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Abstract

Dimensional analysis of the traditional equations of motion for two-phase flow in porous media allows to quantify the influence
of heterogeneities. The heterogeneities are represented by position dependent capillary entry pressures and position dependent per-
meabilities. Dimensionless groups quantifying the influence of random heterogeneities are identified. For the case of heterogeneities
with piecewise constant constitutive parameters (¢.g., permeabilities, capillary pressures) we find that the upscaling ratio defined as
the ratio of system size and the scale at which the constitutive parameters are known has to be smaller than the fluctuation strength
of the heterogeneities defined, e.g., as the ratio of the standard deviation to the mean value of a fluctuating quantity. '
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1. Introduction and motivation

An important problem for two phase flow in porous
media is the influence of heterogeneities and fluctuations
of permeability, porosity and capillary pressure curves
on fluid flow at different length scales [1,2]. Displacing
a fluid with another immiscible fluid in a porous medium
produces bypass and trapping effects that are sensitive to
spatial heterogeneities of the medium on all scales.

Most workers in the field are familiar with the impor-
tance of heterogeneities for immiscible fluid flow in por-
ous media but surprisingly few results seem to exist that
allow to quantify the scale dependence of heterogenei-
ties for the purposes of upscaling. A possible reason
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might be that immiscible fluid flow and upscaling are
only poorly understood even for homogeneous media
[2,3]. In this paper we introduce heterogeneities into
the dimensional analysis for the macroscopic two phase
flow equations. Our main motivation is to obtain simple
dimensionless numbers quantifying the importance of
heterogeneities. Random heterogeneities may be charac-
terized by a correlation length, the typical or most prob-
able value and the magnitude of the fluctuations.
Extending the dimensional analysis to the case of het-
erogeneities requires not only to characterize the hetero-
geneities. More importantly it becomes necessary to
introduce the constitutive scale £ as the length scale at
which the constitutive parameters are known or
measured.

Dimensionless groups can be used for upscaling con-
siderations. Estimating the constitutive parameters or
solution behaviour when increasing the constitutive
scale is what we shall call “‘upscaling on the basis of
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Nomenclature

List of symbols

position vector in R*

acceleration of gravity

velocity

pore space

matrix space

porous sample

water, wetting fluid

oil, nonwetting fluid

measurement cell of size ¢ centered at x

ball of diameter d centered at x

constitutive scale, i.e. scale at which the con-

stitutive parameters are given or known from

experiment and Eqs. (10)-(12) hold

average pore size

system size

correlation length

IS| (threedimensional) volume of the set S

¢ volume fraction, porosity

¢(x,£) local porosity in K(x, £)

k permeability

k(x,p(x);£) local permeability in K(x, £)

kK relative permeability

P, capillary entry pressure

P(x;£) local capillary entry pressure in K(x,£)

X(¢) typical value (e.g., average) of locally fluctu-
ating quantity X(x;£) at scale £ where
X = ¢,k P,

§@§@<WM

SERO
G
2

o

X(£) deviation of locally fluctuating quantity
X(x;¢) at scale ¢ from its typical value X (¢)
where X = ¢,k, P,

ox(f) standard deviation of locally fluctuating
quantity X(x;¢) at scale ¢ from its typical
value X (£) where X = ¢, k, P,

R upscaling ratio

u relative uncertainty

S saturation

Swi irreducible wetting fluid (water) saturation

residual nonwetting (oil) saturation

pressure

dimensionless pressure

capillary pressure

entry pressure

dimensionless entry pressure

dimensionless form of quantity 4

viscosity of fluid

density of fluid

Leverett J-function

capillary number

O~ & ha)’ﬁ)"c"u"d)"df’l
Ay o jo o 9

Gl gravillary number
He heterogeneity number
A Laplace operator

u(X;£) probability density (empirical histogram) of
observable X inside a measurement cell of
length £

dimensional arguments”. In this paper we show quanti-
tatively how the relative uncertainty determines the
upscaling ratio defined as the ratio of the system size
to the constitutive scale.

Given our main objective of quantifying the influence
of heterogeneities through simple dimensionless groups
derived from the traditional equations we have struc-
tured the paper as follows. Length scales and geometric
descriptors for heterogeneuos media are introduced and
discussed in the next section. Once the heterogeneities
have been characterized geometrically the traditional
equations of motion for immiscible two phase flow in
heterogeneous media are discussed in Section 3. Rewrit-
ing these equations in dimensionless form is carried out
in Section 4. In Section 5 we discuss upscaling in the
sense of changing the constitutive scale. After that spe-
cial solutions are discussed in Section 6 and examples
in Section 7. Much information can be extracted from
our simple dimensional arguments and this suggests that
the dimensionless heterogeneity groups can be useful in
practical situations where detailed solution of the under-
lying equations is not feasible.

