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1 Introduction
A time evolution for closed quantum systems is usually speci�ed as a one-parameter group of unitary opera-
tors on a Hilbert space. Dissipative processes, di�usion or irreversible ageing of natural systems are di�cult
to accommodate within this theoretical framework.

Many equations of motion for closed systems are formulated as abstract Cauchy problems on a Banach
spaceB. A state or observable A ∈ B evolves according to

τϵ d
dt A(t/τ) = L A(t/τ), (1.1a)

A(t0/τ) = A0,τ (1.1b)

from its initial value A0,τ at time instant t0. In (1.1) time ismeasured in units of τ seconds (such that t/τ ∈ ℝ).
and ϵ is an energy scale (Joule). Often the in�nitesimal generator L (Liouvillian or Hamiltonian) is an un-
bounded operator with domain D(L ) ⊂ B (see [16]). Recall that L corresponds to a vector �eld in classical
mechanics, to a selfadjoint operator in quantummechanics, and to a derivation on an algebra of observables
in �eld theories [5]. Existence of a physical time evolution is equivalent to the existence of global solutions
of (1.1) under various assumptions. Many examples of (1.1) do not have global solutions, particularly when
the physical system is in�nite.

De�neB = A to be the C∗-algebra of observables of a physical system, and assume that it has an identity,
unless explicitly stated otherwise. Equations (1.1) give formally

T t/τKA0,τ(
t0
τ ) = T t/τA0,τ (1.2)
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if the maps Ts : A→ A and T s : A→ A are de�ned as

T t/τA = exp(L t
ϵτ )A, (1.3a)

T t/τKA(s) = KA(s +
t
τ)
, (1.3b)

and the orbit mapsKA : ℝ→ A are de�ned as

KA(s) : s Ü→ TsA

for each �xed A ∈ A. In (1.3), where Ts with s ∈ ℝ is a one-parameter family of *-automorphisms of A, it
remains to give meaning to the formal exponential, such that the orbit mapsKA : ℝ→ A are continuous for
every A ∈ A.

Given the *-automorphisms (Ts)s∈ℝ this family of operators is expected to ful�ll the time evolution law

T t/τTs/τ = T(t+s)/τ (1.4)

with T0 = 1 being the identity. Let the maps t Ü→ T t be continuous as mappings from ℝ into the space B(A)
of all bounded operators onA endowed with the strong operator topology [34, 60]. One then has continuous
orbits KA(s) and the operator family (Ts)s∈ℝ is then a strongly continuous one-parameter group (C0-group)
on A. Recall that physical experiments do not observe or measure the selfadjoint observables A directly, but
only their expectation values, denoted as ⟨z, A⟩ ∈ ℝ, with respect to a state z of the physical system. Indeed,
states are generally de�ned as positive and normalized linear functionals on the algebra A of observables
[5]. A linear functional z : A→ ℝ is called positive, if ⟨z, A∗A⟩ ≥ 0 holds for all A ∈ A, and normalized if
‖z‖ = sup{|⟨z, A⟩|, ‖A‖ = 1} = 1. Most of the discussion below concerns states and it is necessary to de�ne
their time evolution.

States are elements of the topological dual A∗ = {z : A→ ℂ : z is linear and continuous}. The nota-
tion ⟨z, A⟩ is used for the value z(A) ∈ ℝ of a selfadjoint A ∈ A in the state z. The adjoint time evolution
T∗t : A∗ → A∗ with t ∈ ℝ consists of all adjoint operators (T t)∗ on the dual space A∗ (see [50, 51]). Let
Z ⊂ A∗ denote the set of all states. The orbit maps for statesKz : ℝ→ Z are de�ned as

Kz(s) : s Ü→ (Ts)∗z = T∗sz

for states z ∈ Z ⊂ A∗. If T t is strongly continuous then

|⟨(T∗t − 1)z, A⟩| = |⟨z, T tA − A⟩| ≤ ‖z‖ ‖T tA − A‖

shows that the adjoint time evolution T∗t is weak*-continuous in the sense that the maps ⟨A⟩z : ℝ→ ℝ,

t Ü→ ⟨A⟩z(t) = ⟨z, T tA⟩ = ⟨T∗tz, A⟩ (1.5)

are continuous for all A ∈ A, z ∈ Z. These maps are the time evolutions of all expectation values. In other
words, for a C0-group (Ts)s∈ℝ the orbitmapsKz(s) are continuous fromℝ into the spaceB(A∗) of all bounded
operators on A∗ endowed with the weak*-topology [34, 53] and the adjoint family (T∗s)s∈ℝ is a C∗0-group.
Note that the adjoint time evolution T∗t need not be strongly continuous unless A is re�exive. The relation
between the time evolution of states and observables is

⟨Kz(t0), T tKA(t0)⟩ = ⟨Kz(t0),T tKA(t0)⟩
= ⟨Kz(t0),KA(t0 + t)⟩
= ⟨Kz(t1 − t),KA(t1)⟩
= ⟨T −tKz(t1),KA(t1)⟩
= ⟨T∗tKz(t1),KA(t1)⟩, (1.6)

where t1 = t0 + t ∈ ℝ. The adjoint time evolution of states is related to right translations along the orbits in
state space in the same way as the time evolution of observables is related to left translations along orbits in
the algebra.
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Equation (1.1a) combined with (1.6) for the adjoint time evolution states formally the proportionality

