is nonuniversal’ and depends on the local
percolation probability function A(¢), and the local response o d).
Similarly, the differential form (5.39) of local porosity theory yields

& =0 GIMF) (5.47)

which is more versatile than Eq. (5.44). The preceding results hold for
large measurement cells when u(¢)=38(¢ —¢). For general local
porosity distributions equation (5.36) gives the result [168)

G=ay(p—p.) (5.48)

where p, =1,

1 _ [ Ao K¢ K)
T Jo c@ (5-49)

and p is the control parameter of the percolation transition

p= | M (310 do (5.50)

giving the total fraction of percolating local gcometries. The result [Eq.
(5.48)] applies if ¢— 0 for all values of p, and also if p— p, at arbitrary
¢. It holds universally as long as

[ 2@ 0u(g: 30 do <o (551)

the inverse first moment is finite [317]. This condition is violated for the
macroscopic distributions p(¢; w, C, D) if all cells are percolating,
A(¢)=1. In such a case if A(@)p(d)xd ™ as ¢ —0, then Eq. (5.48) is
replaced with [317]

Gox(p—p,)HOmetBoTe0) (5.52)

where o depends on the moments ¢" because w depends on them
through Eq. (3.53).

Compaction and consolidation processes will in general change the
local porosity distribution u(¢) where its dependence on K or the
parameters @, C, D has been suppressed. Assume that it is possible to

* The staterent in [41] that local porosity theory predicts Archies law with a universal
exponent is incorrect.
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describe the consolidation process as a one parameter family . (¢) of
local porosity distributions depending on a parameter g, which character-
izes the compaction process. Then the total fraction p, the bulk porosity
&, and the integral (5.49) become functions of g. If it is possible to invert
the relation ¢ = ¢(g), then the fraction p becomes p = p(¢), and equally

= o,($). Therefore, Egs. (5.48) and (5.52) become por031ty—conduc-
tmty relations which depend on the consolidation process If the
condition (5.51) and the asymptotic expansion a(¢)=¢"(1+---) and
p(d)=p, + ¢?(p,+---) hold, then these equations yield Archies law
{5.21) with a nonuniversal cementation index m = 8 + . If the condition
(5.51) does not hold and A(¢)u(dp) = ¢ “, then

(5.53)

which is even less universal. The validity of the expansion p(¢)xp, +
¢"(p, + - --) has been tested by experiment [173, 174]. Figure 20 shows
the functlon p(¢) obtained for sintering of glass beads. The measured
data are the points, the solid curve represents a fit p(é)=1.514"%
through the data. This fit was chosen to indicate that the comsolidation
process of sintering glass beads is expected to show a percolation
transition at small but finite threshold ¢, [173, 174}. Note, however, that
the data of Fig. 20 are consistent with the form p(d)ep, + ¢(p, +--*)
corresponding to y=1.

5. Dieleciric Dispersion and Enhancement

The theoretical mixing laws for the frequency dependent dielectric
function discussed in Section V.B.3 can be compared with experiment.
Spectral theories generally give good fits to the experimental data [287,
293] but do not allow a geometrical interpretation. Geometrical theories
on the other hand contain independently observable geometric charac-
teristics, and can be falsified by experiment.

The single parameter mean-field theories Egs. (5.12), (5.26) and
(5.28) contain only the bulk porosity as a geometrical quantity. They are
generally unable to reproduce the observed dielectric dispersion and
enhancement. This is illustrated in Fig. 21, which shows the experimental
measurements of the real part of the frequency dependent dielectric
function as solid circles [175]). The results were obtained for a brine

®The statement in [41] that local porosity theory predicts Archies law with a universal
cementation index is incorrect.
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Figure 20. Total fraction of percolating local geometries p for the sintering process of
90 wm glass beads as parametrized by the bulk porosity & [173].

saturated sample of sintered 250-um glass spheres. The porosity of the
specimen was 10.7%, and the water conductivity was 12.4mSm LA
cross-sectional image of the pore space has been displayed in Fig. 13. The
frequency in Fig. 21 is dimensionless and measured in units of the
relaxation frequency of water wy = oy /(g8 ) where o, and &y, are the
conductivity and dielectric constant of water, which are constant over the
frequency range of interest.” With the porosity known from independent
measurements the simple mean-field mixing laws can be tested without
adjustable parameters. The prediction of the Clausius—Mossotti approxi-
mation (5.26) is shown as the solid line with water as the uniform
background, and as the dashed line with glass as background. The
prediction of the symmetrical effective medium theory [Eq. (5.27)] is
shown as the dotted line. The asymmetrical (differential) effective

” For water with a4, = 12.4mSm™" the relaxation frequency is wy, =2.82 MHz.
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Figure 21. Comparison of simple mean-field theory predictions with the experimentally
observed dielectric response of sintered glass beads as a function of frequency. The solid
circles are the experimental results for a 10.7% sample of sintered 250-um glass beads filled
with water having o, = 12.4 mS m~". The solid line is the Clausius—Mossotti prediction [Eq.
(5.26)] with water background, the dashed line corresponds to the same with glass
background. The dotted line is the symmetrical effective medium theory {Eq. (5.27)], the
dash—dotted line is the asymmetrical effective medium theory [Eq. (5.28)] [175].

medium scheme (5.28), shown as the dash—dotted curve, appears io
reproduce the high-frequency behavior correctly, but does not give the
low-frequency enhancement.

To compare the experimental observations with the Sen—Scala—Cohen
model [Eq. (5.34)] or with the uniform spheroid modei [Eq. {5.35)] the
depolarization factor L of the ellipsoids has to be treated as a free-fit
parameter [175]. In the case of local porosity theory the local porosity
distributions p{¢;K) have been measured independently from cross
sections through the pore space using image processing techniques. The
resulting distributions have been dlsplayed in Fig. 15 for different sizes L
of the cubic measurement ceils® The local percolation probability
function A(¢) on the other hand has not yet been measured directly from
pore-space reconstruction. Instead, the result for p(d) displayed as the
power law fit in Fig. 20 was combined with the fact that A()=p(¢)in
the limit of large measurement cells in which u(¢) becomes a &
distribution concentrated at ¢ [see Eq. (3.32) or (3.35)]. These observa-

®The side length of the measurement cell and the depolarization factor have been
denoted by the same symbol L. Their distinction should be clear from the context.
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Figure 22, log-log plot of theoretical predictions for the dielectric dispersion with
experimental observations of the effect. Solid circles represeni experimental measurements
of the effective real dielectric constant and the effective real conductivity as a function of
frequency. The dielectric function decreases from left to right, and its values are read from
the labels on the left axis. The conductivity increases from left to right and is indicated on
the right axis. The dotted line is obtained as a best fit to Eq. (5.34) with L =0.387 for the
depolarization factor. The dashed line corresponds to the uniform spheroid model [Eq.

(5.34)] with L = 0.597 corresponding to an aspect ratio of 2.38 for the oblate spheroid. The
solid lines are obtained from local porosity theory (5.36) using ¢ = 0.2035 [Eq. (5.28)] [175].

tions and measurements motivate the Ansatz A(¢)= ¢° treating { as a
single free-fit parameter. Fig. 22 shows fits for the frequency dependent
real dielectric function '(w) and inverse formation factor F(w). In Fig.
22 the circles are the experimental results. All curves represent one
parameter fits to the experimental data. The solid curves are obtained
from local porosity theory [Eq. (5.36)] using ¢ = 0.2035 as the best value
of the fit parameter. The local porosity distributions were those of Fig. 15
for measurement cells of side length 50 pixels. The dashed curves
correspond to the uniform spheroid model [Eq. (5.35)] with a depolariza-
tion factor of 0.397 as the best value of its fit parameter. The dotted
curves represent the Sen—Scala—Cohen model with a best value of 0.387
for the depolarization.

Similar experimental results for the diclectric dispersion have been
observed in natural rock samples [292]. Figure 8 in [292] compares the
measurements only to the uniform spheroid model. Similar to the results
of {175] on sintered glass beads the uniform spheroid model did not
reproduce the dielectric enhancement, and required too high aspect ratios
to be realistic for the observed microstructure.