2. Descriptors of heterogeneous porous media

Consider a porous sample S = (P UM) c R® whose
pore space P =W U O is filled with a wetting fluid W
called water and a nonwetting fluid O called oil. The
sample S is assumed to be a compact and convex subset
of R*. Its volume is | S |= f<dx? and its characteristic
size is called L =| S|'°. The solid matrix M of the por-
ous medium is assumed to be rigid. The sets are illus-
trated schematically in Fig. 1.

The pore space P is assumed to have an average pore
size 4p defined as fp = [ I(x)d’x/ | P | where | P |=
[ed’x is the volume of the pore space and I(x) =
sup{d : B(x,d) C P} is the diameter of the largest ball
B(x,d) of diameter d centered at x that is fully contained
i P.

For heterogeneous porous media the geometric and
material parameters depend on length scale. Consider
for example the porosity ¢(S) = ¢ =| P | /| S | defined
as the volume fraction of pore space inside the sample.
The local porosity at scale £ introduced in [4] is defined
as
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Fig. 1. Schematic illustration of the sets S, P, M, W and O.

A I PNK(E, ) |
e 1)

where K(x, £) denotes a measurement cell (e.g., a ball) of
diameter £ centered at x. For more information on local
porosities see the review [3].

To characterize the heterogeneity of the medium we
proceed as follows. Let X be a physical or geometrical
parameter such as porosity ¢ or permeability k. For sim-
plicity we assume here that k is scalar, although it is in
general a tensor. Then we denote by X(x; /) the local va-
lue of this observable inside a measurement cell K(x; ¢)
of size £ centered at x. In theory it is then possible to de-
fine the distribution of X(x;£) by an ensemble average of
a Dirac d-function (see Eq. (34) in [5]). In practice one
calculates the local X-density as

W) = 3o - x(x:0) )

where m is the number of placements of the measure-
ment cell and §(x) denotes the Dirac o-function. Then,
assuming the integrals exist,

X() = [ xuctiax ()
is the average value of X and

ox(£) = (/(X~7(f))2u(X;€) dX>1/2 (4)

its standard deviation. The strength of heterogeneities
can be characterized by decomposing the observable X
as

X(x;0) =X (0) 4+ [X(x;6) — X(0)] =X (€) + X (x;4).
)

This can be rewritten as

X(x;0) =X (¢) (1 +ux (£) )((, i’iﬁ) . (6)

where

_ O'X(£>

are the dimensionless relative uncertainties or relative er-
rors of X. In the following the quantities uy will be used
to quantify the heterogeneity or disorder in X. Two
important cases have to be distinguished. For uy<1
we speak of weak disorder while for uy>1 we speak
of strong disorder. The observable X will be chosen
below as porosity X = ¢, permeability X = & or capillary
entry pressure X = P,. The porosity disorder will nor-
mally be weak because the porosity cannot exceed unity.
Hence strong porosity disorder is only possible at very
small porosities. On the other hand the permeability dis-
order is often very strong, i.e. ur>> 1. An example
would be fractured media, where the average and vari-
ance of the permeability may be infinite, and the most
probable permeability is often much smaller than the
half width of the local permeability distribution.

If the disorder is so strong that the integrals of the lo-
cal X-density in (3) and (4) diverge, then we define X(¢)
to be the most probable value of X and ox(£) to be the
halfwidth of the distribution.

For the case of porosity X = ¢ measurements of é(0)
and ¢(¢) for sedimentary rocks can, e.g., be found in
[6,7,5]. In homogeneous (stationary) media there exists
a length scale £...(¢;0) <« L such that for every fixed
6 >0 one has o4(f) <6 for all £> /,.(¢;5). The length
scale £.(¢; 6) determines the size of the representative
elementary volume (Fig. 1.3.2 in [8], p. 20) beyond
which the porosity is constant with accuracy §. For het-
erogeneous media on the other hand the length scale
Lreh; 0) == L is of order of the system size. Similar con-
siderations apply to permeability, i.e. X = k.