±τ d
dt = ±

L

ϵ

of the in�nitesimal generator d/dt of time translations and the in�nitesimal generator L of changes of the
physical system. Independently of the manner in which one attaches a meaning to the formal exponential,
equation (1.2) says that the time evolution of a physical system is a translation along orbits corresponding to
the changes of the system, speci�cally

(left shift along A-orbit) = (change of observable),
(right shift along Z-orbit) = (change of state),

where the �rst equation re�ects the Heisenberg picture, while the second corresponds to the Schrödinger
picture.

2 Problems and objective
It has been recently suggested that several unsolved and super�cially unrelated problems in open quantum
systems, classical mechanics and quantum �eld theory are related to two fundamental questions associated
with the theoretical framework described in the introduction [31].

Problem 1. Are there global solutions of problem (1.1), i.e. solutions for all t ∈ ℝ?

Problem 2. If global solutions of problem (1.1) exist, how can invariant solutions still change with time?

Whenever thermodynamic observables such as temperature, pressure or densities change slowly with time,
it is necessary to analyze themathematical transition from local (short time) stationarity to global (long time)
instationarity. The samemathematical transition is needed for thediscussionof the relationbetweendi�erent
representations of canonical (anti-)commutation relations [16].

The two problems require to analyze the set of states that are invariant under the time evolution. If the
thermodynamic observables change, then there must exist many invariant states, and “long”-time averages
cannot be unique. The objective of this paper is to introduce a mathematical framework for the analysis of
such questions. Such a frameworkhas remained elusive [56]. Themain results are stated as twomathematical
theorems. The second objective of this paper is to apply the results of the mathematical analysis to a physical
experiment.

3 Invariance and indistinguishability
De�nition 1. A state z ∈ A∗ is called invariant, if

⟨z, T tA⟩ = ⟨z, A⟩ (3.1)

holds for all A ∈ A and t ∈ ℝ.

The expectation values ⟨A⟩z(t) = ⟨z, A⟩ of all observables A ∈ A are then constant. The set of invariant states
B0 ⊂ A∗ over A is convex and compact in the weak*-topology [5]. The same holds for the set of all states
Z ⊃ B0. Invariant states are �xed points of the adjoint time evolution T∗t as seen from (1.5).

De�nition 2. A state z ∈ Z is called a BMO-state if all maps ⟨A⟩z : ℝ→ ℝ are in BMO(ℝ) for all A ∈ A. The
Banach space BMO(ℝ) of functions with bounded mean oscillation onℝ is de�ned as the linear space

BMO(ℝ) = {f ∈ L1loc(ℝ), ‖f‖BMO <∞},
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where L1loc(ℝ) is the space of locally integrable functions f : ℝ→ ℝ . The BMO-norm is de�ned as

‖f‖BMO = inf
C
{∫
I

|f(x) − fI |dx ≤ C|I|, for all I},

where I ⊂ ℝ denotes intervals of length |I| and

fI =
1
|I| ∫

I

f(x)dx

denotes the average of f over the interval I.

The set of all BMO-states
B = {z ∈ Z : ‖⟨A⟩z‖BMO <∞ for all A ∈ A}

is convex by linearity. Because B ⊂ Z is a subset of a weak*-compact set, it is also weak*-compact. Hence a
decomposition theory into extremal BMO-states exists by virtue of the Krein–Milman theorem [5]. The set of
invariant states is denoted by

B0 = {z ∈ B : ‖⟨A⟩z‖BMO = 0 for all A ∈ A},

and it is a subset B0 ⊂ B. BMO-states allow to de�ne the concept of almost invariance. A BMO-state will be
called ε-almost invariant, or almost invariant with accuracy ε, if the expectation values of all observables are
stationary to within an accuracy ε.

De�nition 3. The set Bε of all ε-almost invariant states is de�ned as

Bε = {z ∈ B : ‖⟨A⟩z‖BMO < ε for all A ∈ A}.

The one-parameter family Bε of ε-almost invariant states is a family of subsets of B. The accuracy εmeasures
temporal �uctuations away from the time average.

The following inclusions of classes of states used in the following are summarized for orientation and
convenience:

Kβ ⊂ B0 ⊂ Bε ⊂ B∞ = B ⊂ Z ⊂ A∗,

where 0 < ε <∞ and the sets of KMS-states Kβ at inverse temperature β > 0 are de�ned as states z ∈ Z such
that the KMS-condition [6]

⟨z, T t/τ(A)B⟩ = ⟨z, BT t/τ+iϵβ(A)⟩

holds for all t/τ ∈ ℝ and A, B ∈ A. The KMS-states are invariant states for all β ≥ 0, but KMS-states for in�nite
volume systems at di�erent β are often disjoint [6]. For β = 0 the KMS-states are trace states, that are de�ned
by ⟨z, AB⟩ = ⟨z, BA⟩ for all A, B ∈ A. Because KMS-states are Gibbs states, they are usually interpreted as
equilibrium states. Extremal states correspond to pure thermodynamic phases [6].

