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The generalized Mittag-Leffler function Eα,β (z) has been studied for arbitrary complex argument
z ∈ C and parameters α ∈ R

+ and β ∈ R. This function plays a fundamental role in the theory of
fractional differential equations and numerous applications in physics. The Mittag-Leffler function
interpolates smoothly between exponential and algebraic functional behaviour. A numerical algorithm
for its evaluation has been developed. The algorithm is based on integral representations and expo-
nential asymptotics. Results of extensive numerical calculations for Eα,β (z) in the complex z-plane
are reported here. We find that all complex zeros emerge from the point z = 1 for small α. They
diverge towards −∞ + (2k − 1)π i for α → 1− and towards −∞ + 2kπ i for α → 1+ (k ∈ Z). All
the complex zeros collapse pairwise onto the negative real axis for α → 2. We introduce and study
also the inverse generalized Mittag-Leffler function Lα,β (z) defined as the solution of the equation
Lα,β (Eα,β (z)) = z. We determine its principal branch numerically.

Keywords: Special functions of mathematical physics; Fractional calculus; Generalized Mittag-Leffler
functions; Numerical algorithms
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1. Introduction

A special function of growing importance is the generalized Mittag-Leffler function defined
by the power series [1, p. 210]

Eα,β(z) =
∞∑

k=0

zk

�(αk + β)
(1)

for complex argument z ∈ C and parameters α, β ∈ C with Re α > 0. Despite the fact that
Eα,β was introduced roughly 100 years ago [2–7], its mapping properties in the complex plane
are largely unknown.

Mittag-Leffler functions are important in mathematical as well as in theoretical and applied
physics [8–17]. A primary reason for the recent surge of interest in these functions is their
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appearance when solving the fractional differential equation

Dα,γ
a+ f (x) = λf (x) 0 < α ≤ 1, 0 ≤ γ ≤ 1, λ ∈ R (2)

where Dα,γ
a+ is a fractional derivative of order α and type γ with lower limit a [17]. In equation

(2), the symbol Dα,γ
a+ stands for [17, p. 115]

Dα,γ
a+ f (x) =

[
Iγ (1−α)
a+

d

dx
I(1−γ )(1−α)
a+ f

]
(x) 0 < α ≤ 1, 0 ≤ γ ≤ 1 (3)

for the functions for which the expression on the right-hand side exists. Of course, the notation
Iαa+f (x) stands for the right sided fractional Riemann–Liouville integral of order α ∈ R

+
defined by

Iαa+f (x) = 1

�(α)

∫ x

a

(x − t)α−1f (t)dt with a ≤ x ≤ b, α ∈ R
+ (4)

for locally integrable functions f ∈ L1[a, b]. Recall from ref. [17, p. 115] that equation (2) is
solved for a = 0 by

f (x) = x(1−γ )(α−1)Eα,α+γ (1−α)(λxα), (5)

where Eα,β(z) is the generalized Mittag-Leffler function. Equation (2) shows that the Mittag-
Leffler function plays the same role for fractional calculus that the exponential function
plays for conventional calculus. Mittag-Leffler functions and fractional calculus have in
recent years become a powerful tool to investigate anomalous dynamics and strange kinetics
[12, 17–19].

Despite the growing importance of Eα,β(z) in physics and despite a wealth of analytical
information about Eα,β(z), its behaviour as a holomorphic function and dependence upon the
parameters are largely unexplored, because there seem to be no numerical algorithms available
to compute the function accurately for all α, β, z. Easy numerical evaluation and a thorough
understanding of Eα,β(z) as a function of α, β, z is, however, a key prerequisite for extending
its applications to other disciplines. It is therefore desirable to explore the behaviour of Eα,β(z)

for large sets of the parameters α and β and the complex argument z.
Given this objective, the present article reports a newly developed numerical algorithm as

well as extensive computations for the generalized Mittag-Leffler function. Little will be said
in this article about the algorithm apart from giving its complete definition. While this work
was in progress a simpler algorithm appeared in ref. [20]. A detailed comparison between the
two algorithms can be found in ref. [21]. One should note that the algorithm works not only on
the real axis, but in the full complex plane. Rather than discussing the details of the algorithm,
we concentrate here on exploring the functional behaviour of Eα,β(z). In particular, we study
its complex zeros and illustrate its behaviour as an entire function. As an example, we find
that the zeros of Eα,β coalesce to form a simple pole in the limit α → 0. Moreover, the zeros
diverge in a complicated fashion to −∞ as α approaches unity from above as well as from
below.
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2. Method of calculation