The fluctuations of porosity and permeability are not
independent. In principle it is possible that these observ-
ables have different correlation lengths. In this paper it is
assumed that porosity and permeability have the same
correlation length £ The same correlation length is also
assumed for other parameter heterogeneities (such as the
local entry pressure fluctuations below). The correlation
length reflects the typical size of the heterogeneities. We
assume here that fp < € < L holds [9].

3. Macroscopic equations

The pore space P = W(7) U O(¢) is filled with a wet-
ting fluid called water and a nonwetting fluid called
oil. The wetting fluid occupies a temporally changing
subset W(r), the nonwetting fluid occupies the set
O(¢). The fluids have densities gy, 9o and viscosities
s Hg, respectively. On length scales ¢ local volume
fractions
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| W) N KX, 4 |

P50 =Tt o) &
| O NK(x, ) |

Pol 8 =Tt )

of watér and oil are defined as functions of position and
time, where K(x, /) denotes again a measurement cell of
diameter £ centered at x. The dependence on length scale
is usually suppressed to simplify the notation. The vol-
ume fractions may be expressed as ¢y(X,t) =
O(x,)Sw(x, 1) and ¢g(x,1) = ¢(x,£)So(x,?) in terms
of the (possibly space and time dependent) porosity
¢(x,t) and the fluid saturation fields Sw, Sq. The satura-
tions obey

Sw(x, ) + So(x,t) =1 9)

for all x and ¢. The fluid pressures are denoted as
Pw(x,1), Po(x,¢) and the fluid velocities are written as
vw (X, 1), vo(X,?)., The pressures and velocities are de-
fined as spatial averages of the microscopic (i.e. pore
scale) pressures and velocities over the cell K(x,£).
Again their dependence on £ is suppressed.

Mass conservation of the fluids is assumed and
requires

2 (Gwow) + V- (Buewva) =0 (102

= (d006) + 7 ($o00¥0) =0 (10b)

We assume that fluids are incompressible gy, (X,t) =
ow = const and ¢ (X, #; ) = g = const. As usual a gen-
eralized Darcy law without offdiagonal terms

o (%, )V (x,1) = “;I%v;"("’ ()KL (X, Sw)

X (VPw(%,1)  0u) (11a)
bo(x, Vo (X, 1) = —ﬁfdx $())K (x, So)
% (VPo(x,1) - 2o) (11b)

is assumed to govern the viscous momentum exchange
between the fluids and the rigid matrix. Note that the
permeability is in general a tensor. The constitutive the-
ory is completed by assuming

Po(x,1) — Pw(X,t) = P(x,Sw(X,1)) (12)

with a spatially varying capillary pressure function.

It is assumed that the constitutive functions such as
k(x,¢$;£) and P.(x,Sw;{) change with length scale /
while the form of Egs. (10)-(12) remains unchanged
for a wide range of length scales £p < £ < L. Of course
the choice of /p as the lower limit of validity is some-
what too low, and in practice one might use a larger
value for ¢p. Such a change would not affect the main

results of our present analysis. In the following the
length scale £ at which the constitutive functions are
known will be called the constitutive scale.

Inserting the constitutive assumptions into Eqs. (10)
leads to

309 Tt = - [kl B xS, )
X (VP(X, t) - %VPC(X) SW(X> t)) - ng>]
(13a)
GS@ l

B2 =2 [kl 66y (x, 5o 5,1)

X <VP(x, ) +%VPc(x, So(x,1)) — Q@g)}
(13b)

where

%(Pw(x, ) + Po(x,1)) (14)

Together with Eq. (9) these are two equations for the
two unknown fields P(x, ) and Sw(X,1).

Next we carry out the differentiation outside the
square bracket in (13) to obtain for the wetting fluid

a i (yp 1Ty,
o  pw¢

P(x,1) =

20Sw

1(*P, 0P, dlogky, )
"<as§W OSw OSw )WSW)

Ologky,

+——" (VP — 0y8) - VS
O0Sw
1 [Blogky, Ograd P, 0P,
——= |——="grad P, d
2{ sy B0t s, TR,
P,
(gradlogk a@qb )}

-VSw + (gradlogk+ la¢

1
(VP —-ow8)— 3 <gradlogk+

V¢ + gradlogks, )

Ologk
0¢

1
+ gradlog krw) -grad P,— 3 (grad - grad)P, } (15)

