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The frequency-dependent conductivity and dielectric constant of a salt-water-saturated porous glass 
specimen have been measured. The measurements cover the full frequency range of the Maxwell- 
Wagner dispersion. The experimental results have been compared with the recently introduced local 
porosity theory and with previous theories. For the purpose of comparing with the local porosity 
theory experimental measurements of local porosity distributions from digitized pore space images 
are presented. These experimental porosity distributions are then used for a first experimental test of 
local porosity theory. The comparison with previous theoretical expressions for the 
frequency-dependent effective dielectric function shows that local porosity theory constitutes a 
significant improvement in the quantitative agreement. 

1. INTRODUCTION 

An improved understanding of transport through porous 
media continues to be of great interest. In recent years a 
steady stream of experimental investigations (many of which 
were motivated by problems in hydrocarbon exploration and 
production) has been concerned with dielectric dispersion of 
water-saturated porous rocks.‘-5 A particularly convenient 
experimental model system for the study of transport through 
porous rocks are sintered glass powders filled with water. In 
a previous study of such specimens4 it was shown that the 
dielectric dispersion curves, the dielectric constant, and the 
formation factor versus frequency collapsed to one curve for 
each of them when plotted as a function of the reduced fre- 
quency o/ww, which is the circular frequency o divided by 
the relaxation frequency U/./E of the conducting fluid with 
conductivity (T and permittivity E. This shows that porous 
glass specimens filled with a conducting fluid exhibit 
Maxwell-Wagner dispersion caused by the random geom- 
etry of the pore space. This type of dispersion is seen also for 
clay-free porous rock.’ 

Many theoretical approaches have been developed to de- 
scribe the dielectric response of water-saturated porous rocks 
(see Refs. 6-8 for reviews). Only very recently have dielec- 
tric enhancement and conductivity-porosity relationships 
(such as Archies law) been obtained simultaneously from a 
single theoretical framework called local porosity theory.8-1’ 

The objective of this study is to present a first investiga- 
tion into the question to what extent local porosity theory can 
describe the experimental observations on water-saturated 
sintered glass bead systems. Such an investigation requires 
measurement of the so-called local porosity distribution 
which is of central importance in the theory and represents 
the mathematical characterization of the random pore space 

“Also with: Institut fiir Physik, Universitit Mainz, Postfach 3980, 6500 
Mainz, Germany and Center for Advanced Study, Norwegian Academy of 
Sciences, P.O. Box 7606, Skillebekk, 0205 Oslo, Norway. 

geometry. Local porosity distributions have been determined 
previously for computer-generated pore space images.g 

Dielectric dispersion curves for water saturated porous 
glass specimens exhibit an important qualitative property. At 
higher frequencies, o/ow-1, the dielectric constant in- 
creases with porosity while at lower frequencies, 
0/0~-10-~, it decreases. This implies that the curves cross 
each other.4 Local porosity theory (LPT) can accommodate 
this crossover in qualitative agreement with experimental 
observations.* It is therefore of interest to investigate to what 
extent the LPT can also give more quantitative agreement. 

II. THEORETICAL EXPRESSIONS FOR THE 
EFFECTIVE DIELECTRIC FUNCTION 

The electrical response of a material is given by its com- 
plex dielectric constant ~((0) where o is the circular fre- 
quency of the electrical test signal. The complex dielectric 
constant is written in the semi-insulating (SI) system as 

cz((w)=E’(O)--i 5, (2.1) 

where e. is the vacuum permittivity and E= E’ +ie” and 
u=a’+io/’ are the complex dielectric constant and the con- 
ductivity, respectively, decomposed into real and imaginary 
parts. 

Most homogeneous materials are dispersion free below 1 
GHz, i.e., E’ and [T’ are independent of o. This is also the 
case for glass (or rock) and water. The mixture of glass and 
water, however, shows strong dielectric dispersion below 1 
GHz. 

The origin of this dispersion, called the Maxwell- 
Wagner effect,‘2”3 is the difference in conductivity of the 
two (or more) components of the mixture. Charges build up 
at the boundary between the components. This charge 
buildup will tend to increase the polarization and decrease 
the conductance of the material. Because the charge buildup 
is not instantaneous, the effective dielectric constant and 
conductivity changes with frequency. For dispersion-free 
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components both E’ and a’ will have a constant high- 
frequency and a constant low-frequency level, corresponding 
to complete charge buildup (low frequency) and no charge 
buildup (high frequency). 

