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A refined classification theory for phase transitions in thermodynamics and statistical
mechanics in terms of their orders is introduced and analyzed. The refined thermody-
namic classification is based on two independent generalizations of Ehrenfests traditional
classification scheme. The statistical mechanical classification theory is based on gener-
alized limit theorems for sums of random variables from probability theory and the newly
defined block ensemble limit. The block ensemble limit combines thermodynamic and
scaling limits and is similar to the finite size scaling limit. The statistical classification
scheme allows for the first time a derivation of finite size scaling without renormaliza-
tion group methods. The classification distinguishes two fundamentally different types
of phase transitions. Phase transitions of order A > 1 correspond to well known equilib-
rium phase transitions, while phase transitions with order A < 1 represent a new class
of transitions termed anequilibrium transitions. The generalized order ) varies inversely
with the strength of fluctuations. First order and second order transitions play a spe-
cial role in both classification schemes. First order transitions represent a limiting case
separating equilibrium and anequilibrium transitions. The special role or second order
transitions is shown to be related to the breakdown of hyperscaling. For anequilibrium
transitions the nature of the heat bath in the canonical ensemble becomes important.

1. Introduction

A number of recent publications'™® has reopened the discussion concerning the
classification of critical behaviour. In Ref. 1 a thermodynamic classification of
normal and anomalous first order phase transitions was given. In Refs. 3 and 4
it was shown that continuous phase transitions can also be usefully classified by
extending the thermodynamic classification scheme of Ehrenfest. Based on the
generalized classification scheme, a new class of phase transitions having order less
than unity was discovered® and it was shown that the novel transition type is allowed
by the laws of classical thermodynamics. The identification of the corresponding
statistical mechanical classification theory however remained incomplete.

My objective in this paper is to elucidate the equivalence between the sta-
tistical mechanical and the thermodynamical classification theories in more de-
tail. To this end the thermodynamic classification scheme introduced in Refs. 3
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and 4 will first be refined. Phase transitions of order less than unity which were
introduced in Ref. 5 will be discussed thermodynamically without introducing mul-
tivalued thermodynamic potentials. Then the statistical mechanical classification
will be shown to arise from the concept of finite ensemble scaling which is closely
related to finite size scaling theory. The statistical classification theory gives rise
to a new universal mechanism for the breakdown of hyperscaling which differs from
the traditional mechanism of dangerous irrelevant variables.®

Discontinuities and divergences of thermodynamic potentials along curves which
cross a critical manifold can be characterized mathematically through their gener-
alized orders A > 1 (with A € R) as well as their strengths.>* Besides providing
a convenient language the classification scheme implies multiscaling for thermody-
namic phase transitions.®# Multiscaling has been defined as a scaling form in which
the critical exponents are functions of the scaling variables.” The simplest form of
multiscaling occurs at a multicritical point but recently more interesting cases have
been discussed.®7'6 The derivation of multiscaling from analytic continuation of the
Ehrenfest scheme represents a derivation of thermodynamic scaling results without
the use of renormalization group ideas.

Given these results it is natural to ask whether phase transitions of order A < 1
are thermodynamically admissible or not. A rash answer would be negative because
such transitions appear to violate thermodynamic stability requirements. A more
cautious response however is useful.® Transitions having order A < 1 are indeed
allowed by the laws of thermodynamics. Here the consequences of this discovery
for the theory of critical phenomena will be explored while more general and exper-
imental consequences have been discussed elsewhere.}”

2. Thermodynamics
2.1. Refined thermodynamic classification scheme

Let me begin by recalling the definition of the generalized order of a transition®* as
well as some of the mathematical requirements of thermodynamics.®22 The energy
function U(S, V, N') must be a single-valued, convex, monotonically increasing and
almost everywhere differentiable function which is homogeneous of degree 1 and has
the coordinates S, entropy, V, volume, and N particle number. Classically the state
variables satisfy 0 <V < 00, 0 < N < 00, —00 < § < 00, and —oo < U < oo, while
for quantum systems S and U must also be bounded from below. These conditions
are both necessary and sufficient for thermodynamic stability.