Two states are called indistinguishable, if they cannot be distinguished by measurements. Let m <∞
denote themaximal number of experiments that can be performed to distinguish the states of the system. Let
{Ai}mi=1 ⊂ A denote the observables in these experiments, and let ηi (i = 1, . . . ,m) be the accuracies, that can
be attained for measuring Ai.

De�nition 4. Two states z, z� ∈ Z with

|⟨z, Ai⟩ − ⟨z�, Ai⟩| = |⟨z − z�, Ai⟩| < ηi ≤ η = max
i=1,...,m

ηi

for all i = 1, . . . ,m are called (experimentally) indistinguishablewith respect to the observables A1, . . . , Am.

The sets of indistinguishable states

N(z; {Ai}mi=1; η) = {z� ∈ A∗ : |⟨z − z�, Ai⟩| < ηi , i = 1, . . . ,m}
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are η-neighborhoods of z in theweak*-topology [17]. The algebraM generated by the elements A1, . . . , Am ∈
A will be called macroscopic algebra.

In the following, 0 < ηi <∞ and 0 < η = maxi ηi <∞will be assumed. The η-neighborhoods of ε-almost
invariant states N(z; {Ai}mi=1, η) ∩ Bε with z ∈ B0 for small ε, η → 0 will be the candidates for local (in time)
stationary states.

4 Representation dependent invariant measures on BMO-states
The set of BMO-states B is weak*-compact. Its open subsets are the elements of the weak*-topology restricted
to B. They generate the σ-algebra B of Borel sets on B. Let z ∈ B0 ⊂ B denote an invariant state so that (3.1)
holds for all t ∈ ℝ, A ∈ A. An invariant probability measure on B corresponding to the invariant state z is
constructed using the GNS-construction [5] and a resolution of the identity on B. The GNS-representation
(Hz, πz, Ωz, U tz) is the cyclic representation canonically associated with an invariant state z ∈ B and the time
evolution T t on the C*-algebra A. It is uniquely determined by the two requirements

U tz πz(A)U−tz = πz(T tA) for A ∈ A, t ∈ ℝ,
U tz Ωz = Ωz for t ∈ ℝ.

The scalar product in Hz will be denoted as ( , ). A resolution of the identity [53, p. 301] on the Borel
σ-algebraB is a mapping P : B→ B(Hz) with the following properties.
1. P(0) = 0, P(B) = 1.
2. Each P(G) is a self-adjoint projector.
3. P(G ∩ G�) = P(G)P(G�).
4. If G ∩ G� = 0 then P(G ∪ G�) = P(G) + P(G�).
5. For every ψ ∈ Hz and ϕ ∈ Hz the set function Pψ,ϕ : B→ ℂ de�ned by

Pψ,ϕ(G) = (P(G)ψ, ϕ)

is a complex regular Borel measure onB.
Because the projectors are self-adjoint, the set function Pψ,ψ is a positive measure for every ψ ∈ Hz. For

ψ = ϕ = Ωz the resulting measure
PΩz ,Ωz = (P(G)Ωz, Ωz) =: Pz

is an invariant probability measure on the measurable space (B,B) associated with the invariant BMO-state
z ∈ B. The triple (B,B, Pz) is a probability space. The probability measure Pz is invariant under the adjoint
time evolution T∗t on B.

5 Long time limit
This section solves Problem 2. It uses ε-almost invariant and η-indistinguishable states to do that. The result
implies global existence of a rescaled time evolution on an algebraM ⊂ A of macroscopic observables.

Let S ⊂ B0 be a subset of (strictly) invariant states. An example could be KMS-states within some temper-
ature interval⋃β∈[β1β2] Kβ. De�ne a weak*-neighborhood

G = Bε ∩ (⋃
z∈S

N(z, {Ai}mi=1; η)) = G(S,M, ε, η) (5.1)

of ε-almost invariant η-indistinguishable states nearS. The time translationsT −t/τ with time scale τ translate
any initial state z ∈ G along its orbit according to

T −t/τKz(
t0
τ ) = Kz(

t0 − t
τ ),
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where t0 denotes the initial instant,Kz(t0/τ) = z and τ > 0 the time scale. Discretizing time as

t = kτ

with k ∈ ℤ such that t0 = 0 produces discretized orbitsKz(−k), k ∈ ℕ for all z ∈ G as iterates of T 1. For every
initial state z ∈ G de�ne

wG(z) = min{k ≥ 1 : T −kKz(0) ∈ G}
as the �rst return time of z into the set G. For all invariant z ∈ B0 one has wG(z) = 1. For states z that never
return to G one sets wG(z) =∞. For all k ≥ 1 let

Gk = {z ∈ G : wG(z) = k}

denote the subset of states with recurrence time 1 ≤ k ≤∞ with k =∞ interpreted as

G∞ = G \ ⋃
k∈ℕ

Gk .