Local porosity theory has also been used to estimate the broadening of
the dielectric relaxation of polymers blends {174].
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C. Single-Phase Fluid Flow
1. Permeability and Darcy’s Law

The permeability is the most important physical property of a porous
medium in much the same way as the porosity is its most important
geometrical property. Some authors define porous media as media with a
nonvanishing permeability [2]. Permeability measures quantitatively the
ability of a porous medium to conduct fluid flow. The permeability tensor
K relates the macroscopic flow density ¥ to the applied pressure gradient
VP or external field F through

-

V=" (F-VP) (5.54)

where 7 is the dynamic viscosity of the fluid. The parameter v is the
volumetric flow rate per unit area of cross section. Equation (5.54) is
known as Darcy’s law.

The permeability has dimensions of an area, and it is measured in units
of Darcy (d). If the pressure is measured in physical atmospheres one has
1d = 0.9869 um” while 1d =1.0197 pm’® if the pressure is measured in
technical atmospheres. To within practical measuring accuracy one may
often assume 1d = 10""> m®. An important question arising from the fact
that K is dimensionally an area concerns the interpretation of this area or
length scale in terms of the underlying geometry. This fundamental
question has recently found renewed interest [4, 43, 170, 172, 318-320}.
Unfortunately, most answers proposed in these discussions [4, 318-320]
give a dynamic rather than geometrical interpretation of this length scale.
The traditional answer to this basic problem is provided by hydraulic
radius theory [2, 3]. It gives a geometrical interpretation that is based on
the capillary models of Section IIL.B.1, and it will be discussed in Section
V.C.2.

The permeability does not appear in the microscopic Stokes or Navier—
Stokes equations. Darcy’s law and with it the permeability concept can be
derived from microscopic Stokes flow equations using homogenization
techniques [38, 268-271, 321], which are asymptotic expansions in the
ratio of microscopic to macroscopic length scales. The derivation will be
given in Section V.C.3 below.

The linear Darcy law holds for flows at low Reynolds numbers in
which the driving forces are small and balanced only by the viscous
forces. Various nonlinear generalizations of Darcy’s law have aiso been
derived using homogenization or volume averaging methods [1, 38, 268,
269, 271, 321-325]. If a nonlincar Darcy law governs the flow in a given
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experiment this would appear in the measurement as if the permeability
becomes velocity dependent. The linear Darcy law breaks down also if
the flow becomes too slow. In this case interactions between the fluid and
the pore walls become important. Examples occur during the slow
movement of polar liquids or electrolytes in finely porous materials with
high specific internal surface.

2. Hydraulic Radius Theory

The hydraulic radius theory or Carman-Kozeny model is based on the
geometrical models of capillary tubes discussed above in Section 1IL.B.1.
In such capillary models the permeability can be obtained exactly from
the solution of the Navier-Stokes Eq. (4.9} in the capillary. Consider a
eylindrical capillary tube of length L and radius a directed along the x
direction. The velocity field v(r) for creeping laminar flow is of the form
v(r) =v(r)e,, where e, denotes a unit vector along the pipe, and r
measures the distance from the center of the pipe. The pressure has the
form. P(r) = P(x)e,. Assuming ‘‘no-slip” boundary conditions, v(a) = 0, at
the tube walls one obtains for v(r) the familiar Hagen—Poiseuille result
(326}

P(x) = P(0) — (P(0) — PLY) T (5.55)
v = _P(0)4;L}J L) (2 2y (5.56)

with a parabolic velocity and linear pressure profile. The volume flow rate
() is obtained through integration as

ma’ P(0)— P(L)
81 L

Q= J: v(r)2ar dr = (5.57)

Consider now the capillary tube model of Section IIL.B.1 with a cubic
sample space S of side length L. The pore space P consists of N
nonintersecting capillary tubes of radii a; and lengths L, distributed
according to a joint probability density II(a, ). The pressure drop must
then be calculated over the length L, and thus the right-hand side of Eq.
(5.57) is multiplied by a factor L/L,. Because the tubes are nonintersect-
ing, the volume flow @, through each of the tubes can be added to give
the macroscopic volume flow rate per unit area v = (1/L EX, Q,. Thus
the permeability of the capillary tube model is simply additive, and it
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a

_—

ks

k=3 &

ler
|

(5.58)

i

Dimensional analysis of Egs. (3.58), (3.59), and (5.58) shows that
kS*/¢” is dimensionless. Averaging Eq. (5.58) as well as Eqgs. (3.58) and
(3.59) for the porosity and specific internal surface of the capillary tube
model yields the relation

() =52 (559)
where the mixed-moment ratio
c=L < > ((ai>>3 (5.60)

is a dimensionless number, and the angular brackets denote as usual the
average with respect to 1l{a, L).

The hydraulic radius theory or Carman-Kozeny model is obtained
from a mean-field approximation which assumes {f(x)) =f({x}). The
approximation becomes exact if the distribution is sharply peaked or if
L,=L and a,=a for all N. With this approximation the average
permeability (k) may be rewritten in terms of the average hydraulic
radius (R, ) defined in Eq. (3.66) as

(@) ($)° (&) <_¢ﬁ>z<¢><RH>2z<¢><a>2
2(7) (8)Y? 26T’ 2T)? 8(7)?

(k) =~
(5.61)

where {J) = (L) /L is the average of the tortuosity defined above in Eq.
(3.62). Equation (5.61) is one of the main results of hydraulic radius
theory. The permeability is expressed as the square of an average
hydraulic radius {R,;), which is related to the average “pore width” as
(Ry) ={(a)/2.

It must be stressed that hydraulic radius theory is not exact even for
the simple capillary tube model because in general (R} # (¢)/{S) and
C+# ()%, However, interesting exact relations for the average per-
meability can be obtained from Egs. (5.59) and (5.60} in various special
cases without employing the mean-field approximation of hydraulic radius
theory. If the tube radii and lengths are independent, then the dis-
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tribution factorizes as Il(a, L} = 1I,{a)T1,(L). In this case the permeabili-
ty may be written as

() = 1{UT) (a)(a)? ($) () (1/T) (a*)
2(T) (&) (8 8 (T) (D)

(5.62)

where (7} is the average of the tortuosity factor defined in Eq. (3.62).
The last equality interprets (k) in terms of the microscopic effective cross
section {(a*)/(a*) determined by the variance and curtosis of the
distribution of tube radii. Further specialization to the cases L, =1 or
a, = a is readily carried out from these results.

Finally, it is of interest to comsider also the capillary slit model of
Section I11.B.1. The model assumes again a cubic sample of side length L
containing a pore space consisting of parallel slits with random widths
governed by a probability density I1(b). For flat planes without undula-
tions the analogue of tortuosity is absent. The average permeability is
obtained in this case as

10°) {¢)°
3(b) (S)*
which has the same form as Eq. (5.59) with a constant C= (b {b)>.

The prefactor one-third is due to the different shape of the capillaries,
which are planes rather than tubes.

(k)= (5.63)

3. Derivation of Darcy’s Law from Stokes Equation

The previous section V.C.2 has shown that Darcy’s law arises in the
capillary models. This raises the question of whether it can be derived
more generally. This section shows that Darcy’s law can be obtained from
Stokes equation for a slow fiow. It arises to lowest order in an asymptotic
expansion whose small parameter is the ratio of microscopic to macro-
scopic length scales.

Consider the stationary and creeping (low Reynolds number) flow of a
Newtonian incompressible fluid through a porous medium whose matrix
is assumed to be rigid. The microscopic flow through the pore space P is
governed by the stationary Stokes equations for the velocity v(r) and
pressure P(r)

7 Av(r) + F —VP(r) =0 (5.64)

V' -v(r)=0 (5.65)
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inside the pore space, P 3r, with no slip boundary condition
v(ir)=0 (5.66)

for r € 8. The body force F and the dynamic viscosity n are assumed to
be constant.