Theoretically it has been shown that the effective dielec- 
tric constant 4 of a two-component mixture can generally be 
written in the following spectral representation:14>15 

(2.2a) 
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where e1 = l i - i(ail~,o) and 4 = l 1 - i((+!J~~o) are the 
complex dielectric constants of the two components, and 
where F, and s, are the strengths and positions of abstract 
poles reflecting the dielectric effect of the microgeometry. 
Equation (2.2) applies directly to our model system of water- 
saturated porous glass if we, for instance, identify the dielec- 
tric constant of glass EG = &. (gG=O) with $, and the di- 
electric constant of water ew = l &, - ~(&E~w) with e2. In 
Ref. 4 one of us has shown that dispersion measurements can 
be used to extract the pole spectrum F, ,s, for the composite. 
While the spectral representation is an exact expression for 
4 its abstract pole spectrum has no direct interpretation in 
terms of geometric features of the pore space. 

On the other hand several approximate theories (or mix- 
ing formulas) for the dielectric constant of a binary mixture 
are based on simple geometric properties of the pore space 
(see Ref. 6 for a review). The most widely known are the 
Clausius-Mossotti (CM) approximation6V’6 and the sym- 
metrical effective medium theory17 (EMT). The CM approxi- 
mation is given as 

c-e2 
-==f1 

El - 4 

$+ 2$ El,+29 

and the EMT approximation as 

(2.3) 
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where e1 and e2 are the complex dielectric constants and fl 
and f2 are the volume fractions of the components 1 and 2. If 
as before one identifies component 2 with the the pore-water 
and component 1 with the rock matrix then f,=$ and 
f 1 = (1 - r$) where 4 is the bulk porosity. Note that contrary 
to EMT the CM equation is not invariant under interchange 
of ~~ and e2. 

In an attempt to improve the agreement of Eq. (2.5a) 
with the experimental results the DEMT has been extended 
by considering ellipsoidal inclusions instead of spherical 
ones. In that case Sen and co-workers give the equation7 

(5-d E2 L - - 
i i (E2-d 4 

=J (2Sb) 

for spheroids having depolarization factor L . Equation (2.5b) 
assumes identical orientation for all spheroidal grains. 

More recently Sen and co-workers have derived expres- 
sions based on a self-similar model of the pore space. Their 

If the ellipsoids are restricted to be spheroids of identical 
shape but with isotropically distributed orientations the ef- 

equation for 4 is identical to the so-called differential effec- 
tive medium theory (DEMT). It reads7 

fective dielectric constant e= is given as the solution of the 
following equation?*“’ 
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FIG. 1. Comparison of the simple approximations with the experimentally 
determined dielectric constant. The solid circles correspond to the experi- 
mental real part of the effective dielectric constant. The solid line corre- 
sponds to the CM approximation with water as matrix (component 2) and 
glass as the impurity (component 1) Eq. (2.3). The dashed line corresponds 
to the CM approximation with glass as matrix (component 2) and water as 
the impurity (component 1) Eq. (2.3). The dotted line corresponds to the 
symmetrical EMT approximation Eq. (2.4). The dotted-dashed line corre- 
sponds to the differential EMT Eq. (2.5a). The reduced frequency is the 
circular frequency of the electrical test signal divided by w,+, where wW 
= ok/,/( q&) and where u’ W, e,,, and e& are conductivity of water, vacuum 
permittivity, and real part of dielectric constant of water. 

((5,-q) 9 1’3 ~- = 
i 1 (ez--41) 4 

~ 
’ 

(2.5a) 

where e1 is the dielectric constant of rock (or glass), 9 is the 
complex dielectric constant of water, and 4 is the bulk po- 
rosity (volume fraction of component 2). 

