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This paper introduces a domain decomposition method for numerically solving the Stokes 
equation for very large, complex geometries. Examples arise from realistic porous media. 
The computational method is based on the SIMPLE (Semi-Implicit Method for Pressure 
Linked Equations) algorithm which uses a finite-differences approach for discretizing the 
underlying equations. It achieves comparable speed and efficiency as lattice Boltzmann 
methods. The domain decomposition method splits a large three-dimensional region into 
slices that can be processed in parallel on multi-processor computation environments with 
only minimal communication between the computation nodes. With this method, the flow 
through a porous medium with grid sizes up to 20483 voxel has been calculated.

© 2014 Published by Elsevier Inc.

1. Introduction

Although many algorithms and methods exist to solve the Stokes equation for creeping flow through porous media only 
few of these can be used for large systems such as computer tomograms representing three-dimensional complex geometries 
with 2048 × 2048 × 2048 discrete volume elements (voxel) arranged on a cubic grid. Such large three-dimensional images 
are routinely generated by synchrotron or other imaging devices. Recently, three-dimensional images as large as 32 768 ×
32 768 × 32 768 voxel have become available to the scientific community [1]. Finite difference approximations of Stokes 
equations for these large geometries result in linear systems with 1010–1013 degrees of freedom. Because of these very 
large numbers of unknowns a method that does not require the system matrix is needed. In this paper, a pressure correction 
algorithm on a staggered grid [2,3], [4, pp. 179–187, 209–218], [5, pp. 96–98, 109–122], [6,7] is used, which is based on the 
SIMPLE algorithm [8,9].

Depending on the system size, the numerical solution of a large system with 20483 voxel cannot be computed on single-
processor computers because of the huge memory requirements and computational effort. Instead it has to be distributed 
on many cores of a multi-processor computation environment. To benefit from all advantages of such an environment and 
to achieve an acceptable performance, an efficient domain decomposition method for this distribution is necessary.

The new domain decomposition method presented in this paper realizes an efficient parallelization with only non-
blocking communication between the computation nodes. It was developed for the Stokes systems following ideas in [10,
11] and then optimized to have the lowest possible memory requirement. With this algorithm, we are indeed able to 
numerically solve problems with system sizes up to 40963 = 68 719 476 736 voxel. Here we present results for 20483 =
8 589 934 592 voxel. To our knowledge this is the largest such computation at present.
http://dx.doi.org/10.1016/j.jcp.2014.08.032
0021-9991/© 2014 Published by Elsevier Inc.
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2. Definition of the problem

2.1. Continuum formulation

Consider a three-dimensional porous sample shaped as a cube with side length L (0 < L < ∞)

S = {
(x, y, z) ∈R

3 : 0 ≤ x ≤ L, 0 ≤ y ≤ L, 0 ≤ z ≤ L
}

(1)

as a subset S ⊂ R
3. The sample contains two closed subsets P, M, the pore space P ⊂ S and the matrix (rock) phase M ⊂ S

such that S = M ∪ P. It is assumed that both sets are path-connected. The two closed sets have the common boundary1

∂P = ∂M = P ∩M. The boundary of the sample is denoted by

∂S= ∂Sx,0 ∪ ∂Sx,L ∪ ∂Sy,0 ∪ ∂Sy,L ∪ ∂Sz,0 ∪ ∂Sz,L (2)

with

∂Sx,0 = {
(x, y, z) ∈ S : x = 0

}
(3a)

∂Sx,L = {
(x, y, z) ∈ S : x = L

}
(3b)

∂Sy,0 = {
(x, y, z) ∈ S : y = 0

}
(3c)

∂Sy,L = {
(x, y, z) ∈ S : y = L

}
(3d)

∂Sz,0 = {
(x, y, z) ∈ S : z = 0

}
(3e)

∂Sz,L = {
(x, y, z) ∈ S : z = L

}
. (3f)

Applying a small pressure gradient across a fluid filled sample S induces slow laminar flow through the pore space P. 
In the long-time limit the flow becomes stationary. If the fluid is incompressible the resulting stationary and laminar flow 
field is also solenoidal and governed by the three-dimensional time-independent Stokes equation with no-slip boundary 
conditions

−�∇p(�x) + ��v(�x) = �0, �x ∈ P (4a)

�∇ · �v(�x) = 0, �x ∈ P (4b)

�v(�x) = �0, �x ∈ ∂P (4c)

where p(�x) is the dimensionless pressure field and �v(�x) the dimensionless velocity field. If applied body forces, sources, 
sinks or more general boundary conditions with slip are allowed the inhomogeneous Stokes problem would result where 
the right hand sides of Eqs. (4) would be nonzero.

