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Abstract

Fractional Bochner-Levy-Riesz diffusion arises from ordinary diffusion
by replacing the Laplacean with a noninteger power of itself. Bochner-
Levy-Riesz diffusion as a mathematical model leads to nonlocal boundary
value problems. As a model for physical transport processes it seems to
predict phenomena that have yet to be observed in experiment.
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1. Introduction

Applications of fractional differentiation in physics [10] have become
widespread (see the reviews in [10, 12, 28, 29] and references therein). De-
spite the wide dissemination of fractional models some basic questions and
fundamental problems persist [12].

My objective in this note is to discuss the applicability of fractional
Bochner-Levy diffusion and fractional Riesz potentials as a mathematical
model for physical phenomena. A lively scientific debate is presently con-
cerned with boundary value problems for fractional Laplaceans and their
relevance for experiment as witnessed by the special session devoted to
nonlocal boundary value problems at the recent International Conference
on Fractional Differentiation and Its Applications in Catania, June 23-25,
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2014. In view of this ongoing debate it seems timely to contribute to the
discussion by exploring some thoughts of the present author concerning im-
plications of nonlocality for experiments [12, Section 2.3.2,p.48], that were
pointed out again at the conference. Originally, fractional derivatives and
Riesz potentials were introduced as a convenient calculational tool (see e.g.
[19, 22, 23]). Recently, however, fractional differential equations have often
been proposed as “generalizations” of more or less fundamental equations
of physics and engineering. Examples range from Schrödinger [17] and
advection-dispersion equations [27, 3, 4] to viscoelasticity [1], suspension
bridges [24] or loudspeaker coils [25]. Many generalizations remain formal
in the sense that their rigorous relation to established theories is unknown
and their limits of validity have not been worked out.

Deep and fundamental principles of physics suggest that mathemat-
ical models of physical phenomena must always be formulated in terms
of spatial derivatives of integer order (see [6]). Electrodynamics, hydrody-
namics, mechanics and quantum theory do not feature (spatial or temporal)
fractional derivatives. It is therefore not impossible that formal fractional-
ization of fundamental equations might produce interesting mathematical
models that predict phenomena not observed in experiment.

Given the large number of differential equations that have already been
fractionalized this short note will restrict attention to a specific example.
Let me choose fractional Bochner-Levy diffusion as this specific example,
because it has been a focus of attention both in mathematics and physics.
One can fractionalize the ordinary diffusion equation in several ways. Re-
placing the Laplacean with a fractional derivative is one possibility. It is
called called Bochner-Levy or Riesz fractional diffusion [18, 22, 2]. An-
other possibility, called Montroll-Weiss fractional diffusion, is to introduce
a fractional time derivative [21, 26, 7, 13, 9, 11, 12]. Mathematically it is
equivalent to the the theory of continuous time random walks [20] as first
observed in [8].

2. Mathematical Model

Let ∆ =
∑d

i=1 ∂
2/∂x2i denote the d-dimensional Laplace operator in

cartesian coordinates. Numerous authors postulate a fractional diffusion
equation such as

∂u

∂t
= −(−∆)α/2u(x, t), x ∈ B ⊆ Rd, t ≥ 0, (2.1)

with 0 < α ≤ 2 and initial condition

u(x, 0) = h(x), x ∈ B ⊆ Rd (2.2)
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for a function u : Rd → R as a mathematical model for various physical
phenomena (see [10, 15, 14, 28, 29] for examples). For α = 2 this becomes
the Cauchy problem for the ordinary diffusion equation whose applicability
as a mathematical model for physical phenomena has been validated with
innumerable experiments. For 0 < α < 2 however experimental evidence
remains narrowly bounded in space and time scales. Moreover, theoretical
considerations cast fundamental doubts on the applicability of this case to
natural phenomena.

For B = Rd the fractional Laplace operator (−∆)α/2 in eq. (2.1) may
be defined (in the sense of Riesz [23]) as

F
{
(−∆)α/2f(x)

}
(k) = |k|αF {f(x)} (k), (2.3)

where F {f(x)} (k) denotes the Fourier transform of f(x). A core domain
suitable for various extensions are functions f ∈ S(Rd) from the Schwartz
space of smooth functions decreasing rapidly at infinity.

The implicit idealizing assumption underlying the choice of an un-
bounded domain B = Rd in eq. (2.1) is that the boundary is sufficiently
far away so that its effects on the observations are negligible. However, ex-
periments are normally performed inside a bounded laboratory containing
a bounded apparatus that occupies a bounded domain B ⊂ Rd of space.
Thus, practical applications require to consider nonlocal boundary value
problems on bounded domains B ⊂ Rd.