In Fig. 1 the real part of the effective dielectric constant 
found from the simple mixing formulas Eqs. (2.3), (2.4), and 
(2Sa) are compared with the experimental results. Solid 
circles are experimental results for a water-filled specimen of 
sintered 0.25 mm glass spheres. The specimen porosity is 
10.7% and the water conductivity is 12.4 mS/m. It is obvious 
that these simple mixing laws are insufficient to describe the 
dielectric dispersion. 
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The depolarization factor L depends on the aspect ratio of 
the spheroids, and 4 is the bulk porosity of the specimen. L 
could be thought of as representing an abstract effective 
grain shape of the specimen and used as a free fitting param- 
eter. Equation (2.6) is referred to as the uniform spheroid 
model (USM) and Eq. (2Sb) is referred to as the Sen-Scala- 
Cohen (SSC) model. More sophisticated extensions of the 
DEMT, involving a distribution of depolarization factors, 
would introduce more fitting parameters. 

Recently a new approach to the calculation of effective 
transport quantities, LPT, has been proposed.8-” The LPT 
differs from previous theories mainly through its focus on a 
measurable geometric characterization of arbitrary porous 
media. The geometric characterization is not based on corre- 
lation functions but on local geometrical quantities such as 
local porosities 4. Within the LPT an arbitrary porous me- 
dium is quantitatively characterized through the local poros- 
ity distribution ~(4) and the local percolation probability* 
X(4)). The local porosity distribution ~(4) is defined as the 
probability density to find a porosity between 4 and c$+d4 
inside a local measurement cell. The local percolation prob- 
ability X(4) is defined as the fraction of measurement cells 
with local porosity 4 which are percolating. A local cell is 
said to be percolating if it contains a connection between two 
opposite faces. Geometric characterization through ~(4) and 
X(d) is different from more conventional correlation function 
approaches as was demonstrated recently.’ 

According to LPT the effective dielectric constant ~~(0) 
is given by the following equation: 

I o’ g;z;y;;;;j A( +I/4 +)d+ 
-I- I 

1 G?B(%4)--Jw) 
0 93B(W;4)+%?(W) C~-V+)IP(~)~+=O, 

(2.7) 

where IZ,-(o;& and e&w;+) are the dielectric constant of a 
conducting C and nonconducting (blocking, B) local geom- 
etry with porosity 4 at the circular frequency w. + and eB 
are functions of er, e2. 

III. EXPERIMENTAL PROCEDURE 

A. Specimen preparatlon and dielectric measurements 

Cylindrical slugs of roughly 35 mm in diameter and 70 
mm in length were prepared by sintering glass powder of 
spherical grains with a diameter of approximately 0.25 mm. 
The experimental specimens were taken from the most ho- 
mogeneous region of the raw slugs as determined by x-ray 
tomography. They were cut and ground into cylinders with 
diameter 25 mm and length approximately 10 mm. 

The dielectric dispersion is measured by placing the 
specimen into a parallel-plate capacitor. The admittance Y(o) 
of an ideal parallel-plate capacitor filled with the composite 
material under investigation is given by 

=io 
AgodO) 

h ’ (3.1) 

where A and h are plate area and plate separation of the 
capacitor plates, and G(o) and C(o) are the conductance and 
capacitance of the equivalent parallel circuit. The effective 
dielectric constant e:(o) and conductivity o:(w) are ob- 
tained from Eq. (3.1). A Hewlett-Packard 4192A low- 
frequency impedance analyzer is used to measure the admit- 
tance, and corrections are made for the parasitic capacitance. 
The full frequency range of the impedance analyzer, 5 
Hz-13 MHz, is used, but the real dielectric constant can only 
be found down to the frequency where the electrode polar- 
ization starts to influence the measured dielectric constant. 
Platinized stainless-steel electrodes are employed in order to 
decrease the contact impedance.” The influence of the elec- 
trodes is modeled as a series coupling of a resistance R, and 
a capacitance Cp . Assuming that C, is much larger than the 
capacitance of the specimen C,, that R, is small, and the 
frequency not too low, the measured capacitance C and con- 
ductance G are given by2t 

.=,,i l+ cs~;u~) and G=G,, (3.2) 

where G, is the conductance of the specimen. It should be 
noted that C, has a frequency dependence of its own given 
approximately by Fricke’s empirical law,22 Cp= o-~, where 
the exponent m depends on the electrode material. 