For the calculations in this paper the stationary Stokes equations (4) have been made nondimensional in such a way 
that the gradient term and the Laplacian term in Eq. (4a) are of equal magnitude. There are several ways to do this. One 
method, used here, is to employ the macroscopic side length L in the gradient term, a typical microscopic “pore size” in the 
Laplacian term and to choose the units for velocity as (P/L)(�2/μ), where P is the pressure drop across the sample and μ
is the dynamic viscosity of the fluid.2 This choice leads to Eq. (4a)

The boundary conditions on the six sides of the sample

p(�x) = p0, �x ∈ ∂Sz,0 (5a)

p(�x) = pL, �x ∈ ∂Sz,L (5b)

�v(�x) = �0, �x ∈ ∂Si, j, i = x, y, j = 0, L (5c)

correspond to an applied pressure drop of magnitude |p0 − pL |/L in the z-direction driving the flow. There are closed 
impermeable walls on the four remaining faces, represented as no-flow conditions in Eq. (5c). The pressures p0, pL at the 
inlet and outlet are constant across the face.

The mathematical problem consists in finding solutions of these equations in a suitable space of functions. For the 
pressure field this is the Lebesgue space L2(P) of real valued square integrable functions on P. For the velocity field it is the 
space [H1(P)]3 where H1(P) is the space of square integrable functions on P whose gradients are also square integrable. 
If the boundary ∂P is sufficiently smooth (e.g. a C2-manifold) then existence and uniqueness of solutions follows from the 
variational formulation of the problem using the Lax–Milgram theorem [12].

1 The boundary of a set is defined as the difference between its closure and its interior, the closure being the intersection of all closed sets containing 
the set, the interior being the union of all open sets contained in the set.

2 For rock samples of L = 10 cm size with pore sizes around � = 10−5 m the flow of water with μ = 10−3 Pa s under a pressure gradient of 1000 Pa will 
result in velocities measured as multiples of 10−3 m s−1. For field scale simulations with grid blocks of size L = 100 m the same pressure gradient results 
in velocities of order 10−6 m s−1.
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Fig. 1. One cell of the cubic lattice with lattice constant h illustrating the staggered arrangement of pressure and velocity. The pressure p is defined in the 
center of the cell at the position �x. The components of the velocity vi are defined on their corresponding cell faces at the positions �x + h

2 · �ei .

2.2. Discretization

The boundary value problem (4), (5) is discretized using finite differences and a three-dimensional cubic lattice with 
lattice spacing h. The cubic voxel V(k, l, m) are numbered by the integers (k, l, m) ∈ Z

3 with 1 ≤ k, l, m ≤ N according to 
their position in the three-dimensional grid. The discretized pore space geometry is represented by a binary pore space 
indicator such that

χ(k, l,m) =
{

1, |V(k, l,m) ∩ P| > αh3

0, otherwise
(6)

whenever the pore space volume inside a voxel |V(k, l, m) ∩ P| exceeds αh3 where 0 ≤ α ≤ 1 is a threshold value. The 
notation |G| = ∫

G
d3x denotes the volume of a set G ⊂ R

3. The threshold α = 0 approximates the pore space volume from 
above, while α = 1 approximates from below. In practice α is chosen using a segmentation algorithm that ensures a good 
approximation of the original and the discretized geometry according to one or several criteria. Here and in the following 
we assume the discretization χ(k, l, m) to be given.

The center of the voxel V(k, l, m) has the position vector

�x(k, l,m) =
(

k − 1

2

)
h · �ex +

(
l − 1

2

)
h · �e y +

(
m − 1

2

)
h · �ez (7)

where the unit vectors �ex , �e y and �ez form the standard orthonormal basis in R3. The unknown pressure p and velocity 
fields vi are then discretized in a staggered arrangement as

p(k, l,m) = p
(�x(k, l,m)

)
(8)

vi(k, l,m) = vi

(
�x(k, l,m) + h

2
· �ei

)
, i = x, y, z (9)

where by an abuse of notation we use the same symbol for the discretized and continuous fields. The staggered arrangement 
of the discretized fields is illustrated in Fig. 1.