Vo

where the notation gradk()l(, ¢(x)) means the gradient
with respect to the first vector variable of a parameter
function as indicated by the arrow. The gradient of the
pressure or saturation fields is written as before, e.g.,
VSw(x,%). A similar equation is obtained from (13b)
for the nonwetting fluid. '

To simplify the subsequent discussion we assume
from now on that the capillary pressure factorizes

Pc(x’ SW) = PE(X)J(SW) (16)

i D

U S—



R. Hilfer, R. Helmig | Advances in Water Resources 27 (2004} 1033-1040 1037

into a position dependent entry pressure P.(x) and a
dimensionless function of saturation J(Sy) reminiscent
of the Leverett-j-function. Then Burdines equations
[10] suggest that the assumption

o (%, Sw) = Ky (Sw) (17)

holds, i.e. that the relative permeabilities are spatially

homogeneous. With these assumptions Eq. (15) simpli-
fies to become

0w _ k[, P A

ot ﬂwd) 2 dSw

P, (d* dJ dloghl, )

2 (dS2 T a5y s | VS

dlog dlogky,

dSw

dlogkrW dJs
2( S VPe-I—ZESEVPc

ASw

o (VP —gyg) - VSw

+Pe£V10gk) -VSw+ Viogk
dSw

~<VP—QWg>—‘g(wogk-vawm} (18)

4. Dimensional analysis

We now use Eq. (5) for porosity X = ¢, permeability
X = k and entry pressure X = P, and insert these three
equations into Eq. (18) to find

ds

i 4 (i

+§EV¢>] -VS+

—1—-—V¢> (VP —og) —

2 ds

oS k(x, )k (S) Pe(x) dJ(S)
& wex) {AP 2 s S
P(x) (d*J(S) dJ(S) dlogk’
2 ( a7 TTas T as )WS)Z
L alogk op oey. sk [J(S)dlogkr v,

+2 VP, +

(st

1
k(x, ¢)

X (gradic(x, ¢)+§—(';v§s> VP, + AP, } (19)

where the index W was suppressed to simplify the
notation.
We introduce dimensionless variables

1
k(x, ¢)

J(S)
2

x=I% (20)

1~
=V (1)

t=n1t (22)

dimensionless pressure

P(Xa t) = P_—eﬁ(f(a /i) (23)

and dimensionless parameter functions

Pe(x) = I—Je—ﬁe(ﬁ) (24)

Po(x) = 0nPo(¥) (25)

k(x,¢) = ( ) (26)

k(x, ) = ik (%, 9) (27)

We also introduce the abbreviations

P =YD, (28a)
1 ok

K== gradk +-—=Vo (28b)
k 0¢

D=AP. (28¢)

and ¢(%) = ¢(LR).

Inserting these we obtain

38 _ tkP; k(% $)k'(S) {zﬁ PR () 4

o Lp (%)

Po(X) (d%J(S)  dJ(S) dlogk\ = .
2 <ds2 a5 Tas >(VS)

dlogk gL\ =~
+— as (VP— 7 VS

1 [op, dlogk® dJ(S)\,, .
—E{P‘e (J(S) s Tias )P(X)

O d.](S) ~ N -~

? WPG(X)K(X> -VS

Ok 47 /4 o5 gl
+7K(X) - (VP — E)

_J(S) Ok OP,
2 |k P,

=

K(%) - P(X) + %&D(fc)] } (29)
as the dimensionless form of the equation. Eq. (29) al-
lows one to identify the macroscopic capillary number
[11,12]

L2 u

= P (0)

and the gravillary number, defined as the ratio of grav-
itational to capillary forces [11,12]
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c-2lell (31)
Pe(4) .

as usual. Note that the gravillary number differs from
the commonly used bond number in that the latter in-
volves the density difference. The constitutive scale £
has been indicated explicitly because the constitutive
parameters are often not known at the scale of the sys-
tem size L. These dimensionless numbers allow to quan-
tify the physical force balance between capillarity,
viscosity and gravity. Bq. (29) shows that the slope
and curvature of the Leverett function as well as the
slope of the logarithm of the relative permeabilities have
a strong influence on two phase flow.

In Eq. (29) we have separated the dimensionless terms
arising from the heterogeneities into the last four lines.
The last line shows that heterogeneities act as a kind
of external pseudoforce. It also shows that a constant
saturation field cannot be a solution in the presence of
heterogeneities. The heterogeneity terms appear in the
combinations Dop, /P, Pap, /P, and Koy /k. In order to
estimate their importance it is necessary to estimate
the magnitude of these terms.

