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1 Introduction

A time evolution for closed quantum systems is usually specified as a one-parameter group of unitary opera-
tors on a Hilbert space. Dissipative processes, diffusion or irreversible ageing of natural systems are difficult
to accommodate within this theoretical framework.

Many equations of motion for closed systems are formulated as abstract Cauchy problems on a Banach
space ‘B. A state or observable A € B evolves according to

Te%A(t/r) = ZA(t]1), (1.1a)
A(to/T) = Ao,z (1.1b)

from its initial value Ao, ; at time instant to. In (1.1) time is measured in units of 7 seconds (such that t/7 € R).
and € is an energy scale (Joule). Often the infinitesimal generator .# (Liouvillian or Hamiltonian) is an un-
bounded operator with domain D(.¥) < B (see [16]). Recall that .# corresponds to a vector field in classical
mechanics, to a selfadjoint operator in quantum mechanics, and to a derivation on an algebra of observables
in field theories [5]. Existence of a physical time evolution is equivalent to the existence of global solutions
of (1.1) under various assumptions. Many examples of (1.1) do not have global solutions, particularly when
the physical system is infinite.

Define B = 2( to be the C*-algebra of observables of a physical system, and assume that it has an identity,
unless explicitly stated otherwise. Equations (1.1) give formally

t
9t/r5<Ao,f(?0) =T Ao, (1.2)
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if themaps T° : 2l —» A and .75 : 24 — A are defined as

TUTA = exp(%)A, (1.3a)
T a(s) = 5as + ;) (1.3b)

and the orbit maps K4 : R — 2 are defined as
Ka(s):s— T°A

for each fixed A € 2. In (1.3), where T with s € R is a one-parameter family of *-automorphisms of 2, it
remains to give meaning to the formal exponential, such that the orbit maps X4 : R — 2l are continuous for
every A € 2.

Given the *-automorphisms (T%)scr this family of operators is expected to fulfill the time evolution law

Tt/TsIT _ lt+s)/T (1.4)

with T° = 1 being the identity. Let the maps ¢t — T be continuous as mappings from R into the space B(2)
of all bounded operators on 2( endowed with the strong operator topology [34, 60]. One then has continuous
orbits K4 (s) and the operator family (T*)scr is then a strongly continuous one-parameter group (Co-group)
on 2. Recall that physical experiments do not observe or measure the selfadjoint observables A directly, but
only their expectation values, denoted as (z, A) € R, with respect to a state z of the physical system. Indeed,
states are generally defined as positive and normalized linear functionals on the algebra 2 of observables
[5]. A linear functional z : 2t — R is called positive, if (z, A*A) > 0 holds for all A € 2, and normalized if
Izl = sup{|(z, A)|, |A| = 1} = 1. Most of the discussion below concerns states and it is necessary to define
their time evolution.

States are elements of the topological dual * = {z : % — C : zis linear and continuous}. The nota-
tion (z, A) is used for the value z(A) € R of a selfadjoint A € 2 in the state z. The adjoint time evolution
T*: A* — A* with t € R consists of all adjoint operators (T!)* on the dual space 2* (see [50, 51]). Let
Z c 2* denote the set of all states. The orbit maps for states K, : R — Z are defined as

Ky(8): s (T)*z=T*z
for states z € Z c A*. If T' is strongly continuous then
K(T* = 1)z, A)| = (2, T'"A - A)| < |1zl IT'A - A
shows that the adjoint time evolution T*! is weak*-continuous in the sense that the maps (4); : R — R,
t s (A),(t) = (z, T'A) = (T*'z, A) (1.5)

are continuous for all A € 2, z € Z. These maps are the time evolutions of all expectation values. In other
words, for a Co-group (T5)scr the orbit maps X, (s) are continuous from R into the space B(2(*) of all bounded
operators on 2* endowed with the weak*-topology [34, 53] and the adjoint family (T*%)scr is a C-group.
Note that the adjoint time evolution T* need not be strongly continuous unless ! is reflexive. The relation
between the time evolution of states and observables is