The classification of phase transitions is usually discussed in terms of the free
energy density or the pressure p.»'®* The pressure is the conjugate convez function®
to the energy density u(s, p) = U(S/V, 1, N/V)/V as a function of entropy density
s = S/V and particle number density p = N/V according to

T, p) = ssulg(up +Ts —u(s, p)) (2.1)
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where u denotes the chemical potential and T the temperature. The existence
of phase transitions requires the thermodynamic limit V' — oo to be taken ap-
propriately. Consider a thermodynamic process € : R — R?, o — (T(0), p(0))
parametrized by o such that T(¢ = 0) = T,, u(c- = 0) = p. corresponds to a
critical point. The classification scheme for phase transitions®* is based on the
fractional derivatives®®

dqpsng(T(a)’ /‘(U))
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of the singular part of the pressure p = preg + psng. In Ehrenfests original classifi-
cation scheme?® a phase transition was defined to be of order n* € Niff

3(C, n; 0) ~ AO(c)+ B (2.3)

for 0 ~ 0 where A, B € R and ©(c) denotes the Heaviside step function defined as
(o) = 1for 0 > 0 and ©(c) = 0 for ¢ < 0. Equation (2.3) expresses a finite jump
discontinuity in the n-th order derivative of the pressure.

In Refs. 3 and 4 the classification scheme of Ehrenfest was generalized by ex-

tending the order n from integers to real numbers. A phase transition was defined
to be of order A* € R iff

AE(€) = sup{g € R| lim F(€, ¢; o) < oo} (2:4)

which is sufficiently general to allow confluent logarithmic singularities. Note that
the order will in general depend upon the particular choice of thermodynamic pro-
cess C. A phase transition of order A implies that F behaves asymptotically like a
power function (of index A) upon approach to the critical point.3¢ This observation
relates the order of the transition to the critical exponents as

A=2—-a,=2-a (2.5a)

/\\p:2—a\y=1+1/6 (2.5]))

where A, denotes the thermal order and Ay the order along the direction of the
field conjugate to the order parameter. In Eq. (2.5) a¢ = o and ag = 1 —1/6 are
the thermodynamic fluctuation exponents for the energy density ¢ and the order
parameter density ¥ in Fishers notation,%27 while 6§ denotes the equation of state
exponent and o the specific heat exponent.
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In this paper a mathematically more refined classification scheme will be intro-
duced based on the observation that the function §(C, n; ¢) in Ehrenfests scheme
(2.3) is a slowly varying function® of ¢. A function A(z) is called slowly varying
at infinity if it is real-valued, positive and measurable on [A4, o0) for some A > 0,
and if

. A(be)

1 = 2.6
Jim Sy =1 (26)
for all b > 0. A function A(z) is called slowly varying at zero if A (L) is slowly
varying at infinity.?®2° The function F(C, n; ) in (2.3) is slowly varying for ¢ — 0*
as well as for 0 — 0~. Therefore in this paper a phase transition is defined to be of
order M¥ iff

*.
GRS

T 56, NE 1/0) 27

for all b > 0. This means that F(€, \*; o) varies slowly as a function of o for
o — 0%. The generalized order in this refined classification scheme is the same as
in the scheme (2.4) because every slow varying function A(z) has the property that
ler}) z7¢A{z) = o and ll_l’f}] zfA(z) = 0 for all e > 0.

In the refined classification scheme (2.7) each phase transition is classified by
its generalized left and right orders A* and functions A% which are slowly varying
at the critical point. The classification scheme allows to distinguish also differences
between transitions having the same order. The two dimensional Ising model is of
second order (A, A) = (2, log) while the mean field theory will be classed as second
order (), A) = (2, ©) where O denotes that Heaviside step function defined above.