B. Image of pore structure 

Subsequent to the dielectric dispersion measurement, the 
10.7% porosity specimen was filled with epoxy under 
vacuum and its end surfaces were ground flat. Pictures of 
these surfaces, showing the pore space structure, were ob- 
tamed using a scanning electron microscope (SEM) at the 
lowest magnification (12 times). Each picture covered ap- 
proximately 4.2X4.2 mm2. Several pictures were taken to 
cover most of the specimen surface. 

The SEM pictures were digitized by scanning the film 
with a resolution of 1024 by 1024 pixels corresponding to 
4.1 pm/pixel. The digitized pictures were converted to black 
and white by choosing a grayness threshold for the pixels 
such that the porosity determined from the picture matched 
the measured porosity of the specimen. 

The raw SEM picture of the pore space of the 10.7% 
porosity specimen made of 0.25 mm grains is shown to- 
gether with the preprocessed digital image in Fig. 2. It is 
seen that the pore structure is relatively homogeneous on a 
large scale. The structure clearly has a typical length scale, 
namely the size of the spherical grains whose outlines may 
still be discerned. Note that the digitization acts as a high- 
frequency filter and has eliminated small scale details. 
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FIG. 2. SEM picture of pore space geometry. The pore space is indicated in black: (a) original SEM picture; (b) preprocessed picture where every pixel has 
been assigned to either pore space or matrix. 

IV. POROSITY DISTRIBUTION 

The local porosity distribution at length scale L, Pi, 
is calculated from the preprocessed binary image of the pore 
space structure as described below. The program for finding 
the porosity distribution was written in FORTRAN, and run on 
a 386-20 MHz PC. A digitized picture was read into a two- 
dimensional integer array where the pore space was repre- 
sented by 1 and the matrix by 0. The local porosity distribu- 
tion at length scale L was found by placing a square 
measurement cell of size L XL pixels on all possible pixel 
positions in the picture. The local porosity at one particular 
position is found by summing the pixel values inside the 
square and dividing by L2. The local porosities are collected 
into a histogram using periodic boundary conditions. Com- 
puting time was saved by adding only the new pixel values 
entering and subtracting the ones leaving the square each 
time it was moved. There will be L2+1 possible local po- 
rosities in the range from 0 up to 1, giving a resolution in 4 
of l/L 2. The experimental local porosity distribution function 
~~(4) is obtained from the raw histogram by binning to- 
gether porosities in suitably enlarged bins depending on L 
and then normalizing the distribution. In Fig. 3 the experi- 
mental local porosity distribution ~~(4) is shown for differ- 
ent L values. 

The two-dimensional porosity distribution found in this 
way is believed to be a good approximation for the three- 
dimensional one. The two-dimensional distribution at resolu- 
tion L, corresponds to the three-dimensional distribution at 
resolution L, . The relationship between L 2 and L3 is given 
approximately by L2/5=K(L3/5)3/2, where the length 5 is 
the typical length of the pore structure (discussed below) and 
the numerical constant K is close to l.= As the length scale 
does not enter the calculation of E(o) it can be used to fix L 
as suggested in Ref. 9. Here we do not follow this suggestion 
but instead fix L from geometric observations.’ 
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In order to find the typical length 5 of the pore structure 
we used the two-cell porosity distribution’ h(+1 ,&.$;L) 
with cells of size L =l. h(&,&z;R) is the probability of 
finding porosity +1 in cell 1 and at the same time porosity & 
in cell 2 at distance R from cell 1. Note that & and & can 
only have values zero or one as they correspond to a single 
pixel. 

The pixel-pixel porosity autocorrelation function’ C(R), 
is defined via the two-cell porosity distribution by 

C(R) = 
C~1=o~~~=o(~l-cb)(~2-~)~2(~1,~2;R) 

&l-J4 
7 

(4.1) 
where 4 is the bulk porosity, (61 is porosity in cell 1, and 4 
is the porosity in cell 2. The direct calculation of C(R) from 
Eq. (4.1) is very time consuming. Therefore, a Fourier trans- 
form method was used. From the fast-Fourier-transformed 

.-.-.-.- L I 40 pixels 
- L = 50 pixels 
---- L=Klpixels 
. . . . . . . . . . L = 80 pixels 

Local Porosity 

FIG. 3. The local porosity distribution function ~~(4) are shown for differ- 
ent values of the length L of the measurement cell. 
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FIG. 4. The pixel-pixel porosity autocorrelation function C(R) for the im- FIG. 5. Entropy function S(L) as a function of the linear size in pixels of 
age in Fig. 2(b) as a function of distance in pixels. the measurement cell. 

picture the power spectrum averaged over all angles was 
found. The porosity autocorrelation function was then ob- 
tained by Fourier inversion. We have checked that our results 
agree with direct calculations of &+r,&R) for small R. 
The porosity autocorrelation function is shown in Fig. 4. 

