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Abstract

Fractal time random walks with generalized Mittag-Lefller functions as waiting time-densities
are studied. This class of fractal time processes is characterized by a dynamical critical exponent
0 < w < 1, and is equivalently described by a fractional master equation with time derivative of
noninteger order w. Exact Greens functions corresponding to fractional diffusion are obtained
using Mellin transform techniques. The Greens functions are expressible in terms of general
H-functions. For w < 1 they are singular at the origin and exhibit a stretched Gaussian form
at infinity. Changing the order w interpolates smoothly between ordinary diffusion w = 1 and

completely localized behavior in the w — 0 limit.

1. INTRODUCTION AND
DEFINITION OF THE
RANDOM WALKS

A large number of physical processes display
algebraic or fractal time behavior (see Refs. 1-7
for reviews). Recently it was shown that fractal
time behavior follows very generally from the the-
ory of critical phenomena®® as well as from ergodic
theory.!0 It was demonstrated in these papers that

time derivatives of noninteger order arise necessar-
ily when discussing renormalized time evolutions.
Fractional time derivatives had previously been
introduced heuristically in a variety of different
contexts.'120 A connection between fractional time
derivatives and the continuous time random walk
theory of fractal time behavior?1~2% was established
in Ref. 26.

My objective in this paper is to find the fun-
damental solutions for fractional master equations
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corresponding to fractal time random walks with
finite spatial moments.?4~26 The purpose of the pa-
per is to show that the special class of random walks
treated here plays a particularly important role in
the theory of fractal time processes by virtue of their
universality® 1% as well as their exact solvability.
Define G(r, t) to be the conditional probability
density to find a random walker at the position
r € R? at time ¢ if it started from the origin r = 0
at time £ = 0. The basic equation for a space time
decoupled continuous time random walk reads?®

6, t) = w2 + [ ylt=1)

X Z AMr )G, t')dt’ (1.1)

where A(r) is the probability density for a displace-
ment of the walker by a vector r in each single step,
and 9(t) is the waiting time distribution giving the
probability density for the time interval ¢ between
two consecutive steps. The transition probabilities
obey 3. A(r) = 1. The function ®(t) is the survival
probability at the initial position which is related to
the waiting time distribution through:

O(t) =1~ /0 ")t (1.2)

The class of fractal time random walks discussed in
this paper is defined by the waiting time densities?®

tw~1
vt = S Buu(-/r). (3
where (with o, 8 > 0)
o zk
E, = _— 1.4
() kz;; T(ak ) (1.4)

is the generalized Mittag-Lefler function?” and
['(z) denotes the Gamma function. The constant
w was shown to obey 0 < w < 1 on very general
grounds,®1% and it plays the role of a characteristic
dynamical exponent, while 7 is a characteristic time
constant.

Given a continuous time random walk defined by
a Mittag-Lefler waiting time density and transi-
tion probabilities A(r) it was shown recently?® that
G(r, t) solves simultaneously a fractional master
equation written formally as:

50 1) =2 wr—r)G(, 1)

!

(1.5)

r

with initial condition G(r, 0) = é,0. The relation
with Eq. (1.1) emerges if the fractional differential
equation (1.5) is rewritten as a fractional integral
equation:

G(r, t) = b0 + I‘(lw) /Ot (t— ')t
x Z

where the initial condition G(r, 0) = 6,0 has been
incorporated. The fractional transition rates w(r)
measure the propensity for a displacement r in units
of (1/time)“. Their Fourier transform defined as
w(q) = Y, €97 w(r) is related to the Fourier trans-
form of the transition probabilities by:

r—r)G(', t')dt (1.6)

Aq) =1+ mw(q) (1.7)

where 7 and w are the same constants as in Eq. (1.3).

Let the spatial transition probabilities A(q) have
a finite variance o2 characterizing the spatial extent
of a single step. Thus

Maq)=1-0%q*/2

which implies w(q) = —(o%q?)/(27*) for the frac-
tional transition rates and identifies

(1.8)

o?

D=-——

2w

(1.9)

as the fractional diffusion constant. Equation (1.8)
completes the definition of the class of fractal time
random walks considered in this paper. Each ran-
dom walk in this class is characterized by two num-
bers D > 0 and 0 < w < 1 corresponding respec-
tively to a generalized fractional diffusion constant
and a dynamical critical exponent.