The derivation of Darcy’s law assumes that the pore space P has a
characteristic length scale ¢, which is small compared to some macro-
scopic scale L. The microscopic scale ¢ could be the diameter of grains,
the macroscale L could be the diameter of the sample S or some other
macroscopic length such as the diameter of a measurement cell or the
wavelength of a seismic wave. The small ratio & =[/L provides a small
parameter for an asymptotic expansion. The expansion is constructed by
assuming that all properties and fields can be written as functions of two
new space variables x, y, which are related to the original space variable r
as x=r and y=r/e. All functions f(r) are now replaced with functions
f(x,y) and the slowly varying variable x is allowed to vary independently
of the rapidly varying variable y. This requires to replace the gradient
according to

) =V (r, 1) =V, %, ) + 3 V, 0 ) (5.67)

and the Laplacian is replaced similarly. The velocity and pressure are now
expanded in ¢ where the leading orders are chosen such that the solution
is not reduced to the trivial zero solution and the problem remains
physically meaningful. In the present case this leads to the expansions
[268, 271, 280]

v(r) = szv-ﬂ(x, y)+ v (x,y) 4 (5.68)
Plr) = Py(x,y)+ eP,(x,y) + -+ (5.69)

where x =r and y =r/e. Inserting into Egs. (5.64)—(5.66) yields to lowest
order in & the system of equations

V.Pyx,y}=0 inP (5.70)
Vi-v,=0 inP (5.71)
nAV,—V,P,—-V.P,+F=0 inP (5.72)

Viove+V -y, =0 inP (5.73)
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vo=0 onaP (5.74)

in the fast variable y. It follows from the first equation that Py(X,y)
depends only on the slow variable x, and thus it appears as an additional
external force for the determination of the dependence of v,(x,y) on y
from the remaining equations. Because the equations are linear the
solution v,(x, y) has the form

3 PQ
v =2 (B 5ot y) (79)

where the three vectors u,(x, y} (and the scalars Q,(x, y)) are the solutions
of the three systems (i=1,2,3)

V,-u=0 inP (5.76)
n4,u,-V,0,~e, =0 inP (5.77)
u,=0 onaafP (5.78)

and e, is a unit vector in the direction of the y,-axis.
It is now possible to average v, over the fast variable y. The spatial
average over a convex set K is defined as

6 1) = 57 | ol Vs ) (5.79)

where [ is centered at x and y,(x, ¥) = xx(r, r/¢) equals 1 or ( depending
on whether r € € or not. The dependence on the averaging region K has
been indicated explicitly. By using the notation of Eq. (2.20) the average
over all space is obtained as the limit lim_,  ¥,(x;slK) =¥,(x). The
function P, need not be averaged as it depends only on the slow variable
x. If v, is constant then V,(X) = v,$(x), which is known as the Jaw of
Dupuit—Forchheimer [1]. Averaging Eq. (5.75) gives Darcy’s law (5.54)
in the form

Volx; 1) =

B (p v py 00 (5.50)

where the components k,(x; K) = (K(x; [€)),; of the permeability tensor K
are expressed in terms of the solutions wu,(x; i) to Egs. (5.76)-(5.78)
within the region K as

(Kx; 1)), = (w;(x; 1)), (5.81)
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The permeability tensor is symmetric and positive definite [268]. Its
dependence on the configuration of the pore space P and the averaging
region I have been made explicit because they will play an important
role below. For isotropic and strictly periodic or stationary media the
permeability tensor reduces to a constant independent of x. For (quasi-)
periodic microgeometries or (quasi-)stationary random media averaging
Eq. (5.73) leads to the additional macroscopic relation

V%, K)=0 (5.82)

Equations (5.80) and (5.82) are the macroscopic laws governing the
microscopic Stokes flow obeying Eqs. (5.64)—(5.66) to leading order in
e=¢/L.

The importance of the homogenization technique illustrated here in a
simple example lies in the fact that it provides a systematic method to
obtain the reference problem for an cffective medium treatment.

Many of the examples for transport and relaxation in porous media
listed in Section IV can be homogenized using a similar technique {268].
The heterogeneous elliptic equation (4.2) is of particular interest. The
linear Darcy fiow derived in this section can be cast into the form of Eq.
{(4.2) for the pressure field. The permeability tensor may still depend on
the slow variable x, and it is therefore of interest to iterate the
homogenization procedure in order to see whether Darcy’s law becomes
again modified on larger scales. This question is discussed next.

4. Iterated Homogenization

The permeability K(x) for the macroscopic Darcy flow was obtained from
homogenizing the Stokes equation by averaging the fast variable y over a
region K. The dependence on the slow variable x allows for macroscopic
inhomogeneities of the permeability. This raises the question whether the
homogenization may be repeated to arrive at an averaged description for
a much larger megascopic scale.

If Eq. (5.80) is inserted into Eq. (5.82) and F=0 is assumed the
equation for the macroscopic pressure ficld becomes

v (K(x)VP(x)) =0 (5.83)

which is identical with Eq. (4.2). The equation must be suppiemented
with boundary conditions that can be obtained from the requirements of
mass and momentum conservation at the boundary of the region for
which Eq. (5.83) was derived. If the boundary marks a transition to a
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region with different permeability the boundary conditions require
continuity of pressure and normal component of the velocity.

Equation {5.83) holds at length scales L much larger than the pore
scale ¢, and much larger than the diameter of the averaging region K. To
homogenize it one must therefore consider length scales ¥ much larger
than ¢ such that

L << ¥ (5.84)

is fulfilled. The ratio 8 = /¥ is then a small parameter in terms of which
the homogenization procedure of Section V.C.3 can be iterated. The
pressure is expanded in terms of 8 as

P(x) = Py(s,z) + 8P,(s,2) + - -~ (5.85)

where now s =x is the slow variable, and z=s/8 is the rapidly varying
variable. Assuming that the medium is stationary, that is, K{z) does not
depend on the slow variable s, the resuit becomes [268, 271, 280]

V7 (KVP,(s)) =0 (5.86)

where Py(s) is the first term in the expansion of the pressure that is
independent of z, and the tensor K has components

QU

()q@@+2@m (5.87)

given in terms of three scalar fields Q,(j=1,2,3), which are obtained
from solving an equation of the form

k kik
DAL R

analogous to Eqgs. (5.76)-(5.78) in the homogenization of Stokes equa-
tion.

H the assumption of strict stationarity is relaxed the averaged per-
meability depends in general on the slow variable, and the homogenized
equation (5.86) then has the same form as the original Eq. (5.83). This
shows that the form of the macroscopic equation does not change under
further averaging. This highlights the importance of the averaged per-
meability as a key clement of every macroscopically homogeneous
description. Note, however, that the averaged tensor K may have a
different symmetiry than the original permeability. If K(x) = k(x)1 is
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isotropic (1 denotes the unit matrix) then K may become anisotropic
because of the second term appearing in Eq. (5.87).

5. Network Model

Consider a porous medium described by Eq. (5.83) for Darcy flow with a
stationary and isotropic local permeability function K(x) =k(x)1. The
expressions (5.87) and (5.88) for the effective permeability tensor K are
difficult to use for general random microstructures. Therefore, it remains
necessary to follow the strategy outlined in Section V.A.2 and to
discretize Eq. (5.83) using a finite difference scheme with lattice constant
L. As before, it is assumed that £ << L << ¥, where ¢ is the pore scale
and % is the system size. The discretization results in the linear network
equations (5.5) for a regular lattice with lattice constant L.

To make further progress it is necessary to specify the local per-
meabilities. A microscopic network model of tubes results from choosing
the expression

k@, €,L) = o “{, (5.89)

for a cylindrical capillary tube of radius « and length ¢ in a region of size
L. The parameters @ and ¢ must obey the geometrical conditions a = L/2
and €=L. In the resulting network model each bond represents a
winding tube with circular cross section whose diameter and length
fluctuate from bond to bond. The network model is completely specified
by assuming that the local geometries specified by a and ¢ are in-
dependent and identically distributed random variables with joint prob-
ability density TI(a, €). Note that the probability density H(a, ¢) depends
also on the discretization length through the constraints a=L/2 and
£=L.