The differential expressions �∇ p and ��v and �∇ · �v are discretized in their lowest-order symmetrical form. Thus

( �∇p)x(k, l,m) = p(k + 1, l,m) − p(k, l,m) (10)

where for the y- resp. z-components k + 1 becomes k and l resp. m become l + 1 resp. m + 1. The discretized Laplacian 
applied to vx reads

(�vx)(k, l,m) = −6vx(k, l,m) + vx(k + 1, l,m) + vx(k − 1, l,m)

+ vx(k, l + 1,m) + vx(k, l − 1,m)

+ vx(k, l,m + 1) + vx(k, l,m − 1) (11)

and analogously for y- and z-components. The divergence becomes

( �∇ · �v)(k, l,m) = vx(k, l,m) − vx(k − 1, l,m)

+ v y(k, l,m) − v y(k, l − 1,m)

+ vz(k, l,m) − vz(k, l,m − 1). (12)

With this discretization, Eqs. (4a) and (4b) read

−( �∇p)i(k, l,m) + (�vi)(k, l,m) = 0, i = x, y, z (13a)

( �∇ · �v)(k, l,m) = 0. (13b)
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These are four equations per voxel for four unknowns per voxel, resulting in a linear system with 4N3 unknowns and the 
same number of equations. In the following when we refer to a “solution” or speak of “solving” the equations this means 
finding the unknowns p(k, l, m), vi(k, l, m) with i = x, y, z for all voxel V(k, l, m).

The boundary conditions are implemented by introducing impermeable walls V(0, l, m), V(N + 1, l, m) in the x-direction 
at k = 0, k = N + 1 with 0 ≤ l, m ≤ N + 1, impermeable walls V(k, 0, m), V(k, N + 1, m) in the y-direction at l = 0, l = N + 1
with 0 ≤ k, m ≤ N + 1 and fully permeable walls V(k, l, 0), V(k, l, N + 1), called “inlet” and “outlet” planes, at m = 0, m =
N + 1 with 1 ≤ k, l ≤ N in the z-direction by setting

χ(0, l,m) = 0, 0 ≤ l,m ≤ N + 1 (14a)

χ(N + 1, l,m) = 0, 0 ≤ l,m ≤ N + 1 (14b)

χ(k,0,m) = 0, 0 ≤ k,m ≤ N + 1 (14c)

χ(k, N + 1,m) = 0, 0 ≤ k,m ≤ N + 1 (14d)

χ(k, l,0) = 1, 1 ≤ k, l ≤ N (14e)

χ(k, l, N + 1) = 1, 1 ≤ k, l ≤ N. (14f)

With these specifications, the no-flow and no-slip boundary conditions (4c) and (5c) for the velocity field are imple-
mented by setting

vx(k, l,m) = 0
v y(k + 1, l,m) = −v y(k, l,m)

vz(k + 1, l,m) = −vz(k, l,m)

⎫⎬
⎭ if

{
χ(k, l,m) = 1
and
χ(k + 1, l,m) = 0,

(15a)

vx(k, l,m) = 0
v y(k, l,m) = −v y(k + 1, l,m)

vz(k, l,m) = −vz(k + 1, l,m)

⎫⎬
⎭ if

{
χ(k, l,m) = 0
and
χ(k + 1, l,m) = 1,

(15b)

vx(k, l + 1,m) = −vx(k, l,m)

v y(k, l,m) = 0
vz(k, l + 1,m) = −vz(k, l,m)

⎫⎬
⎭ if

{
χ(k, l,m) = 1
and
χ(k, l + 1,m) = 0,

(15c)

vx(k, l,m) = −vx(k, l + 1,m)

v y(k, l,m) = 0
vz(k, l,m) = −vz(k, l + 1,m)

⎫⎬
⎭ if

{
χ(k, l,m) = 0
and
χ(k, l + 1,m) = 1,

(15d)

vx(k, l,m + 1) = −vx(k, l,m)

v y(k, l,m + 1) = −v y(k, l,m)

vz(k, l,m) = 0

⎫⎬
⎭ if

{
χ(k, l,m) = 1
and
χ(k, l,m + 1) = 0

(15e)

vx(k, l,m) = −vx(k, l,m + 1)

v y(k, l,m) = −v y(k, l,m + 1)

vz(k, l,m) = 0

⎫⎬
⎭ if

{
χ(k, l,m) = 0
and
χ(k, l,m + 1) = 1

(15f)