Phase transitions of order A = 2 occupy a special place in the thermodynamic
classification scheme because they are self conjugate under Legendre transformation
as will be shown next. Consider a thermal phase transition of order (A, A) for
T — 0% in p(r, ) where 7 = (T — T,)/T. and p = pg is constant. Then p(7)
behaves as

p(r) ~ T*A(7) (2.8)

for T — T3 where A(7) is slowly varying for 7 — 0%. Define a slowly varying
function L(xz) through

Az) = %L*I—‘(x*) . (2.9)

It is a standard result in the theory of slowly varying functions that for A > 1 the
conjugate convex function u(c) = sup(ro — p(r)) behaves as
T

u(o) ~ XIIUA‘L*L}*:}'(J)“) (2.10)
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for 0 — 0% where A* > 1 is given by

A= — 2.11
Y1 (2.11)
and L*(z) is the slowly varying function conjugate to L(z).2° For every L(z) slowly
varying at zero there exists a conjugate slowly function L*(z) which is defined such
that

}i_rf}) L(z)L*(zL(z)) =1 (2.12)
liir}) L*(z)L(zL*(z)) : 1 (2.13)
L**(z) ~ L(z) forz — 0 . (2.14)

L*(z) is asymptotically unique in the sense that if there exists another slowly varying
function L’(z) with the properties (2.12)—(2.14) then L'(z) ~ L*(z) for z — 0.
Thus to every phase transition of order (A, A) in the pressure there corresponds a
conjugate transition in the energy density which is of order (A*, A*) with A* given
by (2.11) and A* related to L* as A to L in (2.9). Phase transitions of order A = 2
are selfconjugate in the sense that A = A*. Phase transition of order A = 1 are
conjugate to transitions of order A* = 0o and represent a special limiting situation.

2.2. Anequilibrium phase transitions

This section turns to the question posed in the introduction whether phase tran-
sitions of order A < 1 are thermodynamically permissible. Consider u(s, p) for a
thermodynamic process in which the density p = N/V is kept constant and which
crosses a critical point at s.. If the phase transition at s, is of order A = At = A~
then u(s) has the form

u(s) = ureg(s) + u(s)|s — s.* (2.15)

where u,eg(s) denotes the regular part and u®(s) varies slowly near s.. Consequently
any phase transition with s < oo and order A < 1 violates the requirement of
convexity for u or the condition v < oo (for A < 0), and is thus forbidden by the
laws of thermodynamics. This appears to restrict thermodynamically admissible
transitions to the range A > 1.

Although the restrictions on the thermodynamic state variables require a finite
entropy or energy density, i.e., s < 0o or u < oo, the laws of thermodynamics
do not require s, < 0, i.e., finiteness for the critical point. In fact the simplest
solid-fluid phase diagrams in the (s, v)-plane are consistent with a critical point at
s = oo separating the solid single phase region from the fluid single phase region.
Such infinite entropy density transitions are not ruled out by the mathematical
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requirements specified in the previous section. This can be demonstrated by giving
an explicit counterexample to the contrary proposition. Such a counterexample is
the following single-valued, continuous and differentiable energy density function

u(s) = as + b(s* + c?)!/? (2.16)

where a, b, ¢ > 0 and @ > b. Clearly T(s) = 4% > 0 and -gi—;‘ > 0 and thus u(s)
is convex and monotonically increasing. u(s) fulfills all requirements for the energy
density of a thermodynamically stable system. Note that u(s) exhibits transitions
of order A¥ = 1 at s, = +oo. Moreover the thermodynamic system described by
Eq. (2.16) has the curious property that the set of possible temperatures is restricted
to the range

a=b=Tnin <T<Thax=a+b (2.17)
The pressure obtained from Eqgs. (2.1) and (2.16) reads

p(T) = [*(6* = (T - a®)*)]/2 (2.18)

and it becomes complex outside the restricted temperature range (2.17). The pres-
sure (2.18) has transitions of order /\f = 1/2 at Tiin and Tipay respectively. More
generally transitions of order A, > 0 in u are related to transitions of order

(2.19)

in p.® Note that now 0 < A, < 1 while 0 < Ay < oo.