(K(to), T'Ka(to)) = (K(to), T Kalto))
= (Ky(to), Kalto + 1))
= (K (t1 - 1), Ka(tr))
= (T %K, (t1), Ka(tr))
= (T*'K,(t1), Ka(t1)), (1.6)
where t; = to + t € R. The adjoint time evolution of states is related to right translations along the orbits in

state space in the same way as the time evolution of observables is related to left translations along orbits in
the algebra.
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Equation (1.1a) combined with (1.6) for the adjoint time evolution states formally the proportionality

d <z
— =+

+T
dt €

of the infinitesimal generator d/dt of time translations and the infinitesimal generator .# of changes of the
physical system. Independently of the manner in which one attaches a meaning to the formal exponential,
equation (1.2) says that the time evolution of a physical system is a translation along orbits corresponding to
the changes of the system, specifically

(left shift along QA-orbit) = (change of observable),
(right shift along Z-orbit) = (change of state),

where the first equation reflects the Heisenberg picture, while the second corresponds to the Schrédinger
picture.

2 Problems and objective

It has been recently suggested that several unsolved and superficially unrelated problems in open quantum
systems, classical mechanics and quantum field theory are related to two fundamental questions associated
with the theoretical framework described in the introduction [31].

Problem 1. Are there global solutions of problem (1.1), i.e. solutions for all t € R?
Problem 2. If global solutions of problem (1.1) exist, how can invariant solutions still change with time?

Whenever thermodynamic observables such as temperature, pressure or densities change slowly with time,
it is necessary to analyze the mathematical transition from local (short time) stationarity to global (long time)
instationarity. The same mathematical transition is needed for the discussion of the relation between different
representations of canonical (anti-)commutation relations [16].

The two problems require to analyze the set of states that are invariant under the time evolution. If the
thermodynamic observables change, then there must exist many invariant states, and “long”-time averages
cannot be unique. The objective of this paper is to introduce a mathematical framework for the analysis of
such questions. Such a framework has remained elusive [56]. The main results are stated as two mathematical
theorems. The second objective of this paper is to apply the results of the mathematical analysis to a physical
experiment.

3 Invariance and indistinguishability

Definition 1. A state z € * is called invariant, if
(z, T'A) = (z, A) (3.1)
holdsforall A e 2and t € R.

The expectation values (A),(t) = (z, A) of all observables A € 2l are then constant. The set of invariant states
Bo ¢ 2A* over 2 is convex and compact in the weak*-topology [5]. The same holds for the set of all states
Z > By. Invariant states are fixed points of the adjoint time evolution T* as seen from (1.5).

Definition 2. A state z € Z is called a BMO-state if all maps (A), : R — R are in BMO(RR) for all A € 2. The
Banach space BMO(RR) of functions with bounded mean oscillation on R is defined as the linear space

BMO(R) = {f € L .(R), [fllzmo < 00},
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1
where Lioe

(R) is the space of locally integrable functions f : R — R . The BMO-norm is defined as

Iflemo = irclf{j If(x) = fil dx < Cl1], forall I},
1

where I ¢ R denotes intervals of length |I| and

f=t jf(x) dx

M
1

denotes the average of f over the interval I.

The set of all BMO-states
B={zeZ:|({A);llpmo < coforall A € 2}

is convex by linearity. Because B ¢ Z is a subset of a weak*-compact set, it is also weak*-compact. Hence a
decomposition theory into extremal BMO-states exists by virtue of the Krein—-Milman theorem [5]. The set of
invariant states is denoted by

Bo=1{z € B:[[(A)llzmo = O forall A € 2},

and it is a subset By ¢ B. BMO-states allow to define the concept of almost invariance. A BMO-state will be
called e-almost invariant, or almost invariant with accuracy &, if the expectation values of all observables are
stationary to within an accuracy €.

Definition 3. The set B of all e-almost invariant states is defined as
B: ={z €B: [[{(A)llemo < € forall A € A}.

The one-parameter family B, of e-almost invariant states is a family of subsets of B. The accuracy € measures
temporal fluctuations away from the time average.
The following inclusions of classes of states used in the following are summarized for orientation and
convenience:
Kg cBo CBg CByo=BcZcA,

where 0 < £ < oo and the sets of KMS-states Kz at inverse temperature 8 > 0 are defined as states z € Z such
that the KMS-condition [6]
(z, T'"(A)B) = (z, BT'™%(4))

holds for all t/7 € Rand A, B € 2(. The KMS-states are invariant states for all 8 > 0, but KMS-states for infinite
volume systems at different 8 are often disjoint [6]. For B = 0 the KMS-states are trace states, that are defined
by (z, AB) = (z, BA) for all A, B € 2l. Because KMS-states are Gibbs states, they are usually interpreted as
equilibrium states. Extremal states correspond to pure thermodynamic phases [6].

