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Abstract

Generalized fractional relaxation equations based on generalized Riemann-Liouville
derivatives are combined with a simple short time regularization and solved ex-
actly. The solution involves generalized Mittag-Leffler functions. The associated
frequency dependent susceptibilities are related to symmetrically broadened Cole-
Cole susceptibilities occurring as Johari Goldstein β-relaxation in many glass for-
mers. The generalized susceptibilities exhibit a high frequency wing and strong
minimum enhancement.

1. INTRODUCTION

An ubiquitous feature of the dynamics of supercooled liquids and amorphous polymers is

the nonexponential relaxation exhibited in numerous experiments such as dielectric spec-

troscopy, viscoelastic modulus measurements, quasielastic light scattering, shear modulus

and shear compliance as well as specific heat measurements.1 Derivatives and integrals of

noninteger order (fractional calculus2) with respect to time are proposed in this paper as a

mathematical framework for the slow relaxation near the glass transition.

Most glass forming liquids and amorphous polymers exhibit strong deviations from the

Debye relaxation function f(t) = exp(−t/τ) where τ is the relaxation time. All relaxation

functions in this article will be normalized such that f(0) = 1 unless stated otherwise. In

dielectric spectroscopy, the dominant α-relaxation peak is broadened and asymmetric when

plotted against the logarithm of frequency.3 One popular phenomenological method to gen-

eralize the universal exponential relaxation behaviour is to introduce a fractional stretching

exponent thereby arriving at the “stretched exponential” or Kohlrausch relaxation function
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given as

f(t) = exp[−(t/τ)βK ] (1)

with fractional exponent βK . Relaxation in the frequency domain is usually described in

terms of the normalized complex susceptibility

χ̂(ω) =
χ(ω) − χ∞

χ0 − χ∞

= 1 − iωL{f}(iω) (2)

where χ0 = Reχ(0), χ∞ = Reχ(∞) and L{f}(iω) is the Laplace transform of the relax-

ation function f(t) evaluated at purely imaginary argument iω. Extending the method of

stretching exponents to the frequency domain one obtains the Cole-Cole susceptibility4

χ(ω) − χ∞

χ0 − χ∞

=
1

1 + (iωτ)αC

(3)

or the Davidson-Cole expression5

χ(ω) − χ∞

χ0 − χ∞

=
1

(1 + iωτ)γD

(4)

as empirical expressions for the broadened relaxation peaks. My objective in this paper is

to generalize the Cole-Cole expression using fractional calculus.2

Differentiation and integration of noninteger order are defined and discussed in the theory

of fractional calculus as a natural generalization of conventional calculus.2 Exponential

relaxation functions are of fundamental importance because the exponential function is the

eigenfunction of the time derivative operator that in turn is the infinitesimal generator of

the time evolution defined as a simple translation

T (t)f(s) = f(s − t) (5)

acting on observables or states f(t). It is therefore of interest to ask whether fractional time

derivatives can arise as infinitesimal generators of time evolutions and, if yes, to find their

eigenfunctions and the corresponding susceptibilities.

2. FRACTIONAL TIME DERIVATIVES

Given that time evolutions in physics are generally translations in time it is a well known

consequence that the infinitesimal generator of the time evolution (5)

lim
t→0

T (t)f(s) − f(s)

t
= −

d

ds
f(s) (6)

is generally given as the first order time derivative. Long time scales and time scale separa-

tion require coarse graining of time, i.e. an averaging procedure combined with a suitably

defined long time limit in which t → ∞ and s → ∞.6 On long time scales the rescaled

macroscopic time evolution can differ from a translation and instead become a fractional

convolution semigroup in the rescaled macroscopic time t of the form

Tα(t)f(t0) =

∫

∞

0
f(t0 − s)hα

(

s

t

)

ds

t
(7)



On Fractional Relaxation 253

as first conjectured in Ref. 7 and later shown in Refs. 6–9. References 6–9 have shown that

the parameters obey t ≥ 0 and 0 < α ≤ 1, and the kernel function (b ≥ 0, c ∈ R)

hα(x; b, c) =
1

b1/α
hα

(

x − c

b1/α

)

=
1

α(x − c)
H10

11

(

b1/α

x − c

∣

∣

∣

∣

∣

(0, 1)

(0, 1/α)

)

(8)

is defined through its Mellin transform10

∫

∞

0
H10

11

(

x

∣

∣

∣

∣

∣

(0, 1)

(0, 1/α)

)

xs−1 dx =
Γ(s/α)

Γ(s)
. (9)

It follows that the infinitesimal generator of Tα(t) given as

Dαf(s) = lim
t→0

Tα(t)f(s) − f(s)

t
. (10)

is a fractional time derivative2 of order α. My objective in the rest of this paper is to discuss

various fractional relaxation equations with time derivatives of Riemann-Liouville type as

infinitesimal generators of time evolutions giving rise to nonexponential eigenfunctions.