The simple example (2.16) demonstrates that thermodynamics allows two fun-
damentally different types of phase transitions. On the one hand traditional phase
transitions of order /\f > 1 and on the other hand unusual phase transitions of
order 0 < )\f < 1 for which the set of possible equilibrium temperatures appears to-
be restricted to a subset of the absolute temperature scale. The interest in this ob-
servation derives from the fact that equilibrium thermodynamics formally admits
transitions whose presence would restrict its own applicability in the sense that
the limiting critical temperatures Tiin and Tihay cannot be reached in any qua-
sistatic process. A quasistatic process is a sequence of state changes which proceeds
infinitely slowly compared to the time scale for the establishment of equilibrium.
This raises the question whether the identification of the absolute temperatures
scale with the ideal gas temperature scale remains valid when A < 1 transitions
are present. In such systems Tiin plays the role of absolute zero and Tjn.y that
of T = oco. In Ref 5, it was suggested to circumvent the self-limitation to a fi-
nite temperature range through multivalued thermodynamic potentials and phase
transitions of order A < 1 were called nonequilibrium phase transitions because
transitions between different sheets cannot occur quasistatically. The present paper
however restricts all thermodynamic functions to remain single valued. In order
to avoid confusion with standard literature usage of the terminus “nonequilibrium
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phase transitions” I will use instead the word anequelibrium phase transition from
now on.

The entropy density s(7T') = (g%) derived from (2.18) diverges to —oo0 as T' —
m

T;in. Therefore the third law implies the existence of another special temperature

Ty defined by the condition
s(To) =0 (2.20)

of vanishing entropy density. Because the third law is of quantum mechanical origin
the temperature Tj is expected to be the minimal temperature for quantum systems

while Tp,in is the minimal temperature for classical systems. Clearly Ty > Tinin is
always fulfilled.

3. Statistical Mechanics
3.1. Ensemble limit

Given the thermodynamic classification of phase transition it is natural to ask
whether anequilibrium phase transitions and a statistical mechanical classification
corresponding to the thermodynamic scheme exist for critical behavior in statistical
mechanics. These questions are discussed in the following sections. Statistical Me-
chanics for noncritical systems is based on the law of large numbers.3? This suggests
that the theory of critical phenomena may be founded in the theory of stable laws.
Although natural this idea is usually rejected because the divergence of correlation
lengths and susceptibilities appears to imply that the microscopic random variables
are strongly dependent®!:32:33 while the standard theory of stable laws applies only
to weakly dependent or independent variables.?3:34:35

The problem of strong dependence arises from the particular choice of performing
the infinite volume limit and the continuum limit. One usually starts from an
infinite volume lattice theory and then ask for possible continuum (or scaling) limits
of the rescaled infinite volume correlation functions.3® Depending on whether the
rescaled correlation lengths remain finite or not one distinguishes the “massive” and
the “massless” scaling limit but in either case the infinite volume limit has been
performed before taking the scaling limit.

The idea of the present paper for basing a statistical classification of critical
behavior on the theory of stable laws is related to that of finite size scaling®®~4° and
uses a different method of taking infinite volume and continuum limits. Consider a
d-dimensional simple cubic lattice with lattice spacing @ > 0 in “block geometry”,
i.e., having finite side length L < oo in all d directions. Let X be a scalar observable
associated with each lattice point. The lattice represents a discretization of a large
but finite statistical mechanical system.*! Because the system in all directions the
correlation length £x for fluctuations in X is also finite, i.e., éx(I) < co. Let the
lengths a, L and the parameters II of the statistical mechanical system be such that

0<a<éx(M) < L<oo. (3.1)
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Thus the system decomposes into a large number of uncorrelated blocks of linear
extension £x. The ensemble limit is defined as the simultaneous limit in which

a—0, L — oo, I — II, such that {x(I) — Ex (M) < o0 . (3.2a)
Two cases can be distinguished: In the critical ensemble limit

while for the noncritical ensemble limit

Ex(Il)=0. (3.2¢)

If N = (L/éx)? denotes the number of uncorrelated blocks of size £x and
M = (£x/a)? is the number of sites in each block then NM = (L/a)? is the total
number of lattice sites. The correlation length £x diverges in units of a in the
critical ensemble limit but stays finite in the noncritical ensemble limit. Note also
that N — oo in the critical ensemble limit while N remains finite in the massive
scaling limit or the finite size scaling limit.37 The critical ensemble limit generates
an infinite ensemble of uncorrelated blocks. This feature allows the application of
standard limit theorems for uncorrelated or weakly dependent variables.