The states z ∈ S generate a family of resolutions of the identity Pz resulting in a family of invariant measures
on (B,B). Their mixture with a measure ν(z) on S,

Q = ∫
S

Pz dν(z), (5.2)

is again an invariant measure on (B,B). The numbers

p(k) = Q(Gk)
Q(G) (5.3)

de�ne a discrete probability density onℕ ∪ {∞}. It may be interpreted as aweighted probability of recurrence
into the neighborhood G of the set S ⊂ B0.

The time evolution of almost invariant states can be de�ned by addition of random recurrence times. Let
pN(k) be the probability density of the sum

WN = w1 + ⋅ ⋅ ⋅ + wN

of N ≥ 1 independent and identically distributed random recurrence times wi ≥ 1. Let p(k) from (5.3) be the
common probability density of all wi. Then, with N ≥ 2 and p1(k) = p(k),

pN(k) = (pN−1 ∗ p)(k) =
k
∑
m=0

pN−1(m)p(k − m) (5.4)

is an N-fold convolution of the discrete recurrence time density in (5.3). The family of distributions pN(k)
obeys

pN(∞) +
∞
∑
k=1

pN(k) = 1

for all N ≥ 1 and the discrete analogue of (1.4)

pN+M(k) = (pN ∗ pM)(k)

holds for all N,M ≥ 1. The individual states in G are indistinguishable within the given accuracy η, but each
of them may have a di�erent �rst recurrence time. It is then natural to assign the average

S −1 =
∞
∑
k=1

p(k)T −k

over all recurrence times as the duration of a single time step in the induced time evolution on G. If a macro-
scopic time evolution with a rescaled time exists then this requires to consider the iterations

S −N = S −(N−1)S −1 =
∞
∑
k=1

pN(k)T −k (5.5)
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in the limit N →∞. These may be interpreted as the age of the indistinguishable states in G after N iterations
or time steps. The long-time or large N limit of S N is governed by local limit theorems for convolutions [3,
11, 14, 20, 21, 35].

Theorem 1. Let pN(k) be the probability density of random recurrence times speci�ed in (5.4). Then there exist
constants DN ≥ 0, D ≥ 0 and 0 < α ≤ 1 such that

lim
N→∞

sup
k

!!!!!!!
DNpN(k) −

τ
D1/α hα(

kτ
DND1/α )

!!!!!!!
= 0, (5.6)

where
α = sup{0 < β < 1 :

∞
∑
k=1

kβp(k) <∞} (5.7)

if∑∞
k=1 kp(k) diverges, while

α = 1,

if∑∞
k=1 kp(k) converges. For α = 1 the function hα(x) is h1(x) = δ(x − 1). For 0 < α < 1 the function hα(x) is

hα(x) =
{{{
{{{
{

0 for x ≤ 0,
1
x

∞
∑
j=0

(−1)jx−αj
j! Γ(−αj) for x > 0.

Proof. Existence of a limiting distribution for WN/DN > 0 is known to be equivalent to stability of the limit
[14]. If the limit distribution is nondegenerate, this implies that the rescaling constants DN have the form

DN = (NΛ(N))1/α , (5.8)

where Λ(N) is a slowly varying function [55], de�ned by the requirement that

lim
x→∞

Λ(bx)
Λ(x) = 1

holds for all b > 0. That the number α obeys (5.7) is proven in [14, p. 179]. It is bounded as 0 < α ≤ 1 because
the rescaled random variablesWN/DN > 0 are positive.

To prove (5.6) note that the characteristic function ofWN is the N-th power

⟨eiξWN ⟩ = [p(ξ)]N =∑
k
eiξkpN(k)

because the characteristic functions p(ξ) = ⟨eiξwj⟩ofwj are identical for all j = 1, . . . , N. InverseFourier trans-
formation gives

pN(k) =
1
2π

π

∫
−π

e−iξk[p(ξ)]N dξ = τ
2πDND1/α

πDND1/α
∫

−πDND1/α e
−iξx[p( ξτ

DND1/α )]
N
dξ,

where
x = xkN =

kτ
DND1/α

and ξ was substituted with (ξτ)/(DND1/α). Let hα(ξ) denote the characteristic function of hα(x) so that

hα(x) =
1
2π

∞

∫
−∞

e−ixξhα(ξ)dξ

holds.
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Following [35], the di�erence ∆N(k) in (5.6) can be decomposed and bounded from above as

∆N(k) =
!!!!!!!
DNpN(k) −

τ
D1/α hα(

kτ
DND1/α )

!!!!!!!
=
!!!!!!!
DNpN(k) −

τ
D1/α hα(x)

!!!!!!!

=
τ

2πD1/α

!!!!!!!!!

πDND1/α
∫

−πDND1/α e
−iξx[p( ξτ

DND1/α )]
N
dξ −

∞

∫
−∞

e−iξx hα(ξ)dξ
!!!!!!!!!

=
τ

2πD1/α

!!!!!!!!!
∫

|ξ|<B

e−iξx[p( ξτ
DND1/α )

N
− hα(ξ)]dξ + ∫

B≤|ξ|<ηDND1/α e
−iξx[p( ξτ

DND1/α )
N
− hα(ξ)]dξ

+ ∫

η≤ |ξ|
DND1/α <π

e−iξx[p( ξτ
DND1/α )

N
− hα(ξ)]dξ − ∫

|ξ|≥πDND1/α e
−iξx hα(ξ)dξ

!!!!!!!!!