Before entering into the discussion of fractional differential equations the basic definitions

of fractional derivatives are recalled for the convenience of the reader.

A fractional (Riemann-Liouville) derivative of order 0 < α < 1

Dα
a+f(t) =

d

dt
I1−α
a+ f(t) (11)

is defined via the fractional (Riemann-Liouville) integral

(Iαa+f)(x) =
1

Γ(α)

∫ x

a
(x − y)α−1f(y)dy (x > a) (12)

with lower limit a. The following generalized definition was introduced by the present

author.6 The (right-/left-sided) fractional derivative of order 0 < α < 1 and type 0 ≤ β ≤ 1

with respect to x is defined by

Dα,β
a± f(x) =

(

±I
β(1−α)
a±

d

dx
(I

(1−β)(1−α)
a± f)

)

(x) (13)

for functions for which the expression on the right hand side exists. The Riemann-Liouville

fractional derivative Dα
a± := Dα,0

a± corresponds to a > −∞ and type β = 0. For subsequent

calculations it is useful to record the Laplace transformation

L
{

Dα,β
a+ f(x)

}

(u) = uαL{f(x)}(u) − uβ(α−1)(D
(1−β)(α−1),0
a+ f)(0+) (14)

where u denotes the dual variable and the initial value (D(1−β)(α−1),0a+f)(0+) is the

Riemann-Liouville derivative for t → 0+. Note that fractional derivatives of type 1 in-

volve nonfractional initial values.

3. FRACTIONAL RELAXATION EQUATIONS

Consider now the fractional relaxation or eigenvalue equation for the generalized Riemann-

Liouville operators in Eq. (13)

τα
α Dα, β0+f(t) = −f(t) (15)
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for f with initial condition

I
(1−β)(1−α)
0+ f(0+) = τ

(1−β)(1−α)
β f0 (16)

where τα is the relaxation time and the second time scale of the initial condition, τβ, becomes

important only if β 6= 1. It is clear from the discussion of fractional stationarity in Ref. 6 that

for β 6= 1 this initial condition conflicts with the requirement f(0) = 1 because it implies

f(0) = ∞. Hence f(t) cannot itself represent a relaxation function and a regularizing short

time dynamics is required. The function f(t) represents a metastable level to which the

relaxation function g(t) decays. An example is the mestastable equilibrium position of an

atom in a glass. It evolves slowly as the structural relaxation proceeds. The metastable

level is itself time dependent and relaxes according to Eq. (15). The short time dynamics

is assumed to be exponential for simplicity and hence g(t) obeys

τDD1g(t) + g(t) = f(t) (17)

with initial conditions g(0+) = 1.

Without short time regularization, i.e. for τD = 0, Laplace Transformation of Eq. (15)

gives

f(u) =
τα
α τ

(1−β)(1−α)
β uβ(α−1) f0

1 + (ταu)α
. (18)

To invert the Laplace transform rewrite this equation as

f(u) =
τ1−γ
β uα−γ

τ−α
α + uα

= τ1−γ
β u−γ 1

(ταu)−α + 1
= τ1−γ

β

∞
∑

k=0

(−τ−α
α )ku−αk−γ (19)

with

γ = α + β(1 − α) . (20)

Inverting the series term by term using L{xα−1/Γ(α)} = u−α yields the result

f(t) = (t/τβ)γ−1
∞
∑

k=0

(−(t/τα)α)k

Γ(αk + γ)
. (21)

The solution may be written as

f(t) = f0 (t/τβ)(1−β)(α−1)Eα,α+β(1−α)(−(t/τα)α) (22)

using the generalized Mittag-Leffler function defined by

Ea,b(x) =
∞
∑

k=0

xk

Γ(ak + b)
(23)

for all a > 0, b ∈ C. This function is an entire function of order 1/a.11 Moreover it is

completely monotone if and only if 0 < a ≤ 1 and b ≥ a.12 As a consequence the generalized

relaxation function in (22) is smooth and decays monotonically. It resembles closely the

exponential function. Using the asymptotic expansion of Ea,b(x) for x → −∞ shows that

for t → ∞ the relaxation function decays as

f(t) ∼
f0

Γ(β(1 − α))

(

t

τβ

)(1−β)(α−1) (
t

τα

)−α

. (24)
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For τα = ∞ the result reduces to

f(t) =
f0 (t/τβ)(1−β)(α−1)

Γ((1 − β)(α − 1) + 1)
. (25)

because Ea,b(0) = 1/Γ(b). The same result is obtained asymptotically in the limit t → 0.