By using the effective medium approximation to the network equations
the effective permeability & for this network model is the solution of the
self-consistency equation

L2 ma* - 81Lk
£ = .90
J J P 16LeE ———— e, ¢f)dad 0 {5.90)

where the restrictions on @ and ¢ are reflected in the limits of integration.
In simple cases, as for binary or uniform distributions, this equation can
be solved analytically, in other cases it is solved numerically. The
effective medium prediction agrees well with an exact solution of the
network equations [231]. The behavior of the effective permeability
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depends qualitatively on the fraction p of conducting tubes defined as
p=1 —linéJ' TI(a) da (5.91)
£—> 1]

where 1(a) = [; [l(a, €} d¢. For p>1 the permeability is positive while
for p<{ it vanishes. At p=p =1 the network has a percolation
transition. Note that p # ¢ is not related to the average porosity.

6. Local Porosity Theory

Consider, as in Section V.C.5, a porous medium described by Eq. (5.83)
for Darcy flow with a stationary and isotropic local permeability function
K(x)=k(x)1. A glance at Section III shows that the one-cell local
geometry distribution defined in Eq. (3.45) is particularly well adapted to
the discretization of Eq. (5.83). As before, the discretization employs a
cubic lattice with lattice constant L. and cubic measurement cells € and
yields a local geometry distribution p(¢, S;K). It is then natural to use
the Carman equation (5.59) locally because it is often an accurate
description as illustrated in Fig. 23. The straight line in Fig. 23 corre-
sponds to Eq. (5.59). The local percolation probabilities defined in
Section III.A.5.d complete the description. Each local geometry is
characterized by its local porosity, specific internal surface, and a binary
random variable indicating whether the geometry is percolating or not.
The self-consistent effective medium equation now reads

o Jo Co®+48%

for the effective permeability k. The control parameter for the underlying
percolation transition was given in Eq. (3.47) as

)= [ A S:0m(0, 5:16) do ds (599)

and it gives the total fraction of percolating local geometries. If the
guantity

A -1
ko = (L J; Co’ Me, S; K)u(e, S; I€) do dS) (5.94)
is finite then the solution to Eq. (5.92) is given approximately as

k=ky(p - p.) (5.95)
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for p>p,=1 and as k=0 for p<p,. This result is analogous to Eq.
(5.48) for the electrical conductivity. Note that the control parameter for
the underlying percolation transition differs from the bulk porosity p # ¢.

To study the implications of Eq. (5.92) it is necessary to supply explicit
expressions for the local geometry distribution p(é,S;L). Such an
expression is provided by the local poresity reduction model reviewed in
Section III.B.6. By writing the effective medium approximation for the
number 77 defined in Eq. (3.87) and using Eqgs. (3.86) and (3.88) it has
been shown that the effective permeability may be written approximately
as [170]

E= ) (5.96)

where the exponent 8 depends on the porosity reduction factor » and the
type of consolidation model characterized by Eq. (3.88) as

Inr
r—1

B=(3-2a) (5.97)
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If all local geometries are percolating, that is, if A =1, then the effective
permeability depends algebraically on the bulk porosity ¢ with a strongly
nonuniversal exponent 8. This dependence will be modified if the local
percolation probability A(¢) is not constant. The large variability is
consistent with experience from measuring permeabilities in experiment.
Figure 24 demonstrates the large data scatter seen in experimental
results. While in general small permeabilities correlate with small
porosities the correlation is not very pronounced.

D. Permeability Length Scales

The fact that the effective permeability & has dimensions of area raises
the qguestion whether Vk has an interpretation as a length scale. The
traditional answer to this question is provided by hydraulic radius theory,
which uses the approximate result of Eq. (5.61) for the capillary tube
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model to postulate more generally the relation

<
=
o

k

gl (5.98)
where Ry = ¢(8)/S(S) is the hydraulic radius. This generalization has
been modified by incorporating the formation factor to write [112, 327]

_ A

ko F (5.99)
where the length scale A = R,, is still given by the hydraulic radius, and
the geometrical tortuosity 9 ° was replaced by the electrical tortuosity
defined as 9% = F$. Because the length scale is still given by the
hydraulic radius this theory is still faced with the objection that the
hydraulic radius R, contains contributions from the dead ends that do
not contribute to the transport.

An alternative was proposed in {43, 318]. It postulates A = [, where [,
is a length scale related to the breakthrough pressure in mercury injection
experiments. The length scale [, is well defined for network models with a
broad distribution of cylindrical pores. A dynamical interpretation of A
was proposed in [319, 320, 328} as

2 1] |E(r)|2Xa|p(r) d*r
AT TIE® @ dr (5.100)

where E(r) is the unknown exact solution of the microscopic dielectric
problem. This ‘““electrical length” is expected to measure, somehow, the
“dynamically connected pore size” [4, 319, 328]. The interpretation of A
within local porosity theory is obtained by eliminating (p — p.) between
the result [Eq. (5.48)] for the conductivity, and Eq. (5.95) for the
permeability. This generally yields

j“’ J‘ Ao, S; (e, S; K)
Al 9 Jo T, (¢, 5)
r J'l Mo, S; ¥)u (e, S; K)
¢ JG k!oc(¢’a S)

de¢ dS

(5.101)

de dS

where o,,.(¢,S) and k,, (¢, 5) are the local electrical conductivity and
the local permeability. Thus A involves macroscopic geometrical in-
formation through ¢ and A and microscopic dynamical and geometrical
information through the local transport coefficients. If one assumes the
hydraulic radius expressions o, (¢, )< ¢ and &, (¢, S Y > /57 locally
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and the expression p(¢,S;K)=8(¢ —$)8(S—S) is valid for large
measurement cells, then it follows that A« @/S becomes the local
hydraulic radius [170]. This expression is no longer proportional to the
total internal surface but only to the average local internal surface. Thus
the argument against hydraulic radius theories no longer apply.

VI. IMMISCIBLE DISPLACEMENT

This section discusses the transition between microscopic and macro-
scopic length scales for the flow of two immiscible fluids through a porous
medium. Contrary to the previous sections, the macroscopic equations of
motion describing the immiscible displacement process are assumed to be
known from averaging the microscopic equations. The upscaling problem
is addressed by comparing the dimensional analysis of the given micro-
scopic and macroscopic equations. The original dimensional analysis
dates back to [49, 329-331], but continues to attract the attention of
recent authors [332-336]. This fact indicates the presence of unresolved
problems, which can be seen most clearly in capillary desaturation
experiments where they appear as large unexplained discrepancies in the
macroscopic balance of viscous and capillary forces. Recently, these
problems were traced to a tacit assumption underlying the traditional
dimensional analysis [47, 48]. This finding could lead to a resolution of
the discrepancies and has additional implications for laboratory measure-
ments of relative permeabilities [337], which will be discussed in Section
VI.C.3. The dimensional analysis of immiscible displacement will there-
fore be reviewed in this section providing a basis for quantitative
estimates of the relative importance of macroscopic viscous, capillary,
and gravitational forces. Such estimates were distorted in the traditional
analysis. The revised analysis allows one to predict segregation front
widths or gravitational relaxation times for different porous media [47,
48].

A. Experimental Observations

Consider the displacement of oil from an oil saturated porous medium
through injecting water at constant velocity. After steady-state flow
conditions are established a certain fraction Sg,” of oil remains micro-
scopically trapped inside the medium. The trapped oil can be mobilized if
the viscous forces overcome the capillary retention forces {333]. Displace-
ment experiments in a variety of porous media including micromodels
show a strong correlation between the residual oil saturation Sq, and the

? In all of Section VI the letter § denotes saturation, and should not be confused with the
usage in previous sections.
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capillary number Ca of the waterflood [2, 28, 203, 332, 338-341]. The
capillary number, defined as Ca= uu/o, is the dimensionless ratio of
viscous/capillary forces. Here u denotes an average microscopic velocity,
p is the viscosity, and o is the surface tension between the fluids,

The experimental curves Sg,(Ca) are called capillary number correla-
tions, recovery curves, or capillary desaturation curves, and they give the
residual oil saturation as a function of the capillary number of the fiood.
All such capillary desaturation curves exhibit a critical capillary number
Ca,_ below which the residual oil saturation remains constant. This critical
capillary number Ca, marks the point where the viscous forces equal the
capillary forces. Figure 25 shows a schematic drawing of the capillary
desaturation curves for unconsolidated sand, sandstone, and limestione
(after [28, 203]). Surprisingly, all experimentally observed values for Ca,
are much smalier than 1. For unconsolidated sand Ca, is often reported
to be Ca, = 10™*, while for sandstone Ca,~3x% 107% and for limestone
Ca_=~2 x 107" [28]. The exceedingly small values of Ca_ as well as their
dependence on the type of porous medium strongly suggest that the
microscopically defined capillary number Ca cannot be an adequate
measure of the balance between macroscopic viscous and macroscopic
capillary forces.