Let X;n(j) denote the scalar observable X at latticesite j(j = 1, ..., M) inside
block i(i=1..., N). Then

M
Xiv =Y Xin(j) (3.3a)
j=1

are the block sums for block 7 and
N
XN = ZXiN (3.3b)
i=1

is the ensemble sum for the total system. The X;n(j) are random variables and so
are X;n and Xy. Let

Xy = (Xn — Cn)/Dn (3.4)
denote the normed and centered ensemble sum and let Py(z) = Prob{Xy < z} be
the probability distribution function of X. Assuming translation invariance the

block variables are uncorrelated and identically distributed. Therefore the limiting
distribution of X is stable in the critical ensemble limit.?33%35 More precisely, if

P(z) = lim Py(zDy + Cn) (3.5)
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denotes the limiting distriBution function of the normed ensemble sums (3.4) then
the characteristic function p(k) = [~ exp(ikz)dP(z) of P(z) has the representa-
tion

log p(k) = iCk — DI|k|” (1 - i(—l-]]z—lw(k, w)) (3.6)

where @, ¢, C, D are constants whose ranges are

0<w<2 (3.7a)
-1<¢(<1 (8.7b)
—oo<(C<oo (38.7¢)
D>0 (3.7d)
and
tan (_u_;z) for w#1
w(k, w) = 9 (3.8)
p log |k| forw=1

The constant w is called the indez of the stable distribution while the parameter ¢
characterizes its symmetry.

If the limit in (3.5) exists and D > 0 then the norming constants Dy must have
the form?®:3%

Dy = NYZA(N) (3.9)

where the function A(N) is slowly varying at infinity. The case D > 0 corresponds
to the critical ensemble limit, while for D = 0 the limiting distribution P(z) is
degenerate, i.e., concentrated at a single point, corresponding to the noncritical
ensemble limit.

The preceding limit theorem implies that in the limit N — oo the distribution
function of the ensemble sums can be approximated as

Pn(z)~ P (iﬁgﬂ; w, ¢, C, D) (3.10)

where the notation P(z; w, ¢, C, D) is introduced for stable distributions of index
w. The objective in the next section will be to establish a large N scaling result for
Ppn(z). To obtain it more information on the common distribution of the individual
block variables is required.
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The limiting distributions P(z) of the individual block variables X;y are inde-
pendent of 7 because of translation invariance and they belong to the domain of
attraction of a stable law. The class of possible block variable limits can thus be
characterized as follows®: In order that the characteristic function p(k) of P(z)
belong to the domain of attraction of a stable law whose characteristic function has
logarithm — D|k|® (1 — i¢ krw(k, w)) with @, ¢, D and w(k, @) as in (3.6)-(3.8)
it is necessary and sufficient that in the neighborhood of the origin k = 0

log (k) = iCk — D|k|” A(k) (1 - i(l—:—lw(k, w)) (3.11)

where C is a constant and A(k) is slowly varying function for k — 0.

Equations (3.9) or (3.11) show that each ensemble limit N, M — oo is labeled
by a set of numbers w, ¢, D with ranges as in (3.7) and a slowly varying function
A. Wihile D differentiates between critical and noncritical limits w, ¢ and A dif-
ferentiate different critical ensemble limits. This characterization is reminiscent of
the thermodynamic classification scheme and suggests a closer correspondence. To
establish such a correspondence it is necessary to relate the generalized orders A
in the thermodynamical classification scheme to the numbers @, { occurring in the
characterization of ensemble limits. This will be done in the next section.