≤
τ

2πD1/α( ∫
|ξ|<B

!!!!!!!
p( ξτ
DND1/α )

N
− hα(ξ)

!!!!!!!
dξ + ∫

B≤|ξ|<ηDND1/α
!!!!!!!
p( ξτ
DND1/α )

!!!!!!!

N
dξ

+ ∫

η≤ |ξ|
DND1/α <π

!!!!!!!
p( ξτ
DND1/α )

!!!!!!!

N
dξ + ∫

|ξ|≥B

hα(ξ)dξ) (5.9)

with constants B, η to be speci�ed below. The terms involving hα(ξ) from the second and third integral have
been absorbed in the fourth integral. The four integrals are now discussed further individually.

The �rst integral in (5.9) converges uniformly to zero for N →∞, because p(k) belongs to the domain of
attraction of a stable law with index α, as already noted above.

To estimate the second integral in (5.9), note that the characteristic function p(ξ) belongs to the domain
of attraction for index α if and only if it behaves for |ξ|→ 0 as [35]

|p(ξ)| = exp{−c|ξ|αΛ( 1
|ξ|)}

,

where c > 0 and Λ(x) is a slowly varying function at in�nity obeying

lim
N→∞

NΛ(DN)
DαN
= 1.

By the representation theorem for slowly varying functions [4, p. 12] there exist functions d(y) and ε(y) such
that the function Λ(y) can be represented as

Λ(y) = d(y) exp{−
y

∫
b

ε(u)
u

du}

for some b > 0 where d(y) is measurable and d(y)→ d ∈ (0,∞) as well as ε(u)→ 0 hold for y →∞. As a
consequence

Λ(λy)
Λ(y) =

d(λy)
d(y)

exp{−
λy

∫
y

ε(u)
u

du}

so that, with λ = |ξ|−1 and y = DN ,
Λ(DN/|ξ|)
Λ(DN)

= |ξ|o(1)(1 + o(1))

is obtained for N →∞. Therefore, there exists for any ã < α a positive number c(ã) independent of N such
that

|pN(ξ)| =
!!!!!!!
p( ξ
DN

)
!!!!!!!

N
=
!!!!!!!
exp{− cN

DαN

Λ(DN)
Λ(DN)

Λ(DNξ )|ξ|α}
!!!!!!!
≤ exp{−c(ã)|ξ|ã}
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for su�ciently large N. If N is su�ciently large, it is then possible to choose an η > 0 (and �nd c̃(ã)) such that

∫

B≤|ξ|<ηDND1/α
!!!!!!!
p( ξτ
DND1/α )

!!!!!!!

N
dξ ≤ ∫

B≤|ξ|<ηDND1/αexp{−c̃(
α
2)|ξ|

α
2 }dξ ≤ ∫

|ξ|≥B

exp{−c̃(α2)|ξ|
α
2 }dξ

and this converges to zero for B →∞.
The third integral in (5.9) is estimatedbynoting that |p(ξ)| < 1 for0 < |ξ| < 2π/τ. Hence, there is apositive

constant c > 0 such that
|p(ξ)| ≤ e−c

for η ≤ |ξ| ≤ π. Consequently, with (5.8),

∫

η≤ |ξ|
DND1/α <π

!!!!!!!
p( ξτ
DND1/α )

!!!!!!!

N
dξ ≤ 2πe−cN[NΛ(N)D]1/α

converges to zero as N →∞.
Finally, the fourth integral in (5.9) converges to zero, because the characteristic function hα(ξ) is inte-

grable onℝ. In summary, all four terms in (5.9) vanish for N →∞, and (5.6) holds.

Theorem 2. Let S ⊂ B0 be a subset of invariant states and let G(S,M, ε, η) be a weak*-neighborhood of
ε-almost invariant η-indistinguishable states near S as de�ned in (5.1). Let Pz be a family of resolutions of the
identity, ν a mixing measure, and Q the invariant measure de�ned in (5.2). Let α, D, DN and Λ depend on these
data as implied by Theorem 1. Then the long-time evolutions

lim
τ→∞, N→∞

[NΛ(N)D]1/α/τ=aS −N = T −aα =
∞

∫
0

hα(x)T −xa dx (5.10)

are one-sided stable convolution semigroups T −aα with long-time parameter a ≥ 0.

Proof. If the limit in Theorem 1 exists and is nondegenerate so that D ̸= 0, then the rescaling constants DN
have the form

DN = (NΛ(N))1/α ,

where Λ(N) is a slowly varying function [55], i.e.

lim
x→∞

Λ(bx)
Λ(x) = 1

for all b > 0. Theorem 1 shows that

pN(k) ≈
1

DND1/α hα(
k

DND1/α )

holds for su�ciently large N and all τ. Inserting this into (5.5), one �nds

S −N =
∞
∑
k=1

hα(
kτ

DND1/α )T −k
[k − (k − 1)]τ
DND1/α

with DN ≥ 0 and D ≥ 0. Introducing the long-time scaling limit

lim
τ→∞, N→∞

DND1/α

τ
= lim
τ→∞, N→∞

[NΛ(N)D]1/α
τ

= a

and the macroscopic time parameter a, the result follows. Note that a ≥ 0 because DN ≥ 0 and D ≥ 0.