The pressure boundary conditions (5a), (5b) are implemented by enforcing (1 ≤ k, l ≤ N)

p(k, l,0) = 2p0 − p(k, l,1) (16a)

p(k, l, N + 1) = 2pL − p(k, l, N) (16b)

in the inlet and outlet planes. These conditions are enforced for each step throughout the iterative algorithm described in 
the next section and they ensure that the pressure is constant at the boundaries ∂Sz,0 and ∂Sz,L .

3. Method of solution

3.1. Iterative numerical solution (SIMPLE algorithm)

The discretized equations (13)–(16) are solved numerically using a pressure-correction method based on the so called 
Semi-Implicit Method for Pressure Linked Equations (SIMPLE) [9]. The iterative SIMPLE algorithm for incompressible fluids 
effectively replaces Eq. (4a) with the time-dependent Stokes equation. With the choice of units in (4) the dimensions are 
fixed and the dimensionless form of the time-dependent Stokes equation reads

ρ�3 P
2

∂ �v(�x, t) = −�∇p(�x, t) + ��v(�x, t), (17)

μ L ∂t
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where ρ is the density of the fluid.3 The dimensionless number ρ�3 P
μ2 L

≈ 10−2 rescales the dimensionless time which is 
measured in units of L/V where V is the typical velocity (see footnote 2). In the SIMPLE algorithm this rescaling factor is 
set to unity. The time evolution of the solution p(�x, t), �v(�x, t) converges towards the stationary solutions p(�x), �v(�x) in the 
limit of large times.

The solution algorithm consists of the following schematic steps:

1. Initialize (at step n = 0) the pressure and velocity fields as p0(k, l, m) and �v0(k, l, m) for all voxel as detailed (in Sec-
tion 4) below.

2. Given the velocity �vn and pressure pn (at step n), calculate an intermediate velocity �v∗ according to

�v∗ = �vn + δt · (−�∇pn + ��vn) (18)

for a sufficiently small time interval δt . Calculate an error indicator

εv∗ =
√ ∑

i=x,y,z

∥∥v∗
i − vn

i

∥∥2
. (19)

3. Given �v∗ , solve the Poisson equation (also called pressure-correction equation) for the correction field p′

�p′ = 1

δt
�∇ · �v∗ (20)

up to a certain accuracy εSOR ≤ βεv∗ with β an empirically determined parameter and εSOR the error given by the 
PSOR-algorithm employed to solve this equation (see below).

4. Update the pressure and velocities to the timestep n + 1 according to

pn+1 = pn + αp · p′ (21a)

�vn+1 = �v∗ − αv · δt �∇p′ (21b)

with underrelaxation factors for pressure αp and velocity αv .
5. Calculate suitable “error” resp. convergence measures

εp = ∥∥pn+1 − pn
∥∥ (22a)

εv =
√ ∑

i=x,y,z

∥∥vn+1
i − vn

i

∥∥2
(22b)

for the deviation of the unknown fields from the n → ∞ limit.
6. If both errors εp, εv < η are below a given level of tolerance η, then stop the iteration, else continue and go to step 2 

above.

The underrelaxation factors αp, αv for pressure and velocity in Eqs. (21) are empirically determined beforehand. They 
are kept constant for all system sizes and geometries.

Steps 2–6 of the algorithm are iterated until the difference between consecutive steps (here called “error”) falls below a 
certain threshold or level of tolerance, i.e. until the stationary solution is approached sufficiently accurately. The timestep δt
cannot be chosen arbitrarily large. In [5] it was shown that for reasons of stability δt ≤ 1/6 must hold, because the scheme 
is only semi-implicit but not fully implicit. It was found here that the theoretical restriction δt ≤ 1

6 can be loosened slightly 
because of the smoothing character of the SOR algorithm. A value of δt = 0.19 was found to give convergence and the 
fastest convergence rate.