Two states are called indistinguishable, if they cannot be distinguished by measurements. Let m < co
denote the maximal number of experiments that can be performed to distinguish the states of the system. Let
{Ai}?ll c 2A denote the observables in these experiments, and let n; (i = 1, ..., m) be the accuracies, that can
be attained for measuring A;.

Definition 4. Two states z, z/ € Z with

.....

foralli =1, ..., mare called (experimentally) indistinguishable with respect to the observables A1, ..., An.

The sets of indistinguishable states

Nz AL ) = {2 e A" 1 Kz -2, Al <y, i=1,...,m}
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are n-neighborhoods of z in the weak*-topology [17]. The algebra 97t generated by the elements A1, ..., Ay €
2L will be called macroscopic algebra.

In the following, 0 < 17; < coand 0 < 1 = max; 1; < oo will be assumed. The n-neighborhoods of e-almost
invariant states N(z; {A;}",, n) N B¢ with z € B, for small €, 7 — 0 will be the candidates for local (in time)
stationary states.

4 Representation dependent invariant measures on BMO-states

The set of BMO-states B is weak*-compact. Its open subsets are the elements of the weak*-topology restricted
to B. They generate the o-algebra B of Borel sets on B. Let z € By ¢ B denote an invariant state so that (3.1)
holds for all t € R, A € 2. An invariant probability measure on B corresponding to the invariant state z is
constructed using the GNS-construction [5] and a resolution of the identity on B. The GNS-representation
(92, 15, Qf, U§) is the cyclic representation canonically associated with an invariant state z € B and the time
evolution T on the C*-algebra L. It is uniquely determined by the two requirements

UL m,(A) Uyt = my(T'A) forA e, teR,
UtQ,=Q, fort € R.

The scalar product in §, will be denoted as (, ). A resolution of the identity [53, p.301] on the Borel
o-algebra B is a mapping P : B — B(5),) with the following properties.
1. P(®)=0,PB)=1.
Each P(G) is a self-adjoint projector.
P(GNG') = P(G)P(G").
IfGNG' =0then P(GUG') = P(G) + P(G).
For every Y € $); and ¢ € £, the set function Py ¢ : B — C defined by

Py.4(G) = (P(G)Y, ¢)

is a complex regular Borel measure on B.
Because the projectors are self-adjoint, the set function Py y is a positive measure for every i € $,. For
Y = ¢ = Q, the resulting measure

U~ W N

Po,.0, = (P(G)Q;, Q;) =: P,

is an invariant probability measure on the measurable space (B, B) associated with the invariant BMO-state
z € B. The triple (B, B, P,) is a probability space. The probability measure P, is invariant under the adjoint
time evolution T*! on B.

5 Long time limit

This section solves Problem 2. It uses e-almost invariant and n-indistinguishable states to do that. The result
implies global existence of a rescaled time evolution on an algebra 9t c 2f of macroscopic observables.

Let S ¢ By be a subset of (strictly) invariant states. An example could be KMS-states within some temper-
ature interval [ Jge(, 3,1 Kg- Define a weak*-neighborhood

G=Ben ( NG, {4075 11)) — G(S,9M, &, 1) (5.1)

zeS

of e-almost invariant n-indistinguishable states near S. The time translations .7~/ with time scale 7 translate
any initial state z € G along its orbit according to

7o) (551),
T T
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where to denotes the initial instant, ,(to/7) = zand T > 0 the time scale. Discretizing time as
t=kt

with k € Z such that ¢ty = 0 produces discretized orbits K,(~k), k € N for all z € G as iterates of .7 1. For every
initial state z € G define
we(z) = min{k > 1 : 77%%,(0) € G}

as the first return time of z into the set G. For all invariant z € By one has wg(z) = 1. For states z that never
return to G one sets wg(z) = co. Forall k > 1 let
Gr=1{z€G:wg(z) =k}
denote the subset of states with recurrence time 1 < k < co with k = co interpreted as
Geo =G\ | J G
keN

The states z € S generate a family of resolutions of the identity P, resulting in a family of invariant measures
on (B, B). Their mixture with a measure v(z) on S,