0.5 - . : T
Sand
Sandsion
- ==~ Limestone
0.4 1 b

-

0.0 T T 10 oF 10
Ca

Figure 25. Schematic plot of residual oil saturation S, (Ca) as function of microscopic
capillary number Ca for unconsolidated sands, sandstones, and limestones.
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The subsequent sections review recent work that relates the large
discrepancy between the observed force balance and the force balance
estimated from Ca to an implicit assumption in the traditional dimension-
al analysis [49, 329-331]. First, the microscopic equations of motion and
their dimensional analysis are recailed. This leads to the familiar dimen-
sionless numbers of fluid dynamics. Next, the accepted macroscopic
equations of motion are analyzed. This leads to macroscopic dimension-
less number, which are then retated to the traditional microscopic
dimensionless groups. The tesults are shown to be applicable to the
quantitative estimation of residual oil saturation, gravitational relaxation
times, and the width of the oil-water contact.

B. Microscopic Description
1. Microscopic Eguations of Motion

Microscopic equations of motion for two-phase flow in porous media are
commonly given as Stokes {or Navier—Stokes) equations for two incom-
pressible Newtonian fluids with no-slip and stress—balance boundary
conditions at the interfaces [270, 322, 342}. In the following, the wetting
fluid (water) will be denoted by a subscript YW while the nonwetting fluid
(o0il) is indexed with O. The solid rock matrix, mdexed as M, is assumed
to be porous and rigid. It fills a closed subset M C R’ of three dimension-
al space. The pore space P is filled with the two fluid phases described by
the two closed subsets W(r), O(f) CR’, which are in general time
dependent, and related to each other through the condition P =W(z) U
O(r). Note that P is independent of time because M is rigid while O(t)
and W(?) are not. The rigid rock surface will be denoted as M, and the
mobile oil-water interface as (OW)(1) = C(r) N W(). A standard formu-
lation of pore-scale equations of motion for two incompressible and
immiscible fluids flowing through a porous medium are the Navier—Stokes
eguations

dv
Py 8? + Pw(“'w V)V = tay Avyy + py 8V2 — VPy
(6.1)
dvg T
pe—3 t Po(Ve VIVg = pg Avy + py gV — VP
and the incompressibility conditions

Vivy=0
(6.2

Vievy,=0 )

where vy, (X, 1), vo(x, ) are the velocity fields for water and oil; Py(x, 1),
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P.(x,t) are the pressure fields in the two phases; py, pg are the
densities; p, po are the dynamic viscosities; and g is the gravitational
constant. The vector x* = (x, y, z) denotes the coordinate vector, ¢ is the
time, V7 = (3/9x, 8/dy, 8/9z) is the gradient operator, A is the Laplacian,
and the superscript 7 denotes transposition. The gravitational force is
directed along the z axis and it represents an external body force.
Although gravity effects are often small for pore-scale processes [see Eq.
(6.37)], there has recently been a growing interest in modeling gravity
effects at the pore scale [42, 245, 246, 343].

The microscopic formulation is completed by specifying an initial fiuid
distribution W(z = (), (¢ =0) and boundary conditions. The latter are
usually no-slip boundary conditions at solid-fluid interfaces,

vy =0 at oMl

V=0 at ol (63)
as well as for the fluid—fhud interface,
Yo = Vg at (OW)(1) (6.4)
combined with stress—balance across the fluid—fluid interface,
Ty "N =1Tg N+ 205 kD at H(OW)H() (6.5)

Here oy denotes the water—oil interfacial tension, « is the curvature of
the oil-water interface, and n is a unit normal to it. The stress tensor
7(x, t) for the two fluids is given in terms of v and P as

7=—Pl+ uSW" (6.6)
where the symmetrization operator & acts as
FA=1(A+A"—ZtrAl) (6.7)

on the matrix A, and 1 is the identity matrix.

The pore-space boundary oM is given and fixed while the fluid—fluid
interface 3(OW)(?) has to be determined self-consistently as part of the
solution. For W =0 or 00 = § the above formulation of two-phase flow at
the pore scale reduces to the standard formulation of single-phase flow of
water or oil at the pore scaie.

2. The Contact Line Problem

The pore-scale equations of motion given in Section VI.B.1 contain a
self-contradiction. The problem arises from the system of contact lines
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defined as
A(MOW)(F) = oM U 3(OW)(1) (6.8)

on the inner surface of the porous medium. The contact lines must in
general slip across the surface of the rock in direct contradiction to the
no-slip boundary condition Eq. (6.3). This self-contradiction is not
specific for flow in porous media but exists also for immiscible two-phase
flow in a tube or in other containers [344-346].

There exist several ways out of this classical dilemma depending on the
wetting properties of the fluids. For complete and uniform wetting a
microscopic precursor film of water wets the entire rock surface [344}. In
that case M N O(f) =9 and thus

H(MOW)(H) = {IMNWO]UMN O] N[0 NWE] =8  (6.9)

the problem does not appear.

For other wetting properties a phenomenological slipping model for
the manner in which the slipping occurs at the contact line is needed to
complete the pore-scale description of two-phase flow. The phenomeno-
logical slipping models describe the rtegion around the contact line
microscopically. The typical size of this region, calied the “slipping
length,” is around 10" m. Therefore, the problem of contact lines is
particularly acute for immiscible displacement in microporous media, and
the Navier-Stokes description of Section VI.B.1 does not apply for such
media.

3. Microscopic Dimensional Analysis

Given a microscopic model for contact line slipping the mext step is to
evaluate the relative importance of the different terms in the equations of
motion at the pore scale. This is done by casting them into dimensionless
form using the definitions

x={X (6.10)
ﬁ

V=7 (6.11)

v=uv (6.12)

i
== (6.13)
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(6.14)

S
It
N‘ A

g

W

hp (6.15)

P

where ¢ is a microscopic length, u is a microscopic velocity, and A
denotes the dimensionless equivalent of the quantity A.

With these definitions the dimensionless equations of motion on the
pore scale can be written as

6vw . 1 . 1 .. 1 4.
37 +(F V) = Re,, AV, + = vz - Wey, Vb,
. (6.16)
Mo b (T 9)io = e A+ oy ¥ o 9P
af o' VlVo= Reyg Yo B z Weg ' ©
¥ %, =0
L (6.17)
V «¥g=
with dimensionless boundary conditions
Vw=¥5=0 at I (6.18)
Vw=¥g at dowlt) (6.19)
. " Weg o
(P — Pyn= (R PV~ R—%‘?Vvo) ‘n
+ 2kn at Aoy () (6.20)
In these equations the microscopic dimensionless ratio
inertial forces  pwitf uf
®w = Viscous forces My Ty (6:21)
is the Reynolds number, and
& _ M
vy = ?wr (6.22)

is the kinernatic viscosity, which may be interpreted as a specific action or
a specific momentum transfer. The other fluid dynamic numbers are
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defined as

2 T <
Alu inertial forces
Fr= 2 \[gravitationai forces (6:23)
for the Froude number, and

_ pyu't _ inertial forces
" ogw  capillary forces

Wey (6.24)

for the Weber number. The corresponding dimensionless ratios for the oil
phase are related to those for the water phase as

Po My
Re, = Re,, —— 6.25
‘o Cuw Py Mg ( )
Pg
We, =We,, — (6.26)
Pyy

by viscosity and density ratios.