Every experiment assumes that the experimental conditions in the re-
gion Rd\B surrounding the region B containing the sample can be controlled
and reproduced to any desired degree of accuracy. In the mathematical
model this is represented by assuming given boundary data g : Rd \B → R
for the unknown u(x, t) such that

u(x, t) = g(x), x ∈ Rd \ B (2.4)

for all times t ≥ 0. The Riesz operator (−∆)α/2 may then be be understood
as a Dirichlet form on the space L2(B, µ) over the bounded set B equipped
with the canonical Borel σ-algebra and a σ-finite measure µ, [5].

3. Discussion

3.1. (Non-)locality and (in-)finite propagation speed

It is the primary objective of this note to contribute to the current de-
bate by discussing fundamental differences between the cases α = 2 and
0 < α < 2 in eq. (2.1) for applications to experiment. The decisive differ-
ence between the cases α = 2 and 0 < α < 2 is the locality of the Laplacean
−∆ for α = 2 in contrast with the nonlocality of the fractional Laplacean
(−∆)α/2 for 0 < α < 2.
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Before discussing the (non-)locality of (−∆)α/2 it seems important to
distinguish it from another nonlocality appearing in eq. (2.1). It is some-
times argued that also the case α = 2 shows nonlocality in the sense that
a localized initial condition such as u(x, 0) = h(x) = δ(x − x0), vanishing
everywhere except at x0 for t = 0, spreads out instantaneously to all x such
that u(x, t) ̸= 0 for all x for t > 0. This initially infinite “speed of prop-
agation” violates relativistic locality. While this is true for all 0 < α ≤ 2,
it concerns the operator ∂/∂t + (−∆)α/2 and occurs only at t = 0, the
initial instant. For α = 2 the operator ∆ is local and also ∂/∂t + (−∆)
is perfectly local for all t > 0. While an infinite propagation speed occurs
also for 0 < α < 2 another violation of locality occurs in this case. This
has more dramatic implications for experiment, as will now be discussed.

3.2. Probabilistic interpretation

The fundamental difference between the cases α = 2 and 0 < α < 2 can
be understood from the deep and well known relation between the diffusion
equation (2.1) and the theory of stochastic processes. The probabilistic
interpretation of u(x) is given in terms of families of stochastic processes
(Xt)t≥0 indexed by their starting point X0 = x ∈ B through the formula
(for a sphere B = B(z,R) = {x ∈ Rd : |x − z| < R} of radius R around z
for simplicity)

u(x) = ⟨u(XT e(Rd\B(z,R)))⟩x, (3.5)

where T e(Rd \ B(z,R)) denotes the first exit time of a path starting at
X0 = x ∈ B(z,R) and hitting the set Rd \ B(z,R) for the first time at
t = T e(Rd \ B(z,R)). The brackets ⟨Y ⟩x denote the expectation value of
a random variable Y evaluated for the process (Xt)t≥0 starting from x at
t = 0.

For α = 2 the family of stochastic processes has almost surely continu-
ous paths. Because of this, a path starting from x ∈ B(z,R) at t = 0 will
exit from B(z,R) when hitting ∂B(z,R) = {x ∈ Rd : |x − z| = R} for the
first time.

For 0 < α < 2 on the other hand the families of stochastic processes
have almost surely discontinuous paths that can jump over the boundary
∂B(z,R). As a result the first exit occurs not at the boundary but at some
point XT e(Rd\B(z,R)) deep in the exterior region Rd \ B(z,R).

In applications to particle diffusion the unknown u(x, t) is often the
concentration of atomic, molecular or tracer particles and fractional gener-
alizations of Fick’s law have been postulated [4, 27, 3]. Note, however, that
the probabilistic interpretation is frequently not physical even for α = 2.
There are at least two possible reasons: Firstly, the underlying physical dy-
namics may not be stochastic. Secondly, fundamental laws of probability
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theory may be violated as for the case of heat diffusion where u(x, t) is the
temperature field. In such cases the random “paths” are fictitious as are
the “particles” and their “trajectories” in the sense that they cannot be
observed directly in an experiment.

Whether or not a probabilistic interpretation applies, the discontinuity
of the trajectories in the probabilistic interpretation leads to experimental
difficulties. This can be seen from considering the stationary states of
(2.1),(2.2) and (2.4).