Note that the dimensionless ratio ap, /P, measures the
variability or contrast of the heterogeneities while the
dimensionless gradient P characterizes spatial rapidity
of fluctuations.

5. Upscaling

Upscaling means in this paper to increase the consti-
tutive scale ¢ within the allowed range £p < £ < L. The
ratio

R==2>1 (32)
£

will be called the upscaling ratio. We assume throughout

that the constitutive scale is less than or equal to the sys-

tem size, so that the upscaling ratio is always larger than

unity.

This section discusses the upscaling behaviour of the
heterogeneity terms. Dup, Pup and Kuy. Estimating
them requires knowledge of the position dependence
of the permeability and entry pressure at the constitutive
scale ¢. In this paper we have assumed that the averaged
equations of motion remain valid down to length scales
of order £ ~ fp although in applications one might also
take some multiple of £p. To continue the analysis we as-
sume here that the heterogeneities are block discontinu-
ities. By this we mean that permeability and entry
pressure are piecewise constant functions of position.
This assumption is not essential for the dimensional
analysis method but is made here because it represents
an idealized special case of considerable practical impor-
tance. For block discontinuities it is clear that at scale £

the dimensionless gradients P, K change by unity over a
distance of order £ in the limit £ — ¢p. Similarly the
dimensionless curvature D will be of order L*/¢*. This
suggests to extract the dependence on L/{ and to write

~ LA

P=RP=7 (33a)
~ L~

K =RK =K (33b)
~ I*~

D=RD= FD (33c)

thereby defining nondimensional functions P, K, D that
are expected to vary only little with length scale.

The influence of heterogeneities can be quantified by
defining the heterogeneity numbers at scale £ as

He, = Rug == 0 (34)
_ . LO'pe (6)
Hep, = Rup, = ——W) (35)

for permeability and capillarity. Heterogeneity effects
are strong for He > 1 and weak for He < 1.

With the help of the dimensionless groups (30), (31),
(34) and (35) Eq. (29) becomes

6S__1_l}(f(,¢)kr(S){AA_ﬁe(f()mzs

% Ca ¢

AP =" ds

P.(x) (d2J(S)  dJ(S) dlogk" & o2
2 (dS2 ds ds )WS)

dlogk <A,\ g ) ~
+—— (VP -Gl—=—] VS
as g |

-3 [Hen (9 T + 255 By

+Hek

P p k@) s

+ He,R(%) - (6? - G1i>

2]

J(S = P L.
I te, [Hak(x)- ) + $o)| } (36)
where g/|g| denotes the unit vector in the direction of
gravity and the order of terms is the same as in Eq.
(36). Note that the dimensionless groups Ca, Gl, Hep,
He,, all depend on the system size L.

To estimate the magnitude of the heterogeneity num-
bers it is necessary to estimate how &, P, and oy, op, de-
pend on length scale £. We assume here

ko) =k (37)

P.(t) =P, (38)
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that the typical values k, P, are independent of £. For the
magnitude of the fluctuations oy, op such an assump-
tion is not possible because they must vanish in the limit
£ — L. For £ < £ we expect that the distribution of local
permeabilities and entry pressures does not change and
hence its half width or standard deviation would also
be constant. Thus we assume that o(¢) =g, for
lp < £ < £ and that o, (L) =0 for £ = L. A simple linear
interpolation would suggest the form
Oy for g]p < J4 < é

ak(g)_{ak§f—_‘—§ for E<O<LL (39)
and similarly for gp. If for £ > ¢ one assumes that the
fluctuations are governed by the central limit theorem
then one expects, e.g., o ~ (L — Z)‘y 2 at least for some
range when £ and L are large.

The heterogeneity numbers can be used for upscaling
considerations. Eqgs. (34) and (35) imply that heteroge-
neity effects can be neglected (He < 1) if

uy <4 or%<§ (40)
holds (where X = k, P.). In other words heterogeneity ef-
fects are neglible when the relative uncertainty is smaller
than the inverse upscaling ratio.

Suppose that laboratory measurements of the perme-
ability and capillary pressure have been performed on
samples of size £ taken from different locations of a lar-
ger medium. If the measurements give an average per-
meability & with standard deviation o, then the
heterogeneity numbers allow to estimate the maximal
system size for a homogencous model having average
permeability & from the condition He < 1. One finds

k
<_

O

L (41)
for the maximal system size. Such information could
also be useful for upscaling in numerical simulations in
order to estimate the maximal size of blocks in a large
scale simulation. Eq. (41) shows that for systems with
strong permeability disorder (i.e. for o) > k) upscaling
is not possible (because L would have to fall below £).