Q= J P, dv(z), (5.2)
5

is again an invariant measure on (B, B). The numbers

Q(Gg)
k)= —+ 5.3
plo =5 ©) (5.3)
define a discrete probability density on IN U {oo}. It may be interpreted as a weighted probability of recurrence
into the neighborhood G of the set S c Bg.
The time evolution of almost invariant states can be defined by addition of random recurrence times. Let

pn (k) be the probability density of the sum
Wy=wi+-+wy

of N > 1 independent and identically distributed random recurrence times w; > 1. Let p(k) from (5.3) be the
common probability density of all w;. Then, with N > 2 and p1 (k) = p(k),

k
pn(k) = (pn-1 * P)(K) = ) py-1(m)p(k — m) (5.4)

m=0

is an N-fold convolution of the discrete recurrence time density in (5.3). The family of distributions py (k)
obeys

pn(co) + ) pn(k) =1
k=1

for all N > 1 and the discrete analogue of (1.4)

pn+m(k) = (pn = pm) (k)

holds for all N, M > 1. The individual states in G are indistinguishable within the given accuracy n, but each
of them may have a different first recurrence time. It is then natural to assign the average

s =3 plky 7%
k=1

over all recurrence times as the duration of a single time step in the induced time evolution on G. If a macro-
scopic time evolution with a rescaled time exists then this requires to consider the iterations

(9]
FN= WD 71 =N pyk) 77 (5.5)
k=1
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in the limit N — co. These may be interpreted as the age of the indistinguishable states in G after N iterations
or time steps. The long-time or large N limit of .#" is governed by local limit theorems for convolutions [3,
11, 14, 20, 21, 35].

Theorem 1. Let py(k) be the probability density of random recurrence times specified in (5.4). Then there exist
constants Dy > 0,D > 0 and O < a < 1 such that

. T kt
nggosiplDNpN(k) - Wha(w> =0, (5.6)
where
(o)
a= sup{O <B<1: Z KPp(k) < oo} (5.7)
k=1
if Y721 kp(k) diverges, while
a=1,

if Y51 kp(k) converges. For a = 1 the function ha(X) is h1(x) = 6(x — 1). For 0 < a < 1 the function hy(x) is

0 forx <0,
ha(¥) =11 Q (-1Yx ¥

- —— 70 forx>0.

ijzo J'T(-aj) f

Proof. Existence of a limiting distribution for Wy /Dy > 0 is known to be equivalent to stability of the limit
[14]. If the limit distribution is nondegenerate, this implies that the rescaling constants Dy have the form

Dy = (NA(N))M*, (5.8)

where A(N) is a slowly varying function [55], defined by the requirement that

A(bx)

=1
xggo A(x)

holds for all b > 0. That the number a obeys (5.7) is proven in [14, p. 179]. Itis bounded as O < a < 1 because
the rescaled random variables Wy /Dy > 0 are positive.
To prove (5.6) note that the characteristic function of Wy is the N-th power

@) = [p@)]" = Y e py (i)
k

because the characteristic functions p(¢) = (es¥i) of wj areidenticalforallj = 1, ..., N.Inverse Fourier trans-
formation gives

) n nDyDY« .f N
-t (et rpeNare T J ey )] ae,
puto = 5 [ e peo)" ag SAD DT ¥ [p( 55| a
-n —nDyDa
where
B 3 kt
X = XkN = —DNDl/a

and ¢ was substituted with (é7)/(D nDY/9). Let hq(&) denote the characteristic function of hy(x) so that

ha) = 5 j e hy(8) de

holds.
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Following [35], the difference Ay(k) in (5.6) can be decomposed and bounded from above as

An(k) = lDNpN(k) Dl/txh (%) |NPN(’<) Dl/a (x)|
nDyDYa . .
SNy
—-nDyDYe -0
-l | (i) ma@ae [ o) - hao] g
I§1<B Bs<|él<nDyDVa
+ I e_ifx[p<$>lv—ha(f)]df— J e—i{xha(ad‘f’
n< 5o <n ! G
sl | P(gigme) ~m@lass | (gl e
1§l<B B<|él<nDyDYa
N
" j |p(DND1/a) dg+ J h“‘f)df) (5.9)
B cq 1&1>B

with constants B, 1 to be specified below. The terms involving h,(&) from the second and third integral have
been absorbed in the fourth integral. The four integrals are now discussed further individually.