The result shows that a proper mathematical formulation of local stationarity necessitates a generalization
of the left-hand side in (1.1a). The time evolution in (1.1) is implicitly restricted to be a translation along
the orbit. The general result is that the integration of in�nitesimal system changes requires to consider con-
volutions instead of just translations along the orbit [20, 30]. Convolutions along the orbits reduce to the
traditional translations in the special case α = 1 as discussed below.
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6 Discussion and application

6.1 Abundance of invariant states

The family Bε of ε-almost invariant BMO-states with 0 ≤ ε ≤∞ has provided a mathematical concept for
formulating questions concerning the abundance of time-invariant states and their embedding in the set of all
states. Its de�nition re�ects the experimental reality that observations are always performed by integration of
experimental data over time intervals. BMO-states allow for singular expectation values, thereby establishing
for the �rst time a general framework to discuss Problem 1 above. Finally, the result in (5.10) provides an
answer toProblem2by showing that the left-hand side in (1.1a) cannot be considereda time translationalong
the orbits of the underlying dynamics. Instead the left-hand side is in general the in�nitesimal generator of
a convolution along rescaled orbits of ε-almost invariant states. The orbits of ε-almost invariant states can
approach the manifold of invariant states of the physical system or subsystem of interest at every point for
any length of time without being trapped.

6.2 The limit α→ 1 and irreversibility

Equation (5.10) generalizes time �ow to a convolution. For α → 1− the convolution reduces to a translation
because

h1(x) = lim
α→1− hα(x) = δ(x − 1) (6.1)

and therefore

T −a1,Λ =
∞

∫
0

δ( t
aτ
− 1)T −t/τ

dt
aτ
= T −a (6.2)

is a right translation. Here (t/τ) ∈ ℝ denotes a time instant, while a ≥ 0 is an age or duration. This shows that
induced right translations do not form a group, but only a semigroup.

The absence of inverse elements from semigroups raises a generalized perspective on time reversibility
because it suggests a reversed formulation of the problem of irreversibility [19, 20, 28, 29]. The well-known
problem of irreversibility may be formulated as follows:

Problem 3 (The normal irreversibility problem). Assume that time is reversible. Explain how and why time
irreversible equations arise in physics.

Fundamental (microscopic) theories of modern physics generally postulate invariance under the Poincaré
group. This expresses the symmetry of the fundamental laws of nature as an isometry of spacetime. Be-
cause the time translations are a subgroup of the Poincaré group, this postulates time reversibility and raises
the normal irreversibility problem. The explanation of macroscopically irreversible behavior for macroscopic
nonequilibrium states of subsystems is due to Boltzmann. It is based on the applicability of statistical me-
chanics and thermodynamics, the large separation of scales, the importance of low entropy initial conditions,
and probabilistic reasoning [43].

Thenormal problemof irreversibility,which ensues fromassuming t ∈ ℝ, is not only related to the second
law of equilibrium thermodynamics. The deeper problem with assuming t ∈ ℝ is that an experiment (requir-
ing the preparation of an initial state within an in�nity of η-indistinguishable initial states for a dynamical
system) cannot be repeated yesterday, but only tomorrow [28]. While it is possible to translate the spatial
position of a physical system forward and backward in space, it is not possible to translate the temporal posi-
tion of a physical system backwards in time. Note that translating an experiment backward in time is not the
same as reversing the momenta of all particles in a physical system. This was emphasized in [28, 29]. These
observations combined with (6.1) and (6.2) suggest to reformulate the normal irreversibility problem above
as follows:
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Problem 4 (The reversed irreversibility problem). Assume that time evolution is always irreversible. Explain
how and why time reversible equations arise in physics.

The reversed irreversibility problem was introduced in [28]. Its solution is given by Theorem 1 combined
with (6.1) and (6.2). Even if a ≥ 0, time reversibility may arise as a purely mathematical symmetry of model
equations in the case α = 1. The case α = 1 is expected to occur more frequently in applications than the case
0 < α < 1, because the limit law for α = 1 in Theorem 1 has a larger domain of attraction than for 0 < α < 1
[3, 11, 14, 35]. This explains why equations of motion of the form of (1.1) with time reversal symmetry arise
more frequently in physics.