Hence f(t) diverges at short time and needs to be regularized by Eq. (17). Of special

interest is again the case β = 1 because in this special case there is no divergence and no

regularization is necessary. It has the well known solution

f(t) = f0Eα(−(t/τα)α) (26)

where Eα(x) = Eα,1(x) denotes the ordinary Mittag-Leffler function.

4. FRACTIONAL SUSCEPTIBILITIES

To calculate fractional susceptibility based on Eq. (15) it is necessary to include the regu-

larization defined by Eq. (17). This regularization controls the divergence of the solution

in Eq. (22) for t → 0. Laplace transforming the system (15)–(17) and solving for g yields

with the help of Eq. (2) the susceptibility

χ(ω) − χ∞

χ0 − χ∞

= 1 −

[

(τα/τβ)α(iωτβ)β(α−1)+1f0

(1 + (iωτα)α)(1 + iωτD)
+

iωτD

1 + iωτD

]

(27)
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Fig. 1 Real part (upper figure) χ′(ω) and imaginary part χ′′(ω) (lower figure) of the complex
frequency dependent susceptibility given in Eq. (27) versus frequency ω in a doubly logarithmic
plot. All curves have τα = 1 s, τD = τβ = 10−8 s, f0 = 0.8, χ∞ = 1 and χ0 = 0 and their two
main peaks are located at relaxation frequencies 1/τα = 1 Hz and 1/τD = 108 Hz. The dashed line
shows two Debye-peaks with α = β = 1. The dash-dotted curve corresponds to a pure Cole-Cole
peak at 1/τα = 1 Hz with β = 0.7, β = 1 and a Debye peak at 1/τD = 108 Hz. The solid curve
corresponds to a generalized Cole-Cole peak with α = 0.7 and β = 0.98 and a regularizing Debye
peak at 1/τD = 108 Hz.
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where the restrictions 0 < α ≤ 1, 0 ≤ β ≤ 1, τD > τβ, τD > τβ and f0 ≤ 1 must be fulfilled.

For α = 1 this reduces to two Debye peaks, for α = 1 and τD = 0 it reduces to a simple

Debye peak. For β = 1 and τD = 0 the formula reduces the Cole-Cole Eq. (3).

In Fig. 1 the real and imaginary part of χ(ω) are depicted for three special cases. In

all cases the relaxation strengths were fixed by setting χ∞ = 1 and χ0 = 0 combined with

f0 = 0.8. The time scale of the inital condition was fixed in all cases at τβ = 10−8. Large

values of this constant destroy the regularization for t → 0 by increasing the influence of

the divergence in Eq. (22). Small values have little to no influence on the results. In all

cases two main relaxation peaks can be observed at relaxation frequencies given roughly by

1/τα = 1 Hz and 1/τD = 108 Hz.

The first case is obtained by setting α = 1. It gives rise to two Debye peaks and is shown

as the dashed curve in Fig. 1. In this case β drops out from the right hand side of Eq. (27).

This results in two Debye peaks with a deep minimum between them. The second case,

shown as the dash-dotted line in Fig. 1, is obtained by setting β = 0.7 and β = 1. This

results in a symmetrically broadened low frequency peak of Cole-Cole type. Such peaks are

often observed as β-relaxation peaks in polymers.13 Again the two peaks are separated by a

deep minimum. The experimental results never show such a deep minimum. The relaxation

function corresponding to the low frequency peak is the ordinary Mittag Leffler function as

given in Eq. (26). The third case, shown as the solid line, corresponds to the parameters to

β = 0.7 and β = 0.98. As a consequence of the minute change in β from β = 1 to β = 0.98

there appears a high frequency wing and the minimum becomes much more shallow. The

shallow minimum is a consequence of the divergence of the generalized relaxation function

in Eq. (22) for t → 0. The relaxation function corresponding to the low frequency peak is

now the generalized Mittag-Leffler function as given in Eq. (22).

5. CONCLUSIONS

The paper has discussed the relaxation functions and corresponding susceptibilities for

fractional relaxation equations involving generalized Riemann-Liouville derivatives as in-

finitesimal generators of the time evolution. The results underline that fractional relaxation

equations provide a promising mathematical framework for slow and glassy dynamics. In

particular fractional susceptibilities seem to reproduce not only the broadening or stretching

of the relaxation peaks but also the high frequency wing and shallow minima observed in

experiment. However, the relaxation functions and susceptibilities discussed in this work

require further theoretical and experimental investigations because for β 6= 1 they are di-

vergent at short times implying a departure from the conventional stationarity concept.
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