The first integral in (5.9) converges uniformly to zero for N — oo, because p(k) belongs to the domain of
attraction of a stable law with index a, as already noted above.

To estimate the second integral in (5.9), note that the characteristic function p(¢) belongs to the domain
of attraction for index a if and only if it behaves for |£] — 0 as [35]

Ip(@)] = exp{~cla" (|g| )

where ¢ > 0 and A(x) is a slowly varying function at infinity obeying

lim NA(DN)

=1.
N—oo Dg,

By the representation theorem for slowly varying functions [4, p. 12] there exist functions d(y) and &(y) such
that the function A(y) can be represented as

A®) = d( exp|- jy £ gu

b

for some b > 0 where d(y) is measurable and d(y) — d € (0, co) as well as £(u) — 0 hold for y — 0. As a
consequence

Ay
A dy) ([ ew)
Ay~ dy) exp] J du}

so that, with A = |¢|"? and y = Dy,
A(Dn/|&])
A(Dy)

is obtained for N — co. Therefore, there exists for any y < a a positive number c(y) independent of N such

that £ . A(DN)
|pN(£)|=|p(D—N)| :leXp{ D% A(Dy) ( z )"f' }

= 1&°D(1 + 0(1))

< exp{-c(p)|¢"}
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for sufficiently large N. If N is sufficiently large, it is then possible to choose an n > 0 (and find ¢(y)) such that

[ bl des | ewfe(§)atfaes | ewle(5)at}ae

B<|é|<nDyD1/x B<|é|<nDyD/ |¢]=B

and this converges to zero for B — co.
The third integralin (5.9) is estimated by noting that |p(¢)| < 1forO < |é| < 271/7. Hence, there is a positive
constant ¢ > 0 such that

lp(l<e*
for np < |¢] < n1. Consequently, with (5.8),

J |p ( D,Sl/a)

L]
n< DyD1/a <7

N
d¢ < 2me"N[NA(N)D]"®

converges to zero as N — oo.
Finally, the fourth integral in (5.9) converges to zero, because the characteristic function h,(¢) is inte-
grable on R. In summary, all four terms in (5.9) vanish for N — co, and (5.6) holds. O

Theorem 2. Let S c By be a subset of invariant states and let G(S, M, €, 1) be a weak*-neighborhood of
e-almost invariant n-indistinguishable states near S as defined in (5.1). Let P, be a family of resolutions of the
identity, v a mixing measure, and Q the invariant measure defined in (5.2). Let «, D, Dy and A depend on these
data as implied by Theorem 1. Then the long-time evolutions

7—00, N>00

o0
lim N =g j ha(X) 77X dx (5.10)
INA(N)D]%/7=a 0

are one-sided stable convolution semigroups .7, * with long-time parameter a > 0.

Proof. If the limit in Theorem 1 exists and is nondegenerate so that D # 0, then the rescaling constants Dy
have the form
Dy = (NAN))',

where A(N) is a slowly varying function [55], i.e.

A(bx) B
X—00 A(X) -

1

for all b > 0. Theorem 1 shows that

1 k
k) = 5 e h“(DNDl/a)

holds for sufficiently large N and all 7. Inserting this into (5.5), one finds

N ¥ kt k= (k-]
N _ h < ) k
7 k; “\ DyD1/a 7 DyD/a

with Dy > 0 and D > 0. Introducing the long-time scaling limit

DyD/@ . [NA(N)D]'/*
= lm —F—=a

lim =
T—00, N—>0o T T—00, N—>0oo T
and the macroscopic time parameter a, the result follows. Note that a > 0 because Dy > 0 and D > 0. O

The result shows that a proper mathematical formulation of local stationarity necessitates a generalization
of the left-hand side in (1.1a). The time evolution in (1.1) is implicitly restricted to be a translation along
the orbit. The general result is that the integration of infinitesimal system changes requires to consider con-
volutions instead of just translations along the orbit [20, 30]. Convolutions along the orbits reduce to the
traditional translations in the special case a = 1 as discussed below.
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6 Discussion and application

6.1 Abundance of invariant states

The family B, of e-almost invariant BMO-states with 0 < € < co has provided a mathematical concept for
formulating questions concerning the abundance of time-invariant states and their embedding in the set of all
states. Its definition reflects the experimental reality that observations are always performed by integration of
experimental data over time intervals. BMO-states allow for singular expectation values, thereby establishing
for the first time a general framework to discuss Problem 1 above. Finally, the result in (5.10) provides an
answer to Problem 2 by showing that the left-hand side in (1.1a) cannot be considered a time translation along
the orbits of the underlying dynamics. Instead the left-hand side is in general the infinitesimal generator of
a convolution along rescaled orbits of e-almost invariant states. The orbits of e-almost invariant states can
approach the manifold of invariant states of the physical system or subsystem of interest at every point for
any length of time without being trapped.