Table IV gives approximate values for densities, viscosities, and
surface tensions under reservoir conditions [47, 48]. In the following,
these values will be used to make order of magnitude estimates, Typical
pore sizes in an oil reservoir are of order £=~10"*m and microscopic
fluid velocities for reservoir floods range around u=3X10 °ms™'.
Combining these estimates with those of Table IV shows that the
dimensionless ratios obey Reg, Rey, Fr?, Weg, Wey, << 1. Therefore,
the pore-scale Eqgs. (6.16) reduce to the simpler Stokes form

-~ 1 Fa 1 A A
0= A¥,, +a;‘;w—v.i —TMVPW
(6.27)
- T .. ) P
0= AV, +—GEVZ_TEIUVPO
TABLE 1V

Order of Magnitude Estimates for Densities, Viscosities, and Surface Tension of Oil and
Water under Reservoir Conditions

Po Py Ho Fgy Cow
800kgm > 1000 kgm™® 0.0018Nm s 0.0009 N m™2s 0.035Nm™"
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where

Wey,  viscous forces  pywi  u

Caw = Rey, capillary forces ooy iy (6.28)
is the microscopic capillary number of water, and
Er’>  viscous forces u
Gr,, _ us forces (6.29)

“TRe,, gravity forces pugt’

is the microscopic “gravity number’’ of water. The capillary number is a
measure of velocity in units of

uk =W, (6.30)

a characteristic velocity at which the coherence of the oil-water interface
is destroyed by viscous forces. The capillary and gravity numbers for the
oil phase can again be expressed through density and viscosity ratios as

I8
Cag= Cawﬁ (6.31)
Pw Mo
Grg = Gry, —= 2 6.32
0= Crwi, (6.32)

Many other dimensionless ratios may be defined. Of general interest
are dimensionless space and time variables. Such ratios are formed as

Cay, Wey,  gravity forces  pugt’ &

T Gry  Fr* capillary forces  ogw €37

Gly,

(6.33)

which has been called the “gravillary number” [47, 48]. The gravillary
number becomes the better known bond number if the density py 18
replaced with the density difference py, — po. The corresponding length

(6.34)

separates capillary waves with wavelengths below ¢, from gravity waves
with wavelengths above ¢j,. A dimensionless time variable is formed
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from the gravillary and capillary numbers as

372

Gly  Rey (gravity f)
Cay  FryWey, (capillary f)''? x viscous f

PwTow8 ¢

TS (6:33)
where
£ Hoy
to = = 6.36
W ug VOowPwg ( )

is a characteristic time after which the imfluence of gravity dominates
viscous and capillary effects. The reader is cautioned not to misinterpret
the value of ty, in Table V as an indication that gravity forces dominate on
the pore scale.

Tabie V collects definitions and estimates for the dimensionless groups
and the numbers ¢*, u*, and v* characterizing the oil-water system. For
these estimates the values in Table IV together with the above estimates
of ¢ and u have been used. Table V shows that

viscous forces <= gravity forces << capillary forces (6.37)

and hence capillary forces dominate on the pore scale [2, 47, 48, 333].

" From the Stokes equation (6.27) it follows immediately that for
low-capillary number floods (Ca <1} the viscous term as well as the
shear term in the boundary condition (6.20) become negligible. There-
fore, the velocity field drops out, and the problem reduces to finding the
equilibrium capillary pressure field. The equilibrium configuration of the
oil-water interface then defines time-independent pathways for the flow
of oil and water. Hence, for flows with microscopic capillary numbers
Ca<x1 an improved methodology for a quantitative description of
immiscible displacement from pore-scale physics requires improved
calculations of capillary pressures from the pore scale, and much research
is devoted to this topic [246a, 347, 348].

C. Macroscopic Description
1. Macroscopic Equations of Motion

The accepted large-scale equations of motion for two-phase flow involve a
generalization of Darcy’s law to relative permeabilities including off-
diagonal viscous coupling terms [270, 321, 322, 349-352]. The importance
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TABLE V
QOverview of Definitions and Estimates for Charac-
teristic Microscopic Numbers Describing Oil and
Water Fiow under Reservoir Conditions

Quantity Definition Estimate
ut
Re,, e 33x10°
Moy
u
Cay atl 77x107°
Tow
It
Gry, Pw® 28%107°
Pwgt
(2
Gl,, LT A 28x1972
Oow
Ve Fu 4% 107" m?s™’
w Py
(e
7 f‘y‘ 389ms™
Y
Cr,
£ \/ p:“g I.9cm
M -4
t ——— 49x10"s
" VOowPw8

of viscous coupling terms has been recognized relatively late [353-357].
The equations that are generaily believed to describe multiphase flow on

the reservoir scale as well as on the laboratory scale may be written as
[322, 350]

_aSy =
’ o T (6.38)
Was'ﬂ_e'_ '
¢r VYo
- . K oo- = , K - __
Vi ™~ KWWE(VPW_ngvz)+Kwo‘£(VP0_Pogvz)
{6.39)

- K __ o — r K s5 v
Vo= _[KDWE(VPW - pwgVZ) + KD@M_D(VPO - p@sz)]
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SytSg=1 (6.40)
P, — Py, =P.(5y) (6.41)

where A denotes the macroscopic volume averaged equivalent of the
pore-scale quantity A. In the equations above K stands for the absolute
(single-phase flow) permeability tensor, Ki,, is the relative permeability
tensor for water, K, the oil relative permeability tensor, and Ky, Kow
denote the possibly anisotropic coupling terms. The relative per-
meabilities are matrix-valued functions of saturation. The saturations are
denoted as Sy, S5, and they depend on the macroscopic space and time
variables (X, f). The capillary pressure curve P (8,) and the relative
permeability tensors K (Sw) i, j=W, O must be known cither from
solving the pore-scale equatlons of motion, or from experiment. The
parameters K (Sw) and P(S,) are conventionally assumed to be
independent of v and P and this convention is followed here, although it
is conceivable that this is not generally correct [354].

Eliminating v and choosing P (%, f} and S,(X,7) as the principal

“unknowns one arrives at the large-scale two-phase flow equations

_ aS K
¢_—:V {wa(sw) { Pw ngvz)

+ Koo (7P~ pu¥2)+ FE.50) + (o1~ po)e %21

(6.42)
g 25w _g. {K@w(sw) (FF4y — pug¥7)
+ Kio($) o (VP — p¥2) + 92.(5,)
+ (- %)gvz‘]} (6.43)

for these two unknowns. Equations (6.42)} and (6.43) are coupled
nonlinear partial differential equations for the large-scale pressure and
saturation field of the water phase.

These equations must be complemented with large-scale boundary
conditions. For core experiments these are typically given by a surface
source on one side of the core, a surface sink on the opposite face, and
impermeable walls on the other faces. For a reservoir the boundary
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conditions depend on the drive configuration and the geological modeling
of the reservoir environment, so that Dirichlet as well as von Neumann
problems arise in practice [339, 351, 352].

2. Macroscopic Dimensional Analysis

The large-scale equations of motion can be cast in dimensionless form
using the definitions

X=X (6.44)
_ v
V=— 45
7 (6.45)
V=av (6.46)
_ &
F=— (6.47)
P=PBp (6.48)

where as before A denotes the dimensionless equivalent of the macro-
scopic quantity A. The length £ is now a macroscopic length, and & a
macroscopic (seepage or Darcy) velocity. The pressure P, denotes the
“breakthrough” pressure from the capillary pressure curve P.(Sy). It is
defined as

P, = I;r:(gb) (6.49)

where S, is the breakthrough saturation defined as the solution of the
equation

R
2745 (6.50)
dSy
Thus the dimensionless pressure is defined in terms of the inflection point
(ﬁb, S,) on the capillary pressure curve, and it gives a measure of the
macroscopic capillary pressure. Note that P, is process dependent, that is,
it will in general differ between imbibition and drainage. This dependence
reflects the influence of microscopic wetting properties [348] and flow
mechanisms on the macroscale [358].
The definition (6.48) differs from the traditional analysis [49, 329-
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331]. In the traditional analysis the normalized pressure field is defined as

Y|
eI

Mg U
k

P= (6.51)
which immediately gives rise to three problems. First, the permeability is
a tensor, and thus a certain nonuniqueness results in anisotropic situa-
tions [339]. Second, Eq. (6.51) neglects the importance of microscopic
wetting and saturation history dependence. The main problem, however,
is that Eq. (6.51) is not based on macroscopic capillary pressures but on
Darcy’s law, which describes macroscopic viscous pressure effects. On the
other hand, the normalization Eq. {6.48) is free from these problems and
it includes macroscopic capillarity in the same was as the microscopic
normalization Eq. (6.15) includes microscopic capillarity.