6.3 In�nitesimal generators

The generalized (coarse grained) time evolution operators T a
α,Λ found in Theorem 1 and (5.10) are convolu-

tion operators. In the following, their dependence on a slowly varying function Λ will be suppressed to write
T a
α for short. The notation T a

1 = T a will also be used.
The operators T a

α form a family of strongly continuous semigroups on C0(G)∗ provided that the transla-
tions T inside the integral in (5.10) are strongly continuous [48, 51] and ∫

∞
0 ‖T s‖hα(s/a)/a ds <∞. In this

case the in�nitesimal generators T a
α for 0 < α ≤ 1 are de�ned by

Aα ϱ̃ = s-lim
a→0

T a
α ϱ̃ − ϱ̃
a

for all ϱ̃ ∈ C0(G)∗ for which the strong limit s-lim exists. In general, the in�nitesimal generators Aα are un-
bounded operators. If A = −d/da denotes the in�nitesimal generator of the translation T a, then

Aα = −(−A)α = −(
d
da)

α
(6.3)

are fractional time derivatives [23, 58]. The action of Aα onmixed states can be represented in di�erent ways.
Frequently an integral representation

Aα ϱ̃ = limϵ→o C
∞

∫
ϵ

a−α−1(1 −T a)ϱ̃ da

of Marchaud type [1, 45] is used. The integral representation

Aα ϱ̃ = limϵ→o C
∞

∫
ϵ

a−αA(1 − aA)−1 ϱ̃ da

in terms of the resolvent of A (see [40]) de�nes the same fractional derivative operator [57]. Representations
of Grünwald–Letnikov type are also well known [58].

6.4 An application to experiment

This section discusses a direct application of the mathematical analysis to an experiment. In physics the
time evolutions from (5.10) with α < 1 have been linked to observations of so-called “anomalous dynamics”
or “strange kinetics” for many years (see [22, 33, 37, 46] for reviews). A speci�c example is the dielectric
relaxation in glasses [25, 26]. It is brie�y discussed and selected here for two reasons: Firstly, because ex-
perimental data over up to 19 decades in time are available for this example [44], and secondly, because
the generic appearance of excess wings [41] at high frequencies has remained obscure theoretically. Excess
wings are found not only in dielectric spectroscopy, but recently also in depolarized light scattering experi-
ments [52].
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Let f(t)with f(0) = 1 denote the normalized, electrical dipolar polarization observed in a dielectric relax-
ation experiment [13, 41]. Then the complex frequency dependent dielectric susceptibility is ε(u)= 1−uf̂ (u),
where f̂ (u) denotes the Laplace transform of f(t), u = −2πiν, i2 = −1, and ν is the frequency [25, p. 402, (18)].
It is generally accepted that coarse graining the microscopic equations (1.1) for a �uid weakly perturbed by
a time-varying electromagnetic �eld at su�ciently high temperatures gives rise to a coarse grained evolution
T a
α with α = 1 for the relaxation function f in linear response theory [2, 13, 42]. The macroscopic relaxation

function f expresses an average over microscopic orientational dipole-dipole �uctuations. The function f
obeys the normalized Debye equation for dielectric relaxation [13, Chapter III, §10]

df
da = −f (6.4)

with initial value f(0) = 1. Writing a = t/τ for the dimensionless duration, the solution is the exponential
(Debye) relaxation function

f(t) = exp(− tτ) (Debye) (6.5a)

and its associated dielectric function
ε(u) = 1

1 + uτ . (6.5b)

While this form is con�rmed experimentally at high temperatures, deviations are found at lower tempera-
tures. This is illustrated for the imaginary part of ε(u) in the upper curve in Figure 1. The comparison between
theoretical results and experimental data is done numerically.

Many alternatives to the Debye relaxation have been suggested phenomenologically to improve the �t
to the data. A time-honored example is the stretched exponential Kohlrausch relaxation [38, 39], revived by
Williams and Watts [59]:

f(t) = exp(−[ tτ ]
α
) (KWW),

ε(u) = 1 − H11
11 ([uτ]

α
!!!!!!!!!

(1, 1)
(1, a)

) ,

where τ > 0 is the relaxation time and 0 < α ≤ 1 is the stretching exponent. The dielectric susceptibility for
the stretched exponential was only found 150 years later by the author [27] in terms of special functions
de�ned through inverse Mellin-transforms of Γ-functions and known as H-functions [12].

A popular alternative to stretching in time is to stretch in frequency. In this case a stretching exponent α
is introduced into (6.5b) rather than into (6.5a). This leads to the Cole–Cole (CC) relaxation [8]

f(t) = Eα(−[
t
τ ]

α
), (6.6a)

ε(u) = 1
1 + (uτ)α (CC), (6.6b)

where
Ea(x) =

∞
∑
k=0

xk

Γ(ak + 1)

is the Mittag-Le�er function [47]. It is well known that the relaxation function f(t) for Cole–Cole relaxation is
intimately related to eigenfunctions of the fractional derivatives from (6.3) [15, 23]. Unfortunately, the Cole–
Cole form (6.6b) exhibits a symmetric α-peak, while asymmetric α-peaks are observed experimentally for
manymaterials [41]. Therefore, a second way to introduce the stretching exponent α into the Debye function
(6.5b), known as the Cole–Davidson (CD) form, was introduced in [9]:

f(t) = Γ(α, t/τ)Γ(α) , (6.7a)