3.2. Finite ensemble scaling

The purpose of the present section is to investigate the N-dependence of the prob-
ability distribution for ensemble sums Xy is the limit of large N. The scaling
relations emerging from this analysis will be called finite ensemble scaling because
they are closely related to finite size scaling relations by virtue of the similarity
between the critical ensemble limit defined above and the finite size scaling limit.37 .
The question is how to choose the centering and norming constants Cy, Dy in
(3.10) given the characterization (3.11) for the individual block variables X;y.

The centering constants C in Eq. (3.10) can be eliminated from the problem
by setting Cy = —C' Dy where

c forw #1
C'= 9 (3.12)
C+;CDlogD forw=1

and with this choice (3.10) becomes

:B—-CN. _‘ 'z .
PN(£)~P(—-D—N—,W,C, C, D) —P(m,w, (, 0, 1) (313)
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Although the general form of Dy is known from (3.9) it remains to establish the
relationship between the slowly varying functions in (3.9) and (3.11). Once this
relation is established Eq. (3.13) represents a finite NV scaling formula for a system
in which the individual block variable limits are characterized by (3.11).

The limiting distribution functions of the individual block variables X;y have
characteristic functions as given by (3.11). Introduce

R(k) = |k|" L£(k%) (3.14)
where the slowly varying function £(z) is defined through
A(k) = £(k®) (3.15)

and A(k) is the slowly varying function appearing in (3.11). For sufficiently large
N the norming constants Dy are chosen as

D! = inf {k >0: R(k) = %} (3.16)

which is possible because R(k) — 0 for k¥ — 0 and R(k) is continuous in a neigh-
borhood of zero. Then for small k3%

k
s ) ol e () )

Dy
= exp {—lel“’ (1 + icl—:lw(k, w))} . 3.17)

It follows that D ~ N R(1/Dn) for sufficiently large N and this determines Dy in
terms of A(k) and w as

b= (gt ) o1

where £7(z) is the conjugate slowly varying function to £(z) defined in Eq. (3.15).
The slowly varying function A(N) appearing in (3.9) is thus given as

AN = (DE* (%))1E . (3.19)

in terms of the limiting distributions (3.11) for the individual blocks.
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Finally Eq. (3.13) gives the finite ensemble scaling for the distribution of ensem-
ble variables X in the large N limit

x1/w -1
Pn(z) =P (%—l @, ¢, 0, 1) : (3.20)

More interesting than the ensemble variables Xy are the ensemble averages de-
fined as Xy = J—J\f—% The probability distribution function Py (Z) for the ensemble
averages Xy has the finite ensemble scaling form

_ = is-«l/w N-—l

Equations (3.20) and (3.21) are the central results of this paper. If N = (L/éx)?
is expressed in terms of the system size L they are seen to be closely related to
finite size scaling theory. They are new inasmuch as they are derived without
reference to a particular model or approximate critical Hamiltonian such as the
Landau-Ginzburg-Wilson Hamiltonian. Equations (3.20) and (3.21) are valid for
all translation invariant critical systems, i.e., systems for which the basic limit dis-
tribution (3.5) is not degenerate. They represent a general and model independent
derivation of scaling in statistical mechanics without renormalization group theory.

3.3. Identification of exponents and statistical classification scheme

It is now possible to consider the correspondence between the statistical classifi-
cation in terms of @, ¢ and A and the thermodynamic classification in terms of A
and A. To do this the index = in (3.20) and (3.21) must be related to the critical
exponents. This is immediately possible from (3.21) by considering for example
the order parameter ¥. Setting X = U, taking the derivative with respect to Z in
Eq. (3.21) and using N = (L/£y)? one finds that the k-th moment (TIl_k) of the order
parameter scales with system size as (\_Il_k) ~ Lkd(@-1)/w Comparing to standard
finite size scaling theory35™C relates @ to the thermodynamic exponents as

_1+28 _

1
= =14+==2A 3.22
wy Py +6 ¥ ( )

where 8 and v are the order parameter and susceptibility exponents, and Ay was
defined in (2.5). Similarly for the energy density X = ¢ one finds

we=2—a=JA (3.23)

where ). is the thermal order of (2.5). This suggests that the correspondence
between the statistical and the thermodynamic classification of phase transition
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is given generally as w = A. Note that second order (i.e., selfconjugate) phase
transition occupy again a special case in the statistical classification scheme because
of the bound w < 2 in (3.7a). This fact will be related below to violations of
hyperscaling relations.