2. FUNDAMENTAL SOLUTIONS

With the definitions and notations given in the
introduction, the Fourier-Laplace transform of
G(r, t) for the class of fractal time processes de-
scribed equivalently by Eq. (1.1) or Eq. (1.6) is
obtained as:

uw—l

= 2.1)
where D is the fractional diffusion constant and
q=(q,..., qs) € R This form of G(q, u) arises

asymptotically for continuous time random walks
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whose waiting time densities have long time tails
Y(t) o< t7~! and finite spatial moments.?$25 For
Mittag-LefHler densities 1(t) as in Eq. (1.3) the form
(2.1) is not only asymptotic but exact. Using the
notation r = |x| = y/z} + - - - + 23 Fourier inversion
results in:

G(T, U) — (27‘_)——d/27,1—(d/2)D—1/2

: w/2
(dw/4)+(w/2)~1 v'r 2.2
X Kez(Dmr) @2

where K, () denotes the modified Bessel function.
The Laplace transform £{f(t)}(u) of f(¢) is related
to its Mellin transform M{f(¢)}(s) through:

MUL{f ()} (u)}(s) = T(s)M{F(H)}(1 - 5)

where I'(z) is the Gamma function. Mellin trans-
formation gives:

(2.3)

M{G(r, W)} (s)
= (@m) 2D MK, (1)) o)

_ (271.)—d/2,r1—(d/2)z,r—(s+a)/b
w

x M{K,(u)}((s + a)/b)
where a = ‘5"(%4—1—%), v=(d-2)/2,b=w/2, and

D has been set to unity temporarily. Employing the
fact that:

MUK (2)}(s) = ss—%(s + ”)r(s - ”) (2.5)

(2.4)

2
yields the result:

G(r, 5) = M{G(r, 1) }(s)

= (r’m) ~4/21 (2) N

w\T

ofd-2)r(-2)

% ra-s)

(2.6)

for the Mellin transform. Comparison with the def-
inition of the H-function in the appendix gives:

(1 - g, 1) (0, 1)

(0, w)

G(r, t) = (r¥x) %2

4Dt¥

02
x Hyq =

(2.7)

which by virtue of general H-function relations may
be rewritten as:

1, w)
(d/2, 1)

r2
4Dt

an)
(2.8)

Glr, 1) = (rPm)-42 120 (

or equivalently
G(r, t)=(4rDt*) "2 HE)

d
’l"2 1__w, LU)

4Dt 2
w
(09 1)

X

(1_ g’ 1) (2.9)

where the fractional diffusion constant D has been
restored.

Using similar methods as above it is possible to
invert the Laplace transformation in Eq. (2.1) di-
rectly to obtain the result:

G(q, t) = E.(-Dt“q%) (2.10)
where E,(x) = E,i(z) is the Mittag-Leffler
function.?” Differentiation now yields the mean
square displacement:

(r?)(t) =) r’G(r, ¥)

r

2dDt¥

= —(V4G(q, t)lq=0 = Tw+1)

(2.11)

which exhibits subdiffusive behavior for w < 1.

3. DISCUSSION

The results of the previous section are best dis-
cussed by comparing the cases w = 1, 0 < w < 1
and w — 0 with the help of Table 1. The first
row in Table 1 recalls the different character of the
infinitesimal generator A of time transformations
entering the fractional master equation.!® In par-
ticular in the limit w — 0, the generator becomes
the identity. It must be emphasized that the limit
w — 0 is rather singular as indicated by the fact
that 9(t) approaches a nonnormalizable function.
The results for G in the last row are obtained by
performing the limit in Fourier-Laplace space. The
waiting time density 9(¢) is deformed from an ex-
ponential form for w = 1 into ¢! for w — 0. The
function G(q, t) crosses over from a Gaussian to
a Lorentzian, while in direct space G(r, t) changes
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Table 1 Overview of results for the quantities ¥(t), D, (r?)(t) and G(r, t) defined in the text charac-
terizing a class of fractal time random walks in d dimensions. The case w = 1 corresponds to ordinary
diffusion or propagation, the case 0 < w < 1 to fractional propagation or fractional localization, and
the limit w — 0 to complete localization. A denotes the infinitesimal generator of time transformations

and 1 is the identity. The rows labeled f; — 0 and

for the indicated limits of the scaling variable

»
v

:—: — oo give the asymptotic behavior of G(r, t)