Most of the computation time is spent on the solution of the pressure-correction equation (20). Therefore, it is im-
portant to choose an algorithm that performs well for this task. Here, an adapted (3D) version of the Parallel Successive 
Overrelaxation (PSOR, see [10,11]) algorithm is used, because it has the least memory requirements, a good convergence 
rate and shows the most efficient parallelization. It is superior to gradient methods because of the lack of efficient parallel 
preconditioners for gradient methods. To achieve good performance with the SOR algorithm, the asymptotically optimal 
overrelaxation factor has to be determined [13,14] as described in Section 4. For additional performance gain, the overre-
laxation factor is Chebyshev accelerated [15].

There exist several well-known improvements over the original SIMPLE algorithm such as the SIMPLER algorithm [16–18]
and other variations [19–22]. These variations have been tested in this work, but were found to be less efficient than the 
original algorithm when combined with our domain decomposition method discussed next. This is due to the fact that 

3 For water (ρ = 1000 kg m−3) the dimensionless number is ρ�3 P
μ2 L

≈ 10−2 (or 10−5 for field scale) if the same values as in footnote 2 are used for the 
other parameters. The typical time scale for lab scale flows is L/V ≈ 10−1/10−3 = 102 s (resp. 102/10−6 = 108 s for flows on the field scale).
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Fig. 2. Decomposition of a cubic domain with 83 grid cells on 4 nodes. Each slice with 8 ∗ 8 ∗ 2 cells is assigned to one computation node.

they require either additional temporary variables or additional computation steps thereby reducing the parallel efficiency 
of these more advanced methods.

Other applications of similar algorithms for similar problems can be found in [23,24]. Alternative methods for solving 
the Stokes equation or equivalent equations are for example the Lattice–Boltzmann method [6,25,26] or other particle-based 
methods [27].

3.2. Domain decomposition

Let Π denote the number of available nodes, each node containing Ξ processors which can access the shared memory 
efficiently, and choose N such that

M = N

Π
(23)

is an even number. The sample S is decomposed along the z-axis into Π slices (or layers)

Ap =
k=N+1⋃

k=0

l=N+1⋃
l=0

pM⋃
m=(p−1)M+1

V(k, l,m) (24)

with p = 1, ..., Π the number (“rank”) of the node. These slices then have a size of M(N + 2)2 voxel. Each slice is assigned 
to one computation node. The communication between the nodes is implemented via the Message Passing Interface (MPI) 
(Fig. 2).

The slice Ap on computation node p with p = 1, ..., Π is decomposed into M planes

Bpq =
k=N+1⋃

k=0

l=N+1⋃
l=0

V
(
k, l, (p − 1)M + q

)
(25)

with q = 1, ..., M . The size of each plane is (N + 2)2 voxel. On each node, one ghost plane above (except for the uppermost 
slice) and one below (except for the lowermost slice) are added for parallelization. These ghost planes contain the data of 
the last plane of the node above and the data of the first plane of the node below, respectively.

Each plane Bpq is decomposed into N + 2 lines

Cpqr =
k=N+1⋃

k=0

V
(
k, r, (p − 1)M + q

)
(26)

with r = 0, ..., N + 1. The size of each line is N + 2 voxel.
Because the discretized Laplacian involves only next neighbor voxel (as seen in Eq. (11)), the decomposition into layers, 

planes and lines allows an efficient twofold parallelization as discussed in the next section. The layers will be solved in 
parallel on computer nodes containing several processors which in turn allow to treat planes and lines in parallel.

4. Program description

Fig. 3 shows the systematic program flow with the SIMPLE algorithm and the communication with MPI between the 
nodes.

The program is started with an MPI command that spawns one instance of the program on each computation node p. 
Each instance computes its computation region Ap based on its rank p in the parallel environment and the total number of 



976 A. Lemmer, R. Hilfer / Journal of Computational Physics 281 (2015) 970–981
Fig. 3. Program description shown for the computation on nodes p and p + 1. One instance of the program is started on each computation node. The 
communication between the nodes via MPI is shown as dashed arrows.

nodes Π according to Eq. (24). It loads its geometry from a binary file. One plane below Bp 0 and one plane above Bp M+1
are added on each node that represent the ghost planes and the inlet and outlet planes.