ε(u) = 1
(1 + uτ)α (CD), (6.7b)
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Figure 1. Five di�erent �ts to the imaginary part Im ε(u) (u = −2πiν) of the complex dielectric function of propylene carbonate
at T = 193K as a function of frequency. Experimental data represented by crosses are taken from [54]. The �tting functions
corresponds to an exponential (Debye), stretched exponential (KWW), Cole–Davidson [10, 24] Havriliak–Negami [18, 27] and
the fractional dynamics (FD) relaxation from (6.11). The range over which the data were �tted is indicated by dashed vertical
lines. For clarity the data were displaced vertically by half a decade each. The original location of the data corresponds to the
curve labelled FD.

where

Γ(a, x) =
∞

∫
a

ya−1e−y dy

denotes the complementary incomplete Gamma function, Finally, the CC-form and CD-form are combined
into the popular Havriliak–Negami (HN) form given as

f(t) = 1 − 1
Γ(β)H

11
12 ([

t
τ ]

α !!!!!!!!!

(1, 1)
(β, 1)(0, α)

) , (6.8a)

ε(u) = 1
(1 + [uτ]α)β

(HN) (6.8b)

with three �t parameters. The explicit formula (6.8a) for the Havriliak–Negami relaxation function was �rst
given in [27].

The functional forms (6.5), (6.6), (6.7), and (6.8) are used universally almost without exception to �t
broadbanddielectric data [41, Table 3.1]. A quantitative comparison of the di�erent forms is shown for propy-
lene carbonate at T = 193K in Figure 1. It is found that all of the functional forms (6.5), (6.6), (6.7), and (6.8)
deviate from the experimental data at high frequency or give an unsatisfactory �t. Therefore, a weighted sum
of two or more of these functional forms is routinely used to �t the excess wing in glass forming materials.
An example with seven �t parameters (four exponents, two relaxation times and one mixing parameter that
determines the relative weight of the two HN-functions) is seen, e.g., in [41, p. 66, Figure 3.5].

Generalized time evolution operators yield a generalized Mittag-Le�er-type function with only three pa-
rameters (instead of seven for HN), that allows to �t both, the asymmetric peak and the excess wing with a
single stretching exponent. Every coarse grained evolution operator T a

β with time scale τ > 0 and order β(τ)
factorizes as

T τa
β(τ) = T τ1a

β(τ) T
(τ−τ1)a
β(τ) = T τ1a

β(τ) T
τ2a
β(τ1+τ2) (6.9)
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Figure 2. Theoretical FD-�t εth using (6.11) to the real and imaginary part of the complex dielectric function εexp of experimental
data for methyl-m-toluate at 179.2K as a function of frequency [7]. The data are from [49].

Figure 3. Theoretical FD-�t εth using (6.11) to the real and imaginary part of the complex dielectric function εexp of experimental
data of 5-methyl-2-hexanol at 155.4K as a function of frequency [7]. The data are from [36].

with τ = τ1 + τ2 by virtue of the basic law from (1.4). Assume now that one of the factors in (6.9), say the
second, becomes approximately fractional in the sense that

T τ2a
β(τ1+τ2) ≈ T τ2a

α(τ2)

holds in the weak* or strong topology with

lim
τ2→0

α(τ2) = β(τ).

The resulting composite time evolution T τ1a
β(τ) T

τ2a
α(τ2) was studied in [25, 26] for the case β(τ) = 1. Computing

the in�nitesimal generator of T τ1a
1 T τ2a

α(τ2) and following the steps to derive the Debye equation yields the
di�erential equation [25, 26]

τ1
df
da + τ

α
2Aα f = −f (6.10)

Bereitgestellt von | De Gruyter / TCS
Angemeldet

Heruntergeladen am | 16.03.16 11:00



R. Hilfer, Mathematical analysis of time flow | 63

withAα from (6.3) and initial value f(0) = 1. It reduces to (6.4) for α = 1. The three-parameter function solving
(6.10) and its associated dielectric function read

f(t) = E(1,1−α),1(−
a
τ1
, −
τα2
τ1
a1−α), (6.11a)

ε(u) = 1 + (uτ2)α
1 + (uτ2)α + uτ1

(FD), (6.11b)

where

E(a1 ,a2),b(z1, z2) =
∞
∑
k=0

∑
ℓ1≥0

∑
ℓ2≥0

ℓ1+ℓ2=k

k!
ℓ1!ℓ2!

zℓ11 z
ℓ2
2

Γ(b + a1ℓ1 + a2ℓ2)
,

where a1, a2 > 0 and b, z1, z2 ∈ ℂ is the binomial Mittag-Le�er function [15, 32]. In Figure 1 the resulting
�t is denoted as “fractional dynamics” (FD). It reproduces the high frequency wing even outside the range of
�tting, while this is not the case for the other four curves, labelled Debye, KWW, CD, and HN.

Figures 2 and 3 show FD-�ts to methyl-m-toluate and 5-methyl-2-hexanol as two additional examples.
Figures 2 and 3 show both the imaginary part, but also the real part of the complex dielectric susceptibility
function. The excess wing, best visible in the imaginary part, is characteristic for anomalous dynamics or
glassy dynamics [41, 52]. 5-methyl-2-hexanol and methyl-m-toluate are just two from many real physical
examples where the mathematical analysis of time �ow has become experimentally important.
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