6. Solutions

For large L heterogeneity dominates and Eq. (36)
simplifies into an equation for saturation alone

aS k(%K (S)
o e
J(S)

+5 Her, [HekK(f() P(X) + %D(ﬁ)} } (42)

This equation can be solved in the case of stationarity,
i.e. for 8S/0% = 0. The solution becomes

Ca {Gl He, K(X) - e,

225 K(%) ) )

S(fc):J’1<— - T
K(%) - P(%) + £D(x)

The vectors K and P are oriented parallel and opposite
to each other, hence their scalar product is negative.
Of course this solution is only approximate. It contains
only heterogeneity and gravity forces while viscous
forces are absent.

Note that a stationary solution can be obtained with-
out any approximation directly from Darcy’s law. It
reads

S(x) = J! (Po + (Qge(_X)Qw)g : X) (44)

where Py is an integration constant.

7. Examples
Consider the following example from Ref. [13, p. 115,
126] where £=¢ =1, L = 64, and therefore
W =0 4375 x 10~°
RO T 23x107°

Thus the relative error in the permeability is roughly
20%. This gives

=0.19 (45)

LO’k
He, = =2 = 12> 1 46
%=k > (46)

showing that heterogeneity in the permeabilities cannot
be neglected at the chosen system size. If one demands
that He, <1 then permeability fluctuations can only
be neglected up to a system size L < 5.

Assuming a Leverett correlation between permeabil-
ity and entry pressure Braun uses the relation [13, p. 115]

P =Pe{|+ (47)
and hence one expects entry pressure variations of order
P.
AP, |~ —=| Ak 48
| AP, [ 2t | Ak (43)

from permeability variations of order |Ak|. Taking
op, ~ |AP|and oy ~ |Ak| this amounts to assuming
g, O

=~ — =~ 0.095, (49)
P. 2k
and gives a heterogeneity number
LO'p
Hep, =—==62>1 50
Cr. /P (50)

¢

larger than unity. Again this implies that also the fluctu-
ations in capillary entry pressures become important
when the system size reaches L ~ 10.

These estimates show that even with a small relative
error of only 20% in the knowledge of the permeability
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at the microscopic (cell) scale one cannot expect reliable
results based on homogeneous regions if the regions that
are assumed to be homogeneous are larger than 5 cells!
For any simulation region larger than five (or at most)
ten microscopic cells the heterogeneities become domi-
nant, and need to be taken into account.

Finally we discuss the experimental example of coarse
and fine sand embedded in a medium grained sand dis-
cussed in [13, p. 103]. In this example the constitutive
parameters of the sand are known on scales £ ~ 1cm.
The scale of the heterogeneities is £ ~ 10cm in the x-
direction and ¢ ~ 2cm in the z-direction. The system size
is L =~ 1m. The local permeability and local entry pres-
sure distributions at scale ¢ are approximately sums of
three d-distributions. The three types of sands have vol-
ume fraction ratios of fine:medium:coarse of 0.1:0.8:0.1.
The most probable values are k&~ 1.2 x 107°m? and
P, ~ 540Pa. The half widths are roughly oy~ 0.6 X
107 °m? and op, =~ 200Pa. Therefore we find Heg ~ 50
and Hep = 40. This shows that upscaling is impossible
for this example. Even if the constitutive functions were
known at the horizontal correlation length scale of
¢ =~ 10cm upscaling would still not be possible. Of
course upscaling might become possible if the constitu-
tive parameters are measured or calculated repetitively
on scales significantly larger than &.

8. Conclusion

Our main conclusion is that the typical permeability
and capillary properties need to be known with very high
precision if one wants to upscale a homogeneous model.
Upscaling is not possible for systems with strong disorder
(i.e. u > 1). For weak disorder governed by Gaussian sta-
tistics high precision of the average value is equivalent to
a small standard deviation. This means that homogene-
ous modeling requires large averaging volumes (REV’s)
over which permeability and capillary proerties need to
be averaged. Here we have given formulae to quantify
these considerations for weak and strong disorder.

We hope that our heterogeneity groups will be helpful
to obtain rough quantitative estimates for the impor-

tance of heterogeneity effects in practical situations
where an expensive and time consuming solution of
the underlying equations is not possible.
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