After this is done, the optimal relaxation parameter is determined. This is done here by computing the spectral radius of 
the system matrix which highly depends on the underlying geometry of P. The spectral radius is estimated by solving the 
Laplace equation

�p′(k, l,m) = 0 (27)

with the initial condition

p′(k, l,m) = 1050 for 1 ≤ k, l,m ≤ N and χ(k, l,m) = 1 (28)

and the boundary conditions

p′(k, l,0) = 0, 1 ≤ k, l ≤ N (29a)

p′(k, l, N) = 0, 1 ≤ k, l ≤ N (29b)

with the same SOR algorithm and the same parallelization as used for the pressure correction equation that is described 
below, using an arbitrary overrelaxation parameter ω. The value of p′ decreases rapidly during the iterative estimation of 
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the optimal relaxation factor and should ideally be renormalized after each step. Here we have avoided this renormalizing 
of p′ by choosing a sufficiently high initial value such that there is no danger of numerical underflows. Because the exact 
solution is known to be zero on all grid cells, the error after each iterative step can be given exactly as ‖p′‖. This allows a 
precise specification of the error evolution from which follows the spectral radius ρ . After determining the spectral radius, 
the optimal overrelaxation factor is given by the equation

ωopt = 2

1 + √
1 − ρ2

(30)

(see [13,14]).
Because the asymptotically optimal overrelaxation factor is not a good choice in the beginning of this SOR algorithm, 

the algorithm is started with a different (lower) factor and then is Chebyshev accelerated [15] towards the asymptotically 
optimal factor. A starting parameter of ω0 = 2(ωopt − 1) has been found empirically as a good value.

In the beginning of the computation, the pressure field p is initialized with a linear pressure gradient along the z-axis

p(k, l,m) = 2m − 1

2N
, χ(k, l,m) = 1 (31a)

p(k, l,m) = 0, χ(k, l,m) = 0 (31b)

that corresponds to the choices p0 = 0 in Eq. (5a) and pL = 1 in Eq. (5b). The velocity fields vx, v y, vz are initialized to 0 
on all cell faces:

vx(k, l,m) = v y(k, l,m) = vz(k, l,m) = 0 (32)

After these preparations the main loop of the SIMPLE algorithm starts. The solution of the pressure-correction equation 
(20) is the most time-consuming part of the SIMPLE algorithm. Its efficient parallelization is achieved by processing the 
planes Bpq in a specific sequence and by scheduling the communication between the computation nodes such that the idle 
times are minimized. This is achieved by the following sequence which is executed on each node p. Here “to process a 
plane (or line)” means to compute all unknowns for the collocation points corresponding to the voxels of the plane (or 
line).

1. Process the first plane Bp1.
2. Except for the first node p = 1, start the communication of the data of Bp1 to the preceding node p − 1.
3. Process all remaining odd planes Bpq , q = 3, 5, ..., M − 3, M − 1.
4. Except for the last node p = Π , wait for the communication from the succeeding node p + 1 to be finished.
5. Process the last plane BpM .
6. Except for the last node p = Π , start the communication of the data of BpM to the succeeding node p + 1.
7. Process all remaining even planes Bpq , q = 2, 4, ..., M − 4, M − 2.
8. Except for the first node p = 1, wait for the communication from the preceding node p − 1 to be finished.

When processing a plane Bpq , its lines Cpqr, r = 0, ..., N + 1 can also be processed in parallel with the Ξ processor cores of 
the node. For this intra-node parallelization, at first all odd lines Cpqr , r = 1, 3, ..., N + 1 are processed in parallel followed 
by all even lines Cpqr , r = 0, 2, ..., N . This parallelization is realized via OpenMP in order to take advantage of the shared 
memory on a node. This results in a parallelization without communication or copying of memory regions. The whole 
sequence of calculations is represented graphically in Fig. 4.

With this domain decomposition and ordering, the time available for communication is maximized without interrupting 
the actual calculation. It has been shown [10,11] that this ordering has the same convergence rate as the Red–Black ordering 
for the Laplace equation. The minimal height of a slice is M = 2 planes (then with blocking communication), the optimal 
height depends on the processing speed of the planes, the communication rate and the latency and is at least M = 4 planes.

The time-evolution equation (18) is processed using the same ordering and scheduling of communication as described 
above.

After the pressure and velocity fields are updated to the next time step according to Eqs. (21), the error is estimated 
as described in Eqs. (22). When the error drops below a certain threshold, the SIMPLE algorithm stops and the solution is 
stored for a further investigation of the physical properties.