3.3. Stationary solutions

To explore the physical consequences of the initial and boundary value
problem (2.1),(2.2) and (2.4) it is useful to start with stationary solutions,
i.e. solutions of the form

u(x, t) = u(x). (3.6)

The fractional diffusion equation then reduces to the fractional Riesz-Dirich-
let problem

(−∆)α/2u(x) = 0, x ∈ B (3.7a)

u(x) = g(x), x ∈ Rd \ B (3.7b)

for suitable boundary data g(x) such that∫
Rd\B

|g(x)|
1 + |x|d+α

ddx < ∞ (3.8)

holds.
The solution of the fractional Riesz-Dirichlet problem for the case of a

sphere B = B(z,R) = {x ∈ Rd : |x−z| < R} of radius R centered at z ∈ Rd

is the fractional Poisson integral [16]

u(x) =
Γ
(
d
2

)
sin

(
πα
2

)
π

d
2
+1

∫
Rd\B(z,R)

∣∣R2 − |x− z|2
∣∣α2

|R2 − |y − z|2|
α
2 |x− y|d

g(y)ddy (3.9)

for x ∈ B(z,R). For α → 2 the solution reduces to the conventional Poisson
integral

u(x) =
Γ(d/2)

2Rπd/2

∫
∂B(z,R)

R2 − |x− z|2

|x− y|d
g(y)dd−1y (3.10)

for x ∈ B(z,R) and u(x) = g(x) for x ∈ ∂B(z,R).
Although the fractional Poisson formula eq. (3.9) has been known for

nearly 70 years [22] its crucial difference to (3.10) seems to have escaped
the attention of those scientists, who propose eq. (2.1) or its variants as
a mathematical model for physical phenomena. Perhaps this is due to

 

 



338 R. Hilfer

the fact that many workers assume explicitly or implicitly “absorbing” or
“killing” boundaries g = 0 for all x ∈ Rd \ B(z,R). Physically this means
that there are no atoms, molecules or tracer particles outside the spherical
container B(z,R). Any particle that jumps out of B(z,R) is considered
to be instantaneously removed from the experiment. The environment
surrounding the experimental apparatus has to be kept absolutely clean at
all times for these boundary conditions to apply. Under these experimental
conditions both equations, eq. (3.9) as well as eq. (3.10), agree and both
predict

u(x) = 0 (3.11)

for all x ∈ Rd and all 0 < α ≤ 2.
Consider next the case when there exist regions where the atomic,

molecular or tracer particles are not instantaneously removed. For sim-
plicity let there exist several small nonoverlapping spherical containers
B(zi, Ri) with i = 1, ..., n, B(zi, Ri) ∩ B(zj , Rj) = ∅ for all i ̸= j and
B(zi, Ri) ∩ B(z,R) = ∅ for all i in which particles are kept (e.g. for re-
plenishment). This means that in these containers g(x) ̸= 0 and particles
jumping out of the sample region B(z,R) may land in one of these con-
tainers. They are not removed until the container is filled and a maximum
concentration is reached. Let ui ∈ R denote the maximal concentration in
each container. Assume that

g(x) =
n∑

i=1

R−d
i ϕi

(
x− zi
Ri

)
(3.12a)

with

ϕi(x) =

ui exp
(
− 1

1−|x|2

)
for x ∈ B(0, 1)

0 otherwise
(3.12b)

describes the concentration field in the region R\B(z,R) outside the sample.
Other functions than ϕi(x) with suppϕi ⊂ B(zj , Rj) are possible. Assume
also that Ri ≪ R for all i, so that in particular also suppg ∩ ∂B(z,R) = ∅
holds.

For α = 2 eq. (3.10) shows that the solution u(x) = 0 remains unaf-
fected by the containers B(zi, Ri) and their content. For 0 < α < 2 on the
other hand the solution changes and becomes nonzero. It is approximately

u(x) ≈
Γ
(
d
2

)
sin

(
πα
2

)
π

d
2
+1

n∑
i=1

ui
∣∣R2 − |x− z|2

∣∣α2
|R2 − |zi − z|2|

α
2 |x− zi|d

̸= 0 (3.13)

for x ∈ B(z,R). This result implies that for 0 < α < 2 the stationary solu-
tion inside the sample region B(z,R) depends on the location and content
of all other containers B(zi, Ri) in the laboratory. The sample in B(z,R)
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cannot be shielded or isolated from other samples in the laboratory. It
should be easy to verify or falsify this prediction in an experiment.

4. Conclusion

Fractional Bochner-Levy-Riesz diffusion represents an interesting math-
ematical generalization. It remains to be seen, however, whether and in
which approximation fractional spatial derivatives can arise phenomeno-
logically in mathematical models of an underlying physical reality that
obeys spatial locality. If such an approximation should exist for physical
particle transport processes, such that physical particle trajectories can be
identified with the mathematical paths of a Levy process, then it seems to
be an open problem how to understand the nonlocal dependence of station-
ary states in these systems on the location of, and particle concentration
in distant and remote containers. It will also be interesting to understand
whether and in which sense the experiments are reproducible and how an
experimental apparatus can be shielded or isolated from the environment.
Without experimental evidence for the mathematical predictions of frac-
tional potential theory it seems difficult to reconcile nonlocality in space
(i.e. the case 0 < α < 2) with theory and experiment.
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