Several methods can be used to define the correlation 
length t. A simple method is to choose 5 to be twice the 
distance R * corresponding to the first minimum of C(R). R* 
is then a typical distance of anticorrelation, and 6 the diam- 
eter of a sphere with radius R*. Using this method 5 was 
found to be about 50 pixels (R*=25 pixels). Another proce- 
dure which is applicable when C(R) does not have a mini- 
mum is to use the value R* at which C(R) has dropped to 
l/e. In the calculation of the dielectric response from the 
local porosity theory the value 6=50 pixels was used. 

An alternative method to find a typical length scale is to 
find the box size L so that the porosity distribution ~~(4) 
contains the maximum information about the pore structure.9 
In analogy to entropy one can define a function S(L) by 

S(L)= 6/L~(4)ln[tLL(4)1~4. I (4.2) 

The value L * corresponding to the minimum of S(L) is then 
the box size that will give the maximum information content 
in the porosity distribution. From the “entropy” function, 
S(L) shown in Fig. 5, L * is found to be 40 pixels. 

V. CALCULATION OF THE DIELECTRIC CONSTANT 
USING LPT 

In order to calculate the dielectric constant within LPT 
one needs to know not only the local porosity distribution as 
described above. In addition one also needs the probability 
that local geometries are percolating. This local percolation 
probability function X(4) can in principle be found from a 
three-dimensional pore-space reconstruction. In this study 
we have instead tried to determine X(4) indirectly by requir- 
ing that the calculated dielectric constant gives a good fit to 
the experimentally observed dielectric constant. 

LPT divides the local geometries into two categories, 
percolating and nonpercolating. The percolating local geom- 
etries are modeled by a sphere of isolating material covered 

2.4 

g 2.2 
3 ” 2 2. 
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8 1.6. 
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10 20 30 40 50 60 70 80 

with a spherical shell of conducting material, while the non- 
percolating local geometries are modeled by a sphere of con- 
ducting material covered with a spherical shell of isolating 
material. This simplification follows from the general as- 
sumption of local simplicity* underlying every effective me- 
dium approach. The fact that the expression used for the 
blocking geometry indicates isolated pore space does not im- 
ply a specific geometric model, because it represent also the 
accessible (but not percolating) local geometries. The expres- 
sions for the effective dielectric constant of the local geom- 
etry used in the calculations were 

c2c(~;~)=ev(o) l- 
i 

l-4 
{l-[~~C(0)I~W(O)l}-l-f~ 1 

, 

(5.la) 

dw 4) 

l 
4 

=eGG(o) l-{l-[(FW(W)/eYG(W)]}-t-f(l-+) . 1 
(5.lb) 

Here ec is the dielectric constant of the percolating (conduct- 
ing) geometry and ez the dielectric constant of the nonper- 
colating (blocking) geometry. The frequency dependence en- 
ters through the dielectric constant of water e&o) 
=E&- i( u~/E~w). The dielectric constant of glass co(o) 
=E; is real and independent of frequency. 

When the local porosity distribution and the local perco- 
lation probability are known the effective dielectric constant 
~~(0) can be found by solving Eq. (2.7) numerically. The 
equation has to be solved for each frequency separately, and 
we chose to solve for the frequencies corresponding to our 
dielectric measurements. The method used to find the roots 
of Eq. (2.7) is a fixed-point iteration technic. Because it is 
easier to find a good initial approximation for high frequen- 
cies we start at the high-frequency end, and work our way 
toward lower frequencies. For the two highest frequencies a 
simple weighted average of EG and e, is used as the initial 
value for ee. For consecutively lower frequencies the initial 
4 is found by extrapolating from the final result for the two 
closest frequencies above. 
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FIG. 6. Experimental and theoretical curves for the dielectric dispersion. 
The solid circles correspond to the experimental real part of the effective 
dielectric constant, and the open circles correspond to the experimental in- 
verse formation factor (that is, the effective conductivity relative to the 
water conductivity). The dotted line corresponds to the dielectric dispersion 
calculated theoretically when a piecewise linear function with one break 
point is used for A(@. The solid line corresponds to a calculation using 
A(c$)=c#J~, and the dashed line corresponds to one with h(~$)=@‘+~~). See 
Table I for values of the fitting parameters. For the definition of reduced 
frequency, see Fig. 1. 