The general identification A = w implies that anequilibrium phase transitions
with order A < 1 correspond to stable limit distributions with index w < 1. Thus
anequilibrium transitions are not only found in equilibrium thermodynamics but
also in equilibrium statistical mechanics. The fact that anequilibrium transitions
restrict the range of equilibrium temperatures as in (2.17) is mirrored by the fact
that thermal expectation values diverge in the critical ensemble limit for anequilib-
rium critical points with @ < 1. This implies that the traditional formulation of
statistical mechanics becomes inapplicable at anequilibrium critical points just as
traditional thermodynamics becomes inapplicable.

While the general correspondence between A < 1 and w < 1 is reassuring
it is not sufficient to establish the existence of anequilibrium phase transition in
statistical mechanics. To demonstrate their existence requires a possibly exact
calculation of the partition sum for a concrete statistical mechanical model. It
is surprisingly simple to demonstrate the existence of anequilibrium transitions in
this way. A concrete example occurs in what is perhaps the simplest model in
the theory of critical phenomena, namely the one dimensional Gaussian model.4!
This finding is particularly interesting because the Gaussian model is of central
importance in the modern theory of critical phenomena as the starting point for
systematic perturbative calculations.® The model Hamiltonian is H = —% PR AT,
where the sum runs over all nearest neighbour pairs of lattice sites ¢, j and the
continuous spin variables ¥; have a Gaussian single spin measure proportional to
exp[—o¥Z]. The limiting free energy density for the one dimensional Gaussian
model is well known and it reads

[y _1 _1 1 2 _ pe2yi/2
T = 2 log = 5 log 2(0+(0’ K*) (3.24)

where K = k;+T and kp denotes Boltzmann’s constant. The exact free energy
density (3.24) for the one dimensional Gaussian model exhibits an anequilibrium
transition of order A, = % at the critical temperature Ty, = k—i—;
3.4. General mechanism for the violation of hyperscaling

The identification A = w obviously cannot hold for all values of A > 0 because
w < 2 is required by (3.7). The new restriction w < 2 is readily seen to be
related to the violation of hyperscaling and the breakdown of finite size scaling for
thermal fluctuations in dimensions d > 4. To see this consider the class of statistical
mechanical models obeying the Lebowitz inequality for the four point functions and
infrared bounds for the two point functions.3® For such models the susceptibility
exponent v obeys 4 > 1 and the correlation function exponent 7 obeys n > 0.
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Then using w, < 2, the Fisher inequality ¥ < (2 — n)v, the hyperscaling relation
dv = 2 — o and relation (3.23) the following chain of inequalities is obtained.

d<dy<@-n)dv=@2-n2-a)=@2-n@ <22-n<4.  (3.2)

In the general situation hyperscaling may fail only at w = 2 because only the do-
main of attraction of the normal law contains nonscaling limit distributions. Note
that in this way the inequality w < 2 provides a general mechanism for the break-
down of hyperscaling independent of identifying dangerous irrelevant variables in
a particular model. Analogous breakdown phenomena are expected to occur for
critical fluctuations in observables other than the energy density.

4. Temperature Renormalization

The presence of anequilibrium transitions in a statistical mechanical system & im-
plies strong fluctuations. In fact at the transition point the fluctuations become so
strong that a canonical or thermodynamical equilibrium description of the system
becomes impossible because the ensemble averaged energy or entropy diverges in the
infinite system. The underlying microscopic dynamics however remains well defined
in terms of a classical or quantum mechanical microscopic Hamiltonian. The total
energy of the systemn is well defined and conserved and the system can be described
microcanonically. If the system & undergoes anequilibrium transitions at 7,2 and
TS, then heating or cooling across 7,5, and 7,3, cannot occur quasistatically and

ax
the system must fall out of equilibrium when attempting it.