2.1 Recursion relation

In the rest of this article, α and β are real numbers with α > 0. Calculating Eα,β(z) for the
case α > 1 can be reduced to the case 0 < α ≤ 1 by virtue of the recursion relation [1, 22]

Eα,β(z) = 1

2m + 1

m∑
h=−m

Eα/(2m+1),β(z1/(2m+1)e2π ih/(2m+1)) (6)

valid for all β ∈ R, z ∈ C where m = [(α − 1)/2] + 1. Here [x] denotes the largest integer
smaller than x. Because of the recursion we consider only the case 0 < α ≤ 1 in the rest of
this section.

2.2 Regions

For 0 < α ≤ 1 the complex z-plane is partitioned into four regions G0, G1, G2 and G3. In
each region, a different method is used for the calculation of the Mittag-Leffler function. The
central region

G0 = D(r0) = {z ∈ C: |z| ≤ r0} (7)

is the closure of the open disk D(r0) = {z ∈ C: |z| < r0} of radius r0 < 1 centered at the origin.
In our numerical calculations we have chosen r0 = 0.9 throughout. The regions G1, G2 are
defined by

G1 = W
+

(
5πα

6

)
\ G0 (8)

G2 = C \ (G1 ∪ G0) (9)

where

W
+(φ) = {z ∈ C: | arg(z)| < φ} (10)

is the open wedge with opening angle φ, (0 < φ < π). For future reference we define also
the (left) wedge

W
−(φ) = {z ∈ C: φ < | arg(z)| ≤ π} (11)

Finally, the region G3 is defined as

G3 = C \ D(r1) = {z ∈ C: |z| > r1} (12)

where r1 > r0 will be defined below.

2.3 Taylor series

For z ∈ G0, i.e. for the central disk region (with r0 = 0.9), the Mittag-Leffler function is
computed from truncating its Taylor series (1). For a given z ∈ G0 and accuracy ε, we choose
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N such that ∣∣∣∣∣Eα,β(z) −
N∑

k=0

zk

�(αk + β)

∣∣∣∣∣ ≤ ε (13)

holds. The dependence of N on the accuracy ε and the other parameters is found as

N ≥ max

{[
2 − β

α

]
+ 1,

[
ln(ε(1 − |z|))

ln(|z|)
]

+ 1

}
. (14)

2.4 Integral representations

We start from the basic integral representation [1, p. 210]

Eα,β(z) = 1

2π i

∫
C

yα−βey

yα − z
dy (15)

where the path of integration C in the complex plane starts and ends at −∞ and encircles the
circular disc |y| ≤ |z|1/α in the positive sense. When this integral is evaluated, several cases
arise. For z ∈ G1, we distinguish the cases β ≤ 1 and β > 1 and compute the Mittag-Leffler
function from the integral representations [23]

Eα,β(z) = A(z; α, β, 0) +
∫ ∞

0
B(r; α, β, z, πα)dr, β ≤ 1 (16)

Eα,β(z) = A(z; α, β, 0) +
∫ ∞

1/2
B(r; α, β, z, πα)dr +

∫ πα

−πα

C

(
ϕ; α, β, z,

1

2

)
dϕ, β > 1

(17)

where

A(z; α, β, x) = 1

α
z(1−β)/α exp

[
z1/α cos

(x

α

)]
(18)

B(r; α, β, z, φ) = 1

π
A(r; α, β, φ)

r sin[ω(r, φ, α, β) − φ] − z sin[ω(r, φ, α, β)]
r2 − 2rz cos φ + z2

(19)

C(ϕ; α, β, z, ρ) = ρ

2π
A(ρ; α, β, ϕ)

cos[ω(ρ, ϕ, α, β)] + i sin[ω(ρ, ϕ, α, β)]
ρ(cos ϕ + i sin ϕ) − z

(20)