The above procedure for finding the dielectric constant 
requires that the functions ~(4) and X(4) are known. The 
percolation probability function X($) is, however, not known 
experimentally. Therefore, we tried to find shapes for X(4) 
that gave good fits to the dielectric measurements. The fits 
are obtained by minimizing the sum of the relative squared 
differences between the experimental values and the (h- 
dependent) theoretical values of the real and imaginary part 
of the dielectric constant. The minimization was done on a 
mainframe (ND 5000) computer using the program MINUIT,~~ 
available from the Centre d’Etudes Recherches Nucleaires 
(CERN) library. 

The first form for h(4) was a piecewise linear function 
with X(O)=0 and h(l)= 1. The coordinates of the break 
points of the functions were used as fitting parameters. Sec- 
ond, we used an algebraic function 

Local Porosity 
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FIG. 7. Local porosity distribution and local percolation probability. The 
solid circles with soIid lines through them correspond to the porosity distri- 
bution function P~(c#J), with L =50 pixels, used in the calculation of the 
theoretical curves shown in Fig. 6. The three different percolation probabil- 
ity functions X(d) used to obtain the theoretical curves are shown with line 
styles corresponding to those in Fig. 6. 

tivity relative to the conductivity of the salt water ai/& 
(that is the inverse formation factor) is plotted as a function 
of the same reduced frequency. For this measurement 
ww/(27r)=2.82 MHz (cr;i = 12.4 mS/m). 

One can see that both the dielectric constant and the 
conductivity level off at low frequencies. At the intermediate 
frequencies there is a transition over to the high-frequency 
levels. The highest measurement frequency 13 MHz is 
slightly too low to clearly reach the high-frequency plateaux. 

Figure 6 also shows the theoretical curves found from 
Eq. (2.7). The local porosity distribution ~(4) and the local 
percolation probabilities X(4) used as input to the theoretical 
expressions are shown in Fig. 7. The overall fit is good al- 
though some discrepancies are seen especially at the high- 
frequency end of the conductivity curve, where the experi- 
mental data however are less reliable. Note that the three 
different choices of the X function (see Fig. 6) give very 
similar fits. The values of the fitting parameters are given in 
Table I. 

(5.2) In order not to impose any particular shape on the X(4) 

with y as the fitting parameter. We also tried the form 
X(4)= @‘(’ +‘#) with y and C as fitting parameters. The last 
form is a rather crude attempt to introduce an exponent that 

function we first tried to fit with a piecewise linear function 
for A. Surprisingly no significant improvement in the fit was 
obtained by using more than one break point. The shape of 

varies with the local porosity. 

VI. COMPARISON BETWEEN THEORIES AND 
EXPERIMENTS 

The theoretical expressions from the CM Eq. (2.3), EMT 
Eq. (2.4), and DEMT Eq. (2.5a) approximations do not con- 
tain adjustable parameters, and were found above to give too 
small dielectric enhancement. Therefore, further comparison 
between theory and experiment will be restricted to the one- 
parameter SSC model Eq. (2.5b), the USM Eq. (2.6), and 
LPT Eq. (2.7). The experimentally measured dielectric dis- 
persion curves for the 10.7% porosity specimen, for which 
the pore structure is seen iu Fig. 2, are shown as open and 
solid circles in Fig. 6. The real part of the dielectric constant 
l : is plotted as a function of the reduced frequency variable 
o,= wlww, where ww = &( EKES). The effective conduc- 

TABLE I. The table gives the three different percolation probability func- 
tions found from comparing experiments with theory (see Figs. 6 and 7). In 
the first column the functional form of A(& is given. The second column 
gives the values of the free parameters corresponding to the best fit. The last 
column gives the value of the parameter p = J$.L( &)A( +)d+. 