With the normalizations introduced above the dimensionless form of
the macroscopic two-phase flow equations (6.42) and (6.43) becomes

_ 38, = —— 2
¢—az~ V- | Ky (8 ) (Cap VP, ~Gry, V7)
t
+KW@(SW) [(Ca;\\EVP -Gry, V2)
+Caw1VP (Sy) + (1 - )Gr“TWIVz]} (6.52)
_6(1 ) o r — _4123 ——_1:4
@ —F = V- 1 Kow(Sw)(Cay, VP, —Gry, VZ)
t

+K00(Sw) [(CaWVP —-Gr;, V)

+Cay VP (S,,) + (1 - )erlv,z]} (6.53)
In these equations the dimensionless tensor

o frm i K- macroscopic viscous pressure drop
a = == - T
w macroscopic capillary pressure

(6.54)

b

plays the role of a macroscopic or large-scale capillary number. Similarly,




406 R. HILFER
the tensor

Moyt K- MAacroscopic viscous pressure drop
Pwg macroscopic gravitational pressure

Gry, =

(6.55)

corresponds to the macroscopic gravity number.

If the traditional normalization [Eq. (6.51)] is used instead of the
normalization Eq. (6.48), and isotropy is assumed, then the same
dimensionless equations are obtained with

Cay, =1 (6.56)

where Cay, is the macroscopic capillary number. Thus the traditional
normalization is equivalent to the assumption that the macroscopic
viscous pressure drop always equals the macroscopic capillary pressure.
While this assumption is not generally valid, it sometimes is a reasonable
approximation as illustrated below. First, however, the consequences of
the traditional assumption (6.56) for the measurement of relative per-
meabilities will be discussed.

3. Measurement of Relative Permeabilities

For simplicity only the isotropic case will be considered from now on, that
is, let K= k1 where 1 is the identity matrix. The tensors Cm and Gry,
then become Ca,, =Cay1 and Gry, =Gr,,1, where Ca,, and Gry, are the
macroscopic capillary and gravity numbers.

The unsteady state or displacement method of measuring relative
permeabilities consists of monitoring the production history and pressure
drop across the sample during a laboratory displacement process [2, 337,
359]. The relative permeability is obtained as the solution of an inverse
problem. The inverse problem consists in matching the measured pro-
duction history and pressure drop to the solutions of the multiphase fiow
equations (6.52) and (7.53) using the Buckley-Leverett approximation.

In the present formulation the Buckley—Leverett approximation com-
prises several independent assumptions. First, it is assumed that gravity
effects are absent, which amounts to the assumption

Cay, << Gry (6.57)
Second, the viscous coupling terms are neglected, that is,

- % «Cay, and Ky << Cay (6.58)
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Finally, the resulting equations

W r = :AW

$-2= {kww(sw)—éw} (6.59)
_o(1=8y) & ). o bw VP, VP.(S.)
gt —V{km(sw)po [-cgw+ o ]} (6.60)

arc further simplified by assuming that the term involving P(S,) in Eq.
(6.60) may be neglected [332].

Combining Eq. (6.57) with the traditional normalization Eq. (6.56)
yields the consistency condition

Gry, > 1 (6.61)

for the application of Buckley—Leverett theory in the determination of
relative permeabilities. It is now clear from the definition of the macro-
scopic gravity number [see Eq. (6.55)] that the consistent use of Buckley—
Leverett theory for the unsteady-state measurement of reiative per-
meabilities depends strongly on the flow reglme This is valid whether or
not the capillary pressure term P.(S,,) in Eq. (6.60) is neglected. In
addition to these consistency problems the Buckley-Leverett theory is
also plagued with stability problems [360].

4. Pore-Scale to Large-Scale Comparison

The comparison between the macroscopic and the microscopic dimen-
sional analysis is carried out by relating the microscopic and macroscopic
velocities and length scales. The macroscopic velocity is taken to be a
Darcy velocity defined as [see discussion following Eq. (5.79)]

= du (6.62)

where ¢ is the bulk porosity and u denotes the average microscopic flow
velocity introduced in the microscopic analysis [Eg. (6.12)]. The length
scales ¢ and £ are identical (£ = ¢).

Using these relations between microscopic and macroscopic length and
time scales together with the assumption of isotropy yields

Cay == =e = -y (6.63)

as the relationship between microscopic and macroscopic capillary num-
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bers. Similarly, one obtains

Gry (6.64)

(6.65)

for the macroscopic gravillary number. Note that the ratio oy / (£P,) is
the ratio of the microscopic to the macroscopic capillary pressures. The
characteristic numbers

— kP
vl =—" (6.66)
Dy
— k
¥ = Pwd? (6.67)
Moy P
_ P
fF =—2 6.68
W opwg ( )

are the macroscopic counterparts of the microscopic numbers defined in
Egs. (6.22), (6.30), and (6.34).

An interesting way of rewriting these relationships arises from inter-
preting the permeability as an effective microscopic cross-sectional area
of flow, combined with the Leverett J function. More precisely, let

A== (6.69)

denote a microscopic length that is characteristic for the pore-space
transport properties. Then Eqs. (6.63)-(6.65) may be rewritten as

— £ Cay

Ca,, = ————rr 6.70
AW A J(S,) cos 8 (6.70)

72

GW=P Gry, (6.71)
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Gly
—_— 6.72
{(S,)cos @ ( )

Gl,, =

‘~‘\|E>

where J(S,)=(P,Vk/$)/((ogy cos @) is the value of the Leverett—J
function [2, 28] at the saturation corresponding to breakthrough, and @ is
the wetting angle.

The capillary number scales as (£/A) while the gravity number scales
as (£/A)*. Inserting Egs. (6.71) and (6.72) into Eq. (6.57) implies that
the Buckley—Leverett approximation (6.57) becomes invalid whenever
¢ < AGly, /[J(S, ) cos 6].

5. Macroscopic Estimates

This section gives order of magnitude estimates for the relative impor-
tance of capillary, viscous, and gravity effects at different scales in
representative categories of porous media. These estimates illustrate the
usefulness of the macroscopic dimensionless ratios for the problem of
upscaling.

Three types of porous media are considered: high-permeability un-
consolidated sand, intermediate permeability sandstone, and low-per-
meability limestone. Representative values for ¢, k, and P, are shown in
Table VI.

To estimate the dimensionless numbers, the same microscopic velocity
u=~3x10"°ms™! as for the microscopic estimates will be used. The
length scale €, however, differs between a laboratory displacement and a
reservoir process. The parameters £,, =0.1m and ¢, =~ 100 m are used
as representative values. Combining these values with those in Tables IV
and VI yields the results shown in Table VIIL.