Propagation Fractional Propagation/Localization Localization
w=1 I<w<1 w—0
d d”
P(t) 771 exp(—t/7) T, W (—(t/7)%) P(t) = 71
D a?/r a* /v D — o2
G(q, 1) exp(—Dtq’) E.(-Dtq*) G(q, t) = (1+ Dg*)™*
2dDt*
2 2
(r*)(¢) 2dDt Tw+1) {r*)(t) — 2dD
exp(—r?/(4Dt)) 2_N—d/2 7720 r’ (1, w) r1=(4/2) r
G('ﬁ t) (411'Dt)"d/2 (7' 71') H12 4Dtw (d/2, 1) (1, 1) D1/2(27r)d/2K-d—33 D1/2
2
:7 -0 ¢d/2 =924 (d>2) r2/D=0E/2) (4> 9)

~ — 00 exp| — Ll
o P\ " iD:

exp(—(Z—w)(

1/(2-w)
waZ
4Dt

(-5

from a Gaussian to a Bessel function. As w is varied
from 1 to 0, the random walk changes from freely
propagating to subdiffusive and finally to completely
localized behavior as evidenced by the mean square
displacement. The same conclusion is obtained from
the last two rows giving the asymptotic behavior of
G(r, t) for small and large values of the scaling vari-
able z = r2/t*. For large values of x the Gaussian
behavior changes into a stretched Gaussian with
stretching exponent 1/(2 —w). The stretched Gaus-
sian finally becomes simply exponential as w — 0
is approached. Together with the disappearance of
t from all formulas and the constancy of the mean
square displacement, this implies that the random
walk becomes exponentially localized. The localiza-
tion length & = VD = ¢ is the standard deviation
of a single step. The localization is also apparent
in the limit £ — 0. This limit arises for example
as the limit 7 — 0 at fixed time ¢. In this limit the
probability density G(r, t) diverges for w < 1 and
d>2.

Note that the stretched Gaussian behavior in the
limit £ — oo is obtained also from the known asymp-
totic expressions in terms of stable laws?!~24 which
are valid for an even wider class of fractal time
walks.

In summary the class of fractal time random
walks considered in this paper appears universally
as shown in Refs. 8-10 and is exactly solvable as was
shown here. As the dynamical exponent w is varied
from 1 to 0, the qualitative behavior of the random
walk changes from propagating (w = 1), through a
regime of fractional propagation or fractional local-
ization (0 < w < 1), to being completely localized
in the w — 0 limit.
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APPENDIX A

DEFINITION OF H-FUNCTIONS

The general H-function is defined as the inverse
Mellin transform?8:
mn | (a1, A1)+ (ap, Ap) 1
(bg, Bg) ) 2mi Jo

(bl, Bl)"'
ﬁ I'(b;—B;s Hr(1 aj+A;js)

Jj=1
X— 5 z2°ds (A1)
H (1-b+Bjs) ] Tlaj-4;s)
=m-+ j=n+1

where the contour C runs from ¢ — t00 t0 ¢ + 10
separating the poles of I'(b; — B;s), (j =1,..., m)
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from those of I'(1—a;+A4;s), (j = 1,..., n). Empty
products are interpreted as unity. The integers m,
n, P, Q satisfy 0 < m < Q and 0 < n < P. The
coefficients A; and Bj; are positive real numbers and
the complex parameters a;, b; are such that no poles
in the integrand coincide. If

n P m Q
Q=3 A;— > A;j+)Y Bj—- ) Bj>0
j=1 j=n+1 j=1 j=m+1
(A2)

then the integral converges absolutely and defines
the H-function in the sector |argz| < Qm/2. The

H-function is also well defined when either:

Q P
§=3 Bj—Y A; >0 with0<|z|<oco (A3)
1=1 j=1

or:
P Q
§=0 and 0<|s|<R=][4;% [[ B
j=1 j=1
(A4)

The H-function is a generalization of Meijers G-
function and many of the known special functions
are special cases of it.