ω(x, y, α, β) = x1/α sin
(y

α

)
+ y

(
1 + 1 − β

α

)
. (21)

For z ∈ G2, the integral representations read

Eα,β(z) =
∫ ∞

0
B

(
r; α, β, z,

2πα

3

)
dr, β ≤ 1 (22)

Eα,β(z) =
∫ ∞

1/2
B

(
r; α, β, z,

2πα

3

)
dr +

∫ 2πα/3

−2πα/3
C

(
ϕ; α, β, z,

1

2

)
dϕ, β > 1 (23)

where the integrands have been defined in equations (18)–(21).
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The integrand C(ϕ; α, β, z, ρ) is oscillatory but bounded over the integration interval. Thus,
the integrals over C can be evaluated numerically using any appropriate quadrature formula.
We use a robust Gauss–Lobatto quadrature.

The integrals over B(r; α, β, z, φ) involve infinite intervals. For a given z ∈ G1 (respectively
z ∈ G2) and the accuracy ε, we approximate the integrals by truncation. The error

∣∣∣∣
∫ ∞

Rmax

B(r; α, β, z, φ)dr

∣∣∣∣ < ε (24)

depends on the truncation point Rmax. For φ = πα we find

Rmax ≥




max
{

1, 2|z|,
(
− ln

πε

6

)α}
β ≥ 0

max

{
(|β| + 1)α, 2|z|,

(
−2 ln

(
πε

6(|β| + 2)(2|β|)|β|

))α}
β < 0.

(25)

while for φ = 2πα/3 we have

Rmax ≥




max

{
2α, 2|z|,

(
−2 ln

π2βε

12

)α}
β ≥ 0

max

{
[2(|β| + 1)]α, 2|z|,

[
−4 ln

π2βε

12(|β| + 2)(4|β|)|β|

]α}
β < 0.

(26)

2.5 Exponential asymptotics

The asymptotic expansions given in equations (21) and (22) on page 210 in ref. [1] indicate
that the Mittag-Leffler function exhibits a Stokes phenomenon. The Stokes lines are the rays
arg(z) = ±απ , and it was recently shown in ref. [24] that a Berry-type smoothing applies. The
exponentially improved asymptotic expansions will be used here for computing Eα,β(z) for
z ∈ G3. More precisely, for 0 < α < 1 we use the following exponentially improved uniform
asymptotic expansions [24]:

Eα,β(z) = −
M∑

k=1

z−k

�(β − αk)
+ O(|z|(1/2−β)/αe−|z|1/α

) (27)

for z ∈ G3 ∩ W
−(απ + δ)

Eα,β(z) = 1

α
z(1−β)/αez1/α −

M∑
k=1

z−k

�(β − αk)
+ O(|z|(1/2−β)/αe−|z|1/α

) (28)

for z ∈ G3 ∩ W
+(απ − δ),

Eα,β(z) = 1

2α
z(1−β)/αez1/α

erfc

((
c3

36
− ic2

6
− c

) √
|z|1/α/2

)

−
M∑

k=1

z−k

�(β − αk)
+ O(|z|(1/2−β)/αe−|z|1/α

) (29)
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for z ∈ G3 with −απ − δ ≤ arg(z) ≤ −απ + δ and c = arg(z1/α) + π , and

Eα,β(z) = 1

2α
z(1−β)/αez1/α

erfc

((
c + ic2

6
− c3

36

) √
|z|1/α

2

)

−
M∑

k=1

z−k

�(β − αk)
+ O

(
|z|(1/2−β)/αe−|z|1/α

)
(30)

for z ∈ G3 with απ − δ ≤ arg(z) ≤ απ + δ and c = arg(z1/α) − π . Here δ > 0 is a small
number; in practice, we use δ = 0.01. In equations (29) and (30)

erfc(z) = 2√
π

∫ ∞

z

ey2/2 dy (31)

denotes the complex complementary error function. Note the difference between equa-
tions (27)–(30) and the expansions in ref. [1, p. 210]. We take

M = min

{
50,

[ |z|1/α

α

]}
(32)

to truncate the asymptotic series. Choosing for ε, the machine precision, we fix the radius r1

in G3 at

r1 = 1

[ε�(β − αM)]1/M
. (33)

The remainder estimates in equations (27)–(30) are only valid for a value of M that is chosen
in an optimal sense, as in equations (32) and (33).