The first row in Table VII can be used to check the consistency of the
Buckley-Leverett approximation with the traditional normalization. The
consistency condition [Eq. (6.61)] is violated for unconsolidated sand and

TABLE VI
Representative Values for Porosity, Permeability, and Breakthrough Capillary Pressure in
Unconsolidated Sand, Sandstone, and Low-Permeability Limestone

Quantity Sand Sandstone Limestone
@ 0.36 0.22 0.20
k 10,000 mD 400 mD 3mD

'

2,000 Pa 10* Pa 10° Pa

o
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TABLE VIiI
Definition and Representative Values for Macroscopic Dimensionless Numbers in Different Porous
Media on Laboratory (£, = 0.1 m)} and Reservoir Scale {¢,,, = 100 m} under Uniform Flow Cenditions

Tes

(t=~3%x10"°ms ")

Quantity Definition Unconsolidated Sand Sandstone Limestone

Laboratory Reservoir Laboratory Reservoir Laboratory Reservoir

J— f-’l'wd)u
Gr 0.01 .01 . ) X .
w T 0 0.0 0.13 0.13 18.6 18.6
—_ dut
Cay fu'hiiad 0.005 49 0.015 15.0 0.19 187.5
kP,
Gl,, —"‘;i 0.5 492 0.1 115 0.01 10
5
%
A b 52 um 52 pm 1.3 um 1.3 pm 0.1 pm 0.1 um

T é g -4 -7 -6 -9 -7 -10
Cay, [Cay, 7 J(S)cosf 1.5x10 1.5x10 4.8x 10 4.8x10 2.8x10 2.8x10

CacaW A
“Cay ?J(Sb) cos 8 0.67 - 0.63 - 0.71 -

sandstones. Such a conclusion, of course, assumes that the values given in
Table VI are representative for these media.

The fifth row in Table VII gives the ratio between macroscopic and
microscopic capiliary numbers, which according to Eq. (6.63) is length
scale dependent. The last row in Table VII compares this ratio to the
typical critical capillary namber Ca, reported for laboratory desaturation
curves in the different porous media. Using the Ca =~ 107" for sand,
Ca,=3X 1067° for sandstone, and Ca_==2 X 1077 for limestone [28] as
before one finds that the corresponding critical macroscopic capillary
number is close to 1. This indicates that the macroscopic capillary number
is indeed an appropriate measure of the relative strength of viscous and
capillary forces.

Consequently, one expects differences between residual oil saturation
Sg, in laboratory and reservoir floods. Given a laboratory measured
capillary desaturation curve Sg,(Cay,) as a function of the microscopic
capillary number Ca,, the analysis predicts that the residual oil saturation
in a reservoir flood can be estimated from the laboratory curve as
Sq,(Ca, - Cay) [47, 48]. For Cay, > 1 the S, value based on mMacroscopic
capillary numbers will in general be lower than the value Sp, (Cay)
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expected from using microscopic capillary numbers. Such differences
have been frequently observed, and Morrow [361] recently raised the
question why ficld recoveries are sometimes significantly higher than
those observed in the laboratory. The revised macroscopic analysis of (47,
48] suggests a possible answer to this question.

The values of the dimensionless numbers in Table VII allow an
assessment of the relative importance of the different forces_for a
displacement. To illustrate this consider the values Gr,, = 0.01, Cay, =
0.005, and Gi,, = 0.5 for unconsolidated sand on the laboratory scale. A
moment’s reﬂectlon shows that this implies V << G = C, where V stands
for macroscopic viscous forces, € for macroscopic capillary forces and G
for gravity forces. The notation A << B indicates that A/B < 107>, while
A<B means 10 °<A/B<0.5 and A= B stands for 05<A/B<2
Repeating this for all cases in Table VII yields the results shown in Table
VIII. Table VIII also contains the results from the microscopic dimen-
sional analysis, as well as the results one would obtain from a traditional
macroscopic dimensional analysis that assumes Ca=1 [see Eq. (6.56)].

Obviously, the relative importance of the different forces may change
depending on the type of medium, the characteristic fluid velocities, and
the length scale. Perhaps this explains part of the general difficulty of
scaling up from the laboratory to the reservoir scale for immiscible
displacement.

6. Applications

The characteristic macroscopic velocities, length scales, and kinematic
viscosities defined, respectively, in Egs. (6.66)—(6.68) arc intrinsic
physical characteristics of the porous media and the fluid displacement
processes. These characteristics can be useful in applications such as

TABLE VIII
Relative Importance of Viscous (V), Gravity (G), and Capillary (C) Forces in
Unconsolidated Sand, Sandstone, and Limestone”

Sand Sandstone Limestone
Pore scale V<G C
Traditional analysis V=< G V=C<G G<V=C

Large scale f47] Laboratory scale Vo G=C VaG<C GV <C
{481 Field scale C<V <G cC<V <G C<G<V

The notation A << B (with A, B€{V, G, C}) indicates that A/B < 107%, while A<B
means 10 °< A/B < 0.5 and A = B stands for 0.5< A/B<2.
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estimating the width of a gravitational segregation front, the energy input
required to mobilize residual oil, or gravitational relaxation times.

The macroscopic gravillary number Gly, defines an intrinsic length
scale £, [see Eq. (6.65)]. Because Gl,, gives the ratio of the gravity to
the caplllary forces the length £, dlrectly gives the width of a gravitation-
al segregation front when the fluids are at rest and in gravitational
equilibrium, that is when viscous forces are negligible or absent. By using
the same estimates for ¢, k, and P as those used for Table VII one
obtains a characteristic front width of 20 cm for unconsolidated sand, 1 m
for sandstone, and roughly 10 m for a low-permeability limestone.

Similarly, the macroscopic capillary number defines an intrinsic specific
action {or energy input) vy via Eq. (6.63), which is the energy input
required to mobilize residual oil if gravity forces may be considered
negligible or absent. Representative estimates are given in Table IX.

The gravitational relaxation time is the time needed to return to
gravitational equilibrium after its disturbance. This may be defined from
the balance of gravitational forces versus the combined effect of viscous
and capillary forces. Analogous to Eq. (6.35) for the microscopic case the
dimensionless ratio becomes

@w _ (macr gravitational pressure)?‘
Gr,, (macr capillary pressure) X (macr viscous pressure drop)

_aw_ P%mgzkg_ {

— = Z—— = —— 6.73
Gryy, pwdPu Iy (6.73)
which defines the gravitational relaxation time ¢ as
— Xk bP,
5= Bty (6.74)
w  Pw8k
TABLE IX

Characteristic Macroscopic Energies, Velocities, Length Scales, Time Scales, and Volumetric
Flow Rates for Oil-Water Flow under Reservoir Conditions in Unconsolidated Sand,
Sandstone, and Low-Permeability Limestone

Quantity Sand Sandstone Limestone
P 61107 m’s™" 20x10°m*s™’ 1.6% 10 m*s™"
uk 2.99%x 10 ms™* 21710 ms™ 1.61 %10 " ms™
er 0.2m 1.02m 10.2m
tE 669 s 47x10%s 6.36x10"s

o 122X 107 m*s™! 204 X105 ms™! 1.63%10 °m’s !
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Estimated values are given in Table IX. They correspond to gravitational
telaxation times of roughly 10 min for unconsolidated sand, 13h for a
sandstone, and 736 days for a low-permeability limestone.

Another interesting intrinsic number arises from comparing the
strength of macroscopic capillary forces versus the combined effect of
viscous and gravity forces

(macr capillary pressure)’

(Gl Cay) ! (rnacr grav pressure) X (macr viscous pressure drop)
Gr kP
— _g‘v b QW (6.75)
Cay, Dbty Pry guf Q
where ( denotes the volumetric flow rate. Thus a@ defined as
— kP?
Q& =¢ 2_ =zt (6.76)
L

i an _gansu: - system specific characteristic flow rate. The estimates for
v, Usys Co toy, and Q4 are summarized in Table IX.

In summary, the dimensional analysis of the upscaling problem for
two-phase immiscible displacement suggests normalizing the macroscopic
pressure field in a way that differs from the traditional normalization.
This gives rise to a macroscopic capillary number Ca that differs from the
traditional microscopic capillary number Ca in that it depends on length
scale and the breakthrough capiliary pressure P,. The traditional normali-
zation corresponds to the tacit assumption that viscous and capillary
forces are of equal magnitude. With the new macroscopic capillary
number Ca the breakpoint Ca, in capillary desaturation curves seems to
oceur at Ca=1 for all types of porous media. Representative estimates of
Ca for unconsolidated sand, sandstones, and limestones suggest that the
residual oil saturation after a field flood will in general differ from that
after a laboratory flood performed under the same conditions. Order of
magnitude estimates of gravitational relaxation times and segregation
front widths for different media are consistent with experiment.
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