6.2 The limit a — 1 and irreversibility

Equation (5.10) generalizes time flow to a convolution. For @ — 1~ the convolution reduces to a translation
because
hi(x) = linll ho(x) =6(x - 1) (6.1)
a—1"

and therefore
—-t/T E
art

(oo}

70 = J 6(o-- 1) 7 -7 6.2)
: ar

0
is aright translation. Here (¢/7) € R denotes a time instant, while a > 0 is an age or duration. This shows that
induced right translations do not form a group, but only a semigroup.

The absence of inverse elements from semigroups raises a generalized perspective on time reversibility

because it suggests a reversed formulation of the problem of irreversibility [19, 20, 28, 29]. The well-known
problem of irreversibility may be formulated as follows:

Problem 3 (The normal irreversibility problem). Assume that time is reversible. Explain how and why time
irreversible equations arise in physics.

Fundamental (microscopic) theories of modern physics generally postulate invariance under the Poincaré
group. This expresses the symmetry of the fundamental laws of nature as an isometry of spacetime. Be-
cause the time translations are a subgroup of the Poincaré group, this postulates time reversihility and raises
the normal irreversibility problem. The explanation of macroscopically irreversible behavior for macroscopic
nonequilibrium states of subsystems is due to Boltzmann. It is based on the applicability of statistical me-
chanics and thermodynamics, the large separation of scales, the importance of low entropy initial conditions,
and probabilistic reasoning [43].

The normal problem of irreversibility, which ensues from assuming t € R, is not only related to the second
law of equilibrium thermodynamics. The deeper problem with assuming t € R is that an experiment (requir-
ing the preparation of an initial state within an infinity of n-indistinguishable initial states for a dynamical
system) cannot be repeated yesterday, but only tomorrow [28]. While it is possible to translate the spatial
position of a physical system forward and backward in space, it is not possible to translate the temporal posi-
tion of a physical system backwards in time. Note that translating an experiment backward in time is not the
same as reversing the momenta of all particles in a physical system. This was emphasized in [28, 29]. These
observations combined with (6.1) and (6.2) suggest to reformulate the normal irreversibility problem above
as follows:
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Problem 4 (The reversed irreversibility problem). Assume that time evolution is always irreversible. Explain
how and why time reversible equations arise in physics.

The reversed irreversibility problem was introduced in [28]. Its solution is given by Theorem 1 combined
with (6.1) and (6.2). Even if a > 0, time reversibility may arise as a purely mathematical symmetry of model
equations in the case a = 1. The case a = 1 is expected to occur more frequently in applications than the case
0 < a < 1, because the limit law for @« = 1 in Theorem 1 has a larger domain of attraction than for 0 < a < 1
[3, 11, 14, 35]. This explains why equations of motion of the form of (1.1) with time reversal symmetry arise
more frequently in physics.

6.3 Infinitesimal generators

The generalized (coarse grained) time evolution operators 7%, found in Theorem 1 and (5.10) are convolu-
tion operators. In the following, their dependence on a slowly varying function A will be suppressed to write
7, for short. The notation .7, = .7 will also be used.

The operators .72 form a family of strongly continuous semigroups on Co(G)* provided that the transla-
tions .7 inside the integral in (5.10) are strongly continuous [48, 51] and f:o |.7Sha(s/a)/ads < co. In this
case the infinitesimal generators .77 for 0 < a < 1 are defined by

= o Za0-0
Adg = slim ==
for all p € Co(G)* for which the strong limit s-lim exists. In general, the infinitesimal generators A, are un-
bounded operators. If A = —d/da denotes the infinitesimal generator of the translation .74, then
d a
A= -0 = () 6.3)
da
are fractional time derivatives [23, 58]. The action of A, on mixed states can be represented in different ways.