Consider now the usual setup for the canonical ensemble in which & is weakly
coupled to a reservoir 8. What happens if the reservoir itself undergoes anequi-
librium transitions at 7% and Tir,,? Clearly, the combined system R U & has a
hamiltonian description and can always be treated in the microcanonical ensemble.
But what happens to a canonical description? One expects that the canonical de-
scription should remain applicable as long as T2 is very small and T, very large,
i.e., for Z%l K1lk Z%&, while the temperature dependence of the results should
become modified otherwise. The temperature dependence of the results of canonical
calculations enters through the Lagrange parameter 3(T) for the average energy.
The Lagrange parameter 2 appearing in the canonical and the grand canonical en-
sembles is a universal (i.e., G-independent) function of absolute temperature 7' and
at the same time a property of the reservoir R. In fact if the reservoir R consists of
a large number of weakly interacting subsystems (e.g., particles) then 1 is pro-
portional to the limiting energy per subsystem of $R.30 Because f is related to the
energy density of the reservoir unusual temperature dependence must be expected
whenever the substance of the reservoir itself undergoes anequilibrium transitions.
If the reservoir is described quantum mechanically then T3 defined by Eq. (2.20) will
be the lowest temperature of the reservoir corresponding to the ground state of the
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reservoir Hamiltonian. For classical reservoirs Tt will be the lowest temperature.
If the reservoir has no anequilibrium transitions, i.e., if Tg* = 0 and T, = oo then

the temperature dependence must have the usual universal form

B(T) = éf . (4.1)

If however T§® > 0 and T3, < co the form (4.1) cannot be correct. The energy per
subsystem of the reservoir is proportional to #=! and it diverges as T" approaches
TR .. Thus for finite T,, < co one must have

B(Tma) =0 (4.2)

and this contradicts (4.1) because z—4x— > 0. Similarly

BT =0 (4.3)

also violates (4.1) because Tg* > T > 0. To satisfy the relations (4.2) and (4.3)
the temperature T and the parameter 8 must in general become renormalized into

T=T-TX (4.4)

B=p0~- ﬂ(T:\tax) (45)

whenever the reservoir undergoes anequilibrium transitions. This suggests that
canonical averages (O) of an observable O will in general depend on temperature
through (4.4) and (4.5). For classical reservoirs Tj® in (4.4) has to be replaced
by .. Equations (4.4) and (4.5) are general predictions for the temperature
dependence of canonical averages in systems with anequilibrium transitions resulting
from requiring consistency for the interpretation of 3. Clearly these general results
are corroborated by the explicit solution (3.24) for the Gaussian model.

The main result expressed in (4.4) and (4.5) is the fact that the temperature
dependence of canonical averages depends on the nature of the reservoir with which
the system is equilibrated whenever the reservoir undergoes phase transitions of
order less than one. Note that in every theoretical evaluation of a canonical partition
sum it is implicitly assumed that the system can be equilibrated with a reservoir
R such as an ideal gas with T§® = 0 and T, = oo not undergoing nonequilibrium
transitions. This implicit assumption need not be fulfilled in experiment. In fact
experimentally the reservoir is very often of the same material as the system itself
because the system under study is part of a much larger (ideally infinite) sample.
In that case T§t = 0 = T¢ and TX,, = TS,, and unusual temperature dependence
must be expected as T approaches TP.
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5. Conclusion

The paper has discussed the recent classification theory of phase transitions®= in
greater detail. In particular the original thermodynamic classification scheme3*
has been refined, and the statistical classification scheme suspected in Ref. 5 has
been identified. First and second order phase transitions play special roles in both
classification schemes. The paper presents the first model-independent derivation
of scaling in statistical mechanics which is not based on renormalization group
theory. A new and general mechanism for violations of hyperscaling (and finite
size scaling) has been identified. The classification theory predicts the existence of
phase transitions with orders less than unity. A concrete example is shown to be
realized in the one dimensional Gaussian model. The presence of such transitions
implies a dependence of 8 on the nature of the reservoir. As discussed elsewhere!”
anequilibrium transitions are expected to exist in experiment.
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