3. Results

In this section, we present the results of the extensive numerical calculations using an algorithm
that is based on the error estimates developed earlier. Our results give a comprehensive pic-
ture of the behaviour of Eα,β(z) in the complex z-plane for all values of the parameters
α > 0, β ∈ R.

3.1 Complex zeros

Contrary to the exponential function, the Mittag-Leffler functions exhibit complex zeros
denoted as z0. The complex zeros were studied by Wiman [7] who found the asymptotic
curve along which the zeros are located for 0 < α < 2 and showed that they fall on the neg-
ative real axis for all α ≥ 2. For real α and β, these zeros come in complex conjugate pairs.
The pairs are denoted as z0

k(α) with integers k ∈ Z where k > 0 (respectively k ≤ 0) labels
the zeros in the upper (respectively lower) half plane. Figure 1 shows the lines that the com-
plex zeros z0

k(α), k = −5, . . . , 6 of Eα,1(z) trace out as functions of α for 0.1 ≤ α ≤ 0.99995.
Figure 1 gives strong numerical evidence that the distance between the zeros diminishes as
α → 0. Moreover, all the zeros approach the point z = 1 as α → 0. This fact seems to have
been overlooked until now. Of course, for every fixed α > 0 the point z = 1 is neither a zero
nor an accumulation point of the zeros, because the zeros of an entire function must remain
isolated. The numerical evidence is confirmed analytically.
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Figure 1. The lines trace out the locus of complex zeros z0
k(α) as functions of α for k = −5, . . . , 6 for the

Mittag-Leffler function Eα,1(z) in the range 0.1 ≤ α ≤ 0.99995. The line styles consecutively label k = 0, 1 (solid)
k = −1, 2 (dashed) k = −2, 3 (dash-dotted), k = −3, 4 (solid) k = −4, 5 (dashed) and k = −5, 6 (dash-dotted). The
symbols mark α = 0.5 (plus), α = 0.7 (triangle right), α = 0.8 (triangle left), α = 0.9 (circle), α = 0.95 (square),
α = 0.99 (asterisk), α = 0.999 (diamond), and α = 0.9999 (cross).

THEOREM 3.1 The zeros z0
k(α) of Eα,1(z) obey

lim
α→0

z0
k(α) = 1 (34)

for all k ∈ Z.

For the proof we note that Wiman showed [7, p. 226]

lim
k→∞ arg z0

±k(α) = ±απ

2
(35)

and further that the number of zeros with z0
k < r is given by r1/α/π − 1 + (α/2) [7, p. 228].

From this follows that (
1 − α

2

)α

πα < |z0
k(α)| <

(
2k + 1 − α

2

)α

πα (36)

for all k ∈ Z. Taking the limit α → 0 in equations (35) and (36) gives |zk(0)| = 1 and
arg zk(0) = 0 for all k ∈ Z. The theorem states that in the limit α → 0 all the zeros collapse
into a singularity at z = 1.

Next we turn to the limit α → 1. Of course for α = 1 we have E1,1(z) = exp z, which is free
from zeros. Figure 1 shows that this is indeed the case because, as α → 1, the zeros approach
−∞ along the straight lines parallel to the negative real axis.

THEOREM 3.2 Let ε > 0. Then the zeros z0
k(α) of Eα,1(z) obey

lim
ε→0

Im z0
k(1 − ε) = (2k − 1)π (37)

lim
ε→0

Im z0
k(1 + ε) = 2kπ (38)

for all k ∈ Z.
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Figure 2. Locus of complex zeros z0
k(α) as functions of α for k = ±1, ±2, ±3, ±4 for the Mittag-Leffler function

Eα,1(z) in the range 1.00001 ≤ α ≤ 1.9. The line styles consecutively label k = ±1 (solid) k = ±2 (dashed) k = ±3
(dash-dotted), k = ±4 (solid). The symbols mark α = 1.00001 (triangle left filled) α = 1.001 (triangle right) α = 1.1
(plus) α = 1.3 (circle) α = 1.5 (square), and α = 1.7 (diamond) α = 1.9 (cross). The arrows on the left indicate the
asymptotic locations z0

k(1) = 2kπ in the limit α → 1 from above.