Frequently an integral representation
Aqf = lim C I a1 - 795 da
€
of Marchaud type [1, 45] is used. The integral representation
(0]
Aq0 = lim C J a“A(1 -aA)'pda
€

in terms of the resolvent of A (see [40]) defines the same fractional derivative operator [57]. Representations
of Griinwald-Letnikov type are also well known [58].

6.4 An application to experiment

This section discusses a direct application of the mathematical analysis to an experiment. In physics the
time evolutions from (5.10) with a < 1 have been linked to observations of so-called “anomalous dynamics”
or “strange Kinetics” for many years (see [22, 33, 37, 46] for reviews). A specific example is the dielectric
relaxation in glasses [25, 26]. It is briefly discussed and selected here for two reasons: Firstly, because ex-
perimental data over up to 19 decades in time are available for this example [44], and secondly, because
the generic appearance of excess wings [41] at high frequencies has remained obscure theoretically. Excess
wings are found not only in dielectric spectroscopy, but recently also in depolarized light scattering experi-
ments [52].
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Let f(t) with f(0) = 1 denote the normalized, electrical dipolar polarization observed in a dielectric relax-
ation experiment [13, 41]. Then the complex frequency dependent dielectric susceptibility is £(u) = 1 - uf (u),
where f(u) denotes the Laplace transform of f(t), u = —27iv, i = -1, and v is the frequency [25, p. 402, (18)].
It is generally accepted that coarse graining the microscopic equations (1.1) for a fluid weakly perturbed by
a time-varying electromagnetic field at sufficiently high temperatures gives rise to a coarse grained evolution
8 with a = 1 for the relaxation function f in linear response theory [2, 13, 42]. The macroscopic relaxation
function f expresses an average over microscopic orientational dipole-dipole fluctuations. The function f
obeys the normalized Debye equation for dielectric relaxation [13, Chapter III, §10]

df
- -f (6.4)

with initial value f(0) = 1. Writing a = t/1 for the dimensionless duration, the solution is the exponential
(Debye) relaxation function

f(t) = exp(—%) (Debye) (6.5a)

and its associated dielectric function
e(u) = . (6.5b)

While this form is confirmed experimentally at high temperatures, deviations are found at lower tempera-
tures. This is illustrated for the imaginary part of e(u) in the upper curve in Figure 1. The comparison between
theoretical results and experimental data is done numerically.

Many alternatives to the Debye relaxation have been suggested phenomenologically to improve the fit
to the data. A time-honored example is the stretched exponential Kohlrausch relaxation [38, 39], revived by
Williams and Watts [59]:

t 74
fo=exo(-[-])  eww),
(1,1)
(L,a))’
where 1 > 0 is the relaxation time and O < a < 1 is the stretching exponent. The dielectric susceptibility for
the stretched exponential was only found 150 years later by the author [27] in terms of special functions
defined through inverse Mellin-transforms of I'-functions and known as H-functions [12].

A popular alternative to stretching in time is to stretch in frequency. In this case a stretching exponent «
is introduced into (6.5b) rather than into (6.5a). This leads to the Cole—Cole (CC) relaxation [8]

ew)=1-HY ([ur]“

ft) = Ea(—[ﬂ ) (6.6a)
1
£(u) = m (CC), (6.6b)
where
Eoo=y X
al) = ,;O T(ak+ 1)

is the Mittag-Leffler function [47]. It is well known that the relaxation function f(t) for Cole—Cole relaxation is
intimately related to eigenfunctions of the fractional derivatives from (6.3) [15, 23]. Unfortunately, the Cole—
Cole form (6.6b) exhibits a symmetric a-peak, while asymmetric a-peaks are observed experimentally for
many materials [41]. Therefore, a second way to introduce the stretching exponent a into the Debye function
(6.5b), known as the Cole-Davidson (CD) form, was introduced in [9]:

I'(a, t/T)
T'(a) ’
1

€(u) = m (CD), (6.7b)

flt) = (6.7a)
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Figure 1. Five different fits to the imaginary part Im £(u) (u = —2miv) of the complex dielectric function of propylene carbonate
at T = 193 K as a function of frequency. Experimental data represented by crosses are taken from [54]. The fitting functions
corresponds to an exponential (Debye), stretched exponential (KWW), Cole-Davidson [10, 24] Havriliak-Negami [18, 27] and
the fractional dynamics (FD) relaxation from (6.11). The range over which the data were fitted is indicated by dashed vertical
lines. For clarity the data were displaced vertically by half a decade each. The original location of the data corresponds to the
curve labelled FD.