Parameters P 

A(&)= q&,=0.0363 
X,*=0.6155 p=O.589 

y;o.2035 p=o.594 

y=O.1524 
C=3.06 p=O.607 
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the piecewise linear function (see Fig. 7) suggests to use also 
an algebraic form X( 4) = +7, where y is the fitting parameter. 
Such a choice for X is also suggested theoretically by the 
central-pore model8 for the local geometry; however, the 
value of ~0.2 found from the data fit is outside the range 
predicted by the central-pore model.= The best fit to the data 
was obtained with X(+)=~y(‘+cQ). Note that the improve- 
ment over other fits is very small. 

The fact that the three different forms of X(4) give more 
or less the same dielectric function shows that the local po- 
rosity distribution ~(4) by itself imposes strong restrictions 
on the possible dielectric dispersion. 

One of the most important aspects of the local percola- 
tion probability function A(+) is to give the correct value for 
low-frequency conductivity (or formation factor). The low- 
frequency conductivity is strongly coupled to the parameter 
p defined in the LPT8 by 

P= o*lr(+)h(6)d4. 
I 

This parameter gives the fraction of percolating local geom- 
etries in the specimen. For the different choices of h(4) its 
value is found to be restricted to a very narrow range around 
0.60 (see Table I for values found for p) in agreement with 
other independent measurements.26 

The discrepancies between the calculated and the experi- 
mental curves can in principle be caused both by experimen- 
tal error or by shortcomings of the theory. After measuring 
on known impedances (parallel couplings of a resistor with a 
capacitor), the experimental uncertainty due to the measure- 
ment instrument are seen to be smaller than the difference 
between the theoretical and experimental results. Discrepan- 
cies could, however, also be caused by a gradient in the 
water conductivity (as the water conductivity was found to 
show a small drift). In fact all imperfections would tend to 
increase the complexity of the system and therefore result in 
a larger dispersion and a wider frequency range of the dis- 
persion. 

Finally, the results of the LPT are compared to those of 
the SSC model and the USM. SSC and USM both contain 
the adjustable parameter L, the depolarization factor. For the 
local porosity theory the free parameter is the exponent y in 
the algebraic X function. Therefore, all three theoretical ex- 
pressions contain exactly one free-fitting parameter. In Fig. 8 
we display the experimental data together with the three 
theoretical fits. The LPT is seen to represent a significant 
improvement over both USM and the SSC model. 

VII. CONCLUSION 

Local porosity distributions and local percolation prob- 
abilities, as introduced in the LPT, have been used to calcu- 
late the frequency-dependent complex effective dielectric 
constant of a porous medium, and the results have been com- 
pared with the experimentally determined dielectric constant 
of the same medium. 

The local porosity distribution has been determined ex- 
perimentally from a digitized picture of a cross section 
through the pore space. The local percolation probability has 

-1.35 

-1.4 

-1.45 

-1.5 

-1.55 

-1.6 

Log10 &I 

FIG. 8. Comparison between LPT and the two DEMT spheroid models 
(USM and SSC). The solid circles corresponds to the experimental real part 
of the effective dielectric constant, and the open circles give the experimen- 
tal inverse formation factor (that is, the effective conductivity relative to the 
water conductivity). The solid line corresponds to the dielectric dispersion 
calculated from the LPT for the best fit with X(4)=#7, ~0.2035. The 
dashed line corresponds to the dielectric dispersion calculated from the 
USM approximation Eq. (2.6) using the best-fit value L =0.597 (correspond- 
ing to an aspect ratio of 2.58 for the oblate spheroids). The dotted line 
corresponds to the SSC model Eq. (2.6) using the best-fit value L=O.387 
(aspect ratio 1.22). For the definition of reduced frequency see Fig. 1. 

been used to fit the experimental data. A good fit to experi- 
mental data is obtained for all choices of local percolation 
probabilities employed in the study. 

LPT was found to be a significant improvement over 
existing theoretical calculations of the frequency-dependent 
dielectric response of porous media. This investigation rep- 
resents the first experimental test of the local porosity theory. 
Further experimental verification of the theory is, of course, 
necessary and in progressz6 to establish its potential as a 
general approach to predict the dielectric response of a po- 
rous medium. In particular a direct determination of the local 
percolation probability would allow a parameter-free com- 
parison between theory and experiment. 
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