The theorem shows that the phase switches as α crosses the value α = 1 in the sense that
minima (valleys) and maxima (hills) of the Mittag-Leffler function are exchanged (see also
figures 7 and 8).

The location of zeros as function of α for the case 1 < α < 2 is illustrated in figure 2. Note
that with increasing α more and more pairs of zeros collapse onto the negative real axis. The
collapse appears to happen in a continuous manner (see also figures 9 and 10). It is interesting
to note that after two conjugate zeros merge to become a single zero on the negative real axis,
this merged zero first moves to the right towards zero, and only afterwards starts to move left
towards −∞. This effect can also be seen in figure 2. For α = 2, the zeros −(k − (1/2))2π2

all fall on the negative real axis, as can be seen in figure 11. For α > 2, all the zeros lie on the
negative real axis.

3.2 Contour lines

Next we present contour plots for Re Eα,β(z). We use the notation

CRe
α,β(v) = {z ∈ C: Re Eα,β(z) = v} (39)

CIm
α,β(v) = {z ∈ C: Im Eα,β(z) = v} (40)

for the contour lines of the real and the imaginary part. The region {z ∈ C: Re Eα,β(z) > 1} will
be coloured white. The region {z ∈ C: Re Eα,β(z) < −1} will be coloured black. The region
{z ∈ C: 0 ≤ Re Eα,β(z) ≤ 1} is light grey. The region {z ∈ C: −1 ≤ Re Eα,β(z) ≤ 0} is dark
grey. Thus the contour line CRe

α,β(0) separates light grey from dark grey, the contour CRe
α,β(1)

separates white from light grey, and CRe
α,β(−1) dark grey from black. Because Re Eα,β(z) is

continuous, there exists in all figures light and dark grey regions between white and black
regions even if the grey regions cannot be discerned on a figure.
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Figure 3. Contour plot for Re E0,1(z). The region {z ∈ C : Re Eα,β (z) > 1} is white, {z ∈ C : Re Eα,β (z) < −1} is
black, {z ∈ C : 0 ≤ Re Eα,β (z) ≤ 1} is light grey, and {z ∈ C : −1 ≤ Re Eα,β (z) ≤ 0} is dark grey.

We begin our discussion with the case α → 0. Setting α = 0, the series (1) defines the
function

E0,β(z) = 1

�(β)(1 − z)
(41)

for all |z| < 1. This function is not entire, but can be analytically continued to all of C \ {1},
and has then a simple pole at z = 1 for all β. In figure 3 we show the contour plot for the case
α = 0, β = 1. The contour line CRe

0,1(0) is the straight line Re z = 1 separating the left and the
right half plane. The contour line CRe

0,1(1) is the boundary circle of the white disc on the left,
while the contour line CRe

0,1(−1) is the boundary of the black disc on the right.
Having discussed the case α = 0, we turn to the case α > 0 and note that the limit α → 0 is

not continuous. For α > 0 the Mittag-Leffler function is an entire function. As an example, we
show the contour plot for α = 0.2, β = 1 in figure 4. The central white circular lobe extending

Figure 4. Contour plot for Re E0.2,1(z). The dashed lines mark the wedge W
+(απ/2). (The grey level coding is

the same as in figure 3.)
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to the origin appears to be a remnant of the white disc in figure 3. They evolve continuously
from each other upon changing α between 0 and 0.2. It seems as if the singularity at z = 1
for α = 0 had moved along the real axis through the black circle to ∞, thereby producing an
infinite number of the secondary white and black lobes (or fingers) confined to a wedge-shaped
region with an opening angle απ/2.

The behaviour of Eα,β(z) for 0 < α < 2 is generally dominated by the wedge W
+(απ/2)

indicated by dashed lines in figure 4. For z ∈ W
+(απ/2) the Mittag-Leffler function grows

to infinity as |z| → ∞. Inside this wedge the function oscillates as a function of Im z. For
z ∈ W

−(απ/2) the function decays to zero as |z| → ∞. Along the delimiting rays, i.e. for
arg(z) = ±απ/2, the function approaches 1/α in an oscillatory fashion.