where

I'(a,x) = Jya‘le‘y dy
a

denotes the complementary incomplete Gamma function, Finally, the CC-form and CD-form are combined
into the popular Havriliak-Negami (HN) form given as

fit) = 1—%}15([%]“

(1,1)
, 6.8
(B, 1)(0, a)) (6.82)

e(u) = (HN) (6.8b)

(1 + [ur]®)p
with three fit parameters. The explicit formula (6.8a) for the Havriliak-Negami relaxation function was first
given in [27].

The functional forms (6.5), (6.6), (6.7), and (6.8) are used universally almost without exception to fit
broadband dielectric data [41, Table 3.1]. A quantitative comparison of the different forms is shown for propy-
lene carbonate at T = 193 Kin Figure 1. It is found that all of the functional forms (6.5), (6.6), (6.7), and (6.8)
deviate from the experimental data at high frequency or give an unsatisfactory fit. Therefore, a weighted sum
of two or more of these functional forms is routinely used to fit the excess wing in glass forming materials.
An example with seven fit parameters (four exponents, two relaxation times and one mixing parameter that
determines the relative weight of the two HN-functions) is seen, e.g., in [41, p. 66, Figure 3.5].

Generalized time evolution operators yield a generalized Mittag-Leffler-type function with only three pa-
rameters (instead of seven for HN), that allows to fit both, the asymmetric peak and the excess wing with a
single stretching exponent. Every coarse grained evolution operator 5/3“ with time scale T > 0 and order ()
factorizes as

Ta _ 5 T1a 5 (T-T1)a _ 5T1a 5Taa
B(r) ~ %(T) (%(T) - %(T) (%(Tﬁ‘l’z) (69)
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Figure 2. Theoretical FD-fit &g using (6.11) to the real and imaginary part of the complex dielectric function eexp of experimental
data for methyl-m-toluate at 179.2 K as a function of frequency [7]. The data are from [49].
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Figure 3. Theoretical FD-fit £ using (6.11) to the real and imaginary part of the complex dielectric function eexp of experimental
data of 5-methyl-2-hexanol at 155.4 K as a function of frequency [7]. The data are from [36].

with T = 71 + T, by virtue of the basic law from (1.4). Assume now that one of the factors in (6.9), say the
second, becomes approximately fractional in the sense that

y‘l’za ~ 7‘1’2(1

B(t1+12) T Ta(ta)

holds in the weak* or strong topology with
lim a(t,) = B(1).
7,—0

The resulting composite time evolution 7 Ta ,Zxr(zra was studied in [25, 26] for the case B(t) = 1. Computing

the infinitesimal generator of .7 Tlaﬁa“a and following the steps to derive the Debye equation yields the

differential equation [25, 26]
d,
T1 d£+rzAaf -f (6.10)
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with A, from (6.3) and initial value f(0) = 1. It reduces to (6.4) for @ = 1. The three-parameter function solving
(6.10) and its associated dielectric function read

flt) = E(1,17a),1<—%, —:—ial_a), (6.11a)
e = — LMDy (6.11b)

where .
1 2
k! z1'z5

€1!€2! F(b + a1£’1 + azez) ’

o0
E(al,az),b(Zh z) = z
k=0 €120 £,>0
1+8,=k
where ai, a, >0 and b, z1, z, € C is the binomial Mittag-Leffler function [15, 32]. In Figure 1 the resulting
fit is denoted as “fractional dynamics” (FD). It reproduces the high frequency wing even outside the range of
fitting, while this is not the case for the other four curves, labelled Debye, KWW, CD, and HN.

Figures 2 and 3 show FD-fits to methyl-m-toluate and 5-methyl-2-hexanol as two additional examples.
Figures 2 and 3 show both the imaginary part, but also the real part of the complex dielectric susceptibility
function. The excess wing, best visible in the imaginary part, is characteristic for anomalous dynamics or
glassy dynamics [41, 52]. 5-methyl-2-hexanol and methyl-m-toluate are just two from many real physical
examples where the mathematical analysis of time flow has become experimentally important.
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