The oscillations inside the wedge are seen as black and white lobes (or fingers) in figure 4.
Each white finger is surrounded by a light grey region. Near the tip of the light grey region
surrounding a white finger lie complex zeros of the Mittag-Leffler function. The real part
Re Eα,β(z) is symmetric with respect to the real axis.

Contrary to CRe
0,1(0), the contour line CRe

0.2,1(0) consists of infinitely many pieces. These pieces
will be denoted as CRe

0.2,1(0; ±k) with k = 1, 2, 3, . . . , located in the upper (+) and lower (−)
half plane, respectively. The numbering is chosen from left to right, so that CRe

0.2,1(0; ±1)

separates the light grey region in the left half plane from the dark grey in the right half plane.
The line CRe

0.2,1(0; +2) is the boundary of the light grey region surrounding the first white ‘finger’
(lobe) in the upper half plane, and CRe

0.2,1(0; −2) is its reflection on the real axis. Similarly, for
k = 3, 4, . . . , note that CRe

0.2,1 (0; ±1) seem to encircle the central white lobe (‘bubble’) by
going to ±i∞ parallel to the imaginary axis.

With increasing α the wedge W
+(απ/2) opens, the central lobe becomes smaller, the side

fingers (or lobes) grow thicker and begin to extend towards the left half plane. At the same
time, the contour line CRe

α,1(0; ±1) moves to the left. This is illustrated in a three-dimensional
plot of Re E0.333,1(z) in figure 5. In this figure, we have also indicated the complex zeros as the
intersection of CRe

0.333,1(0) (shown as thick solid lines) and CIm
0.333,1(0) (shown as thick dashed

lines). At α = 1/2, the contours CRe
0.5,1(0; ±1) cross the imaginary axis.

Figure 5. Truncated surface plot for Re E0.333,1(z). Only the surface for −1 ≤ Re E0.333,1(z) ≤ 1 is shown. The
contour lines CRe

0.333,1(0) are shown as thick solid lines. The contour lines CIm
0.333,1(0) are shown as thick dashed lines.

Their intersections are zeros.
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Figure 6. Contour plot for Re E0.731,1(z) and Re E0.737,1(z), before and after the first osculation estimated to occurr
at α ≈ 0.734375 ± 0.000015. The dashed lines mark the wedge W

+(απ/2). (The grey level coding is the same as
in figure 3.)

Around α ≈ 0.73, the contours CRe
α,1(0; ±2) osculate the contours CRe

α,1(0; ±1). The oscu-
lation eliminates a light grey finger and creates a dark grey finger. In figure 6 we show the
situation before and after the osculation. This is the first of an infinity of similar osculations
between CRe

α,1(0; ±1) and CRe
α,1(0; ±k) for k = 2, 3, 4, . . .. We estimate the value of α for the

first osculation at α ≈ 0.734375 ± 0.000015.
For α → 1, the dark grey fingers (where Re Eα,β < 0) extend more and more into the left

half plane. For α = 1, the wedge W
+(π/2) becomes the right half plane and the lobes or

fingers run parallel to the real axis. The dark grey fingers and, therefore, the oscillations, now
extend to −∞. The contour lines CRe

1,1(0; ±k) degenerate into

CRe
1,1(0; ±k) =

{
z ∈ C: Im z = ±kπ

2

}
, k = 1, 2, 3, . . . (42)

Figure 7. Contour plots for Re E0.966,1(z) and Re E1,1(z). The dashed lines mark the wedge W
+(απ/2). (The grey

level coding is the same as in figure 3.)
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Figure 8. Contour plot for Re E1.02,1(z). The dashed lines mark the wedge W
+(απ/2). (The grey level coding is

the same as in figure 3.)

i.e. into the straight lines parallel to the real axis. This case is shown in figure 7. For α = 1 + ε

with ε > 0 the grey fingers are again finite. This is shown in figure 8.
As α is increased further, the fingers grow thicker and approach each other near the negative

real axis. For α ≈ 1.42215 ± 0.00005, the first of an infinite cascade of osculations appears.
This is shown in figure 9. The limit α → 2 is illustrated in figures 10 and 11. Note that the
background colour changes from light grey in figure 10 to dark grey in figure 11 in agreement
with the discussion of the complex zeros above.

For α > 2 the behaviour changes drastically. Figure 12 shows the contour plot for
α = 3, β = 1. Note the scale of the axes. As a result, there are no visible dark or light grey
regions. The wedge-shaped region is absent. The rays delimiting the wedge may still be viewed
as if the fingers were following them in the same way as for α < 2. Thus the fingers are more
strongly bent as they approach the negative real axis.

Figure 9. Contour plot for Re E1.420,1(z) and Re E1.425,1(z) before and after the osculation estimated to occurr at
α ≈ 1.42215 ± 0.00005. The dashed lines mark the wedge W

+(απ/2). (The grey level coding is the same as in
figure 3.)
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Figure 10. Contour plot for Re E1.96,1(z). The dashed lines mark the wedge W
+(απ/2). (The grey level coding is

the same as in figure 3.)

Now we turn to the cases β 
= 1 choosing α = 1/3 for illustration. For β > 1, equation
(41) implies that the central lobe first grows (because �(β) diminishes) and then shrinks as
β → ∞ for small values of α. This is illustrated in the upper left subfigure of figure 13. For
reference, the case β = 1 is also shown in the upper right subfigure of figure 13.

More interesting behaviour can be seen for β < 1. In this case, the contours CRe
1/3,β(0; ±1)

stop running to infinity parallel to the imaginary axis. Instead they seem to approach infin-
ity along the rays extending into the negative half axis as illustrated in the lower left
subfigure of figure 13. At the same time, a sequence of osculations between CRe

1/3,β(0; ±k)

and CRe
1/3,β(0; ±(k + 1)) begins to start from k = ∞. One of the last of these osculations can

be seen for β = 1/3 on the lower right subfigure of figure 13. As β falls below 1/3, the contour
CRe

1/3,β(0; +1) coalesces with CRe
1/3,β(0; −1) to form a new large finite central lobe. This new

second lobe becomes smaller and retracts towards the origin for β → 0. This can be seen from

Figure 11. Contour plot for Re E2,1(z). The dashed lines mark the wedge W
+(απ/2). (The grey level coding is

the same as in figure 3.)
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Figure 12. Contour plot for Re E3,1(z). The dashed lines mark the wedge W
+(απ/2). (The grey level coding is

the same as in figure 3.)

Figure 13. Contour plot for Re E0.333,β (z) with β = 3, 1, 2/3, 1/3. The dashed lines mark the wedge W
+(απ/2).

(The grey level coding is the same as in figure 3.)
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Figure 14. Contour plot for Re E1/3,β (z) forβ = 0, −2/3, −1, −4/3. The dashed lines mark the wedge W
+(απ/2).

(The grey level coding is the same as in figure 3.)

the upper left subfigure of figure 14 where the case β = 0 is shown. As β falls below zero, the
same process of formation of a new central lobe accompanied by a cascade of osculations starts
again. This occurs iteratively whenever β crosses a negative integer, and is a consequence of
the poles in �(β).

4. Inverse Mittag-Leffler functions

We introduce the inverse generalized Mittag-Leffler function Lα,β(z) as the solution of the
equation

Lα,β(Eα,β(z)) = z. (43)

Our ability to calculate Eα,β(z) allows us to evaluate also Lα,β(z) by solving this functional
equation numerically. We have succeeded in determining the principal branch of Lα,β(z) in
such a way that three conditions are fulfilled. (1) The function Lα,β(z) is single valued and
well defined on its principal branch. (2) Its principal branch reduces to the principal branch of
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Figure 15. The dark region corresponds to the principal branch of the inverse generalized Mittag-Leffler function
Lα,β (z) for α = 0.95, β = 1.

the logarithm for α → 1. (3) Its principal branch is a simply connected subset of the complex
plane. Figure 15 shows the principal branch for the case α = 0.95, β = 1.
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