5. Results

The computations were performed with the parameters listed in Table 1.
All results are computed on the cluster bwGrid at HLR Stuttgart, Germany. The system is built of Intel Xeon E5440 

processors, 2 processors (8 cores) per node, 16 GB RAM per node, Infiniband interconnect.
The underlying geometry is a discretization of a stochastic model for a Fontainebleau sandstone with a real side length 

of 1.5 cm [1], discretized at different resolutions a = 8, 16, 32, 64, 128 · a0, a0 = 0.91552734 μm and a subsample of the 
same geometry which contains the first octant discretized at resolutions a = 4, 8, 16, 32, 64 · a0.
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Fig. 4. Computational area of one node with 8 planes, each with a height of 1 voxel. Each plane consists of 8 lines that are shown as gray and white regions 
and are extended in the third dimension. The planes are computed sequentially in the order 1–3–5–7–8–2–4–6. In each plane, all odd (gray) lines or all 
even (white) lines can be computed in parallel.

Table 1
List of parameters for the numerical computations.

Parameter Value

L 7.5 mm..15 mm
φ ≈15%
N 128..2048
Π 1..64
Ξ 4..8
Π · Ξ 4..512
η 10−6

δt 0.19
αp 0.3
αv 0.9
β 0.05

Results reported here are limited to results from the cluster bwGrid at HLR Stuttgart, because within this study only a 
short test run was available on the local CRAY XE6 (Hermit). In the test run a system of 40963 voxel was started on 256 
nodes and 8192 processors. This amounted to 18 planes per slice and required roughly 16 GB per node. The test run had to 
be stopped before convergence due to a lack of computing time allocation.

From the domain decomposition strategy it is clear that every node should work on at least four planes, optimal are six 
or more planes. Accordingly the scaling is expected to remain optimal for any number of nodes as long as the number of 
nodes is a factor of 6 or more smaller than the number of planes (voxels in z-direction). The limiting factor for practical 
computations is the memory available per node. On the CRAY XE6 (Hermit) these are maximally 64 GB. The maximum 
number of nodes resp. processors are 3552 resp. 113 664. For a system of size 8192 × 8192 × 8192 we expect optimal 
scaling to persist given that roughly 44 000 processors on 1365 nodes are available for computation. Such a calculation 
would require 28 GB per node, falling well within the capabilities of the CRAY XE6 (Hermit).

5.1. Dependence of speed and efficiency on system size

The total CPU time (time*procs) needed for obtaining the solution of the discretized Stokes equation is approximately 
proportional to N4.5, where N is the side length of the sample (Fig. 5). The actual number of grid cells for which a com-
putation is performed is the number of cells with χ(k, l, m) = 1. It is approximately given by φN3. This is multiplied by 
the effort for solving the pressure correction equation using the SOR method. The latter increases proportional to N1.5 thus 
resulting in a total of N4.5 for the algorithm as a whole.

It has been found that the prefactor in front of the N4.5 law depends strongly on the geometry of the region to solve. 
This is apparently due to the fact that the pressure-correction algorithm converges more slowly when pore throats and pore 
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Fig. 5. Increasing total computation time with system side length.

Fig. 6. Strong scaling. One region has been solved on 2, 4, 8, 16 and 32 nodes. The scaling shows a linear dependence as expected from an efficient 
algorithm.

bodies are resolved with more voxel, i.e. collocation points. This occurs here for subsamples with the same side length as 
the super-sample, because the resolution is twice as high.

5.2. Parallel efficiency

A cubic region with a side length of 256 voxel has been solved on 16, 32, 64, 128 and 256 processors to investigate the 
strong scaling behavior of the algorithm. As can be seen in Fig. 6, the algorithm shows a quasi-perfect behavior and the 
speedup is nearly linear with the number of processors used. This is due to the efficient parallelization with non-blocking 
communication.

Furthermore, the Stokes equation on a sample discretized at different resolutions resulting in system sizes of 2563, 5123

and 10243 voxel was calculated on 4, 32 and 256 processors to investigate the weak scaling. As can be seen in Fig. 7, this 
scaling behavior is suboptimal because of the effort for solving the pressure correction equation with the SOR algorithm 
increases as N1.5.

5.3. Accuracy

The accuracy of the implementation has been tested by comparing the numerical solution to the well known quasi-
analytical solution for a tube with cubic cross section [28]. It was found that the discretization error decreases with 
resolution. Its value is around one percent for a cross section of 16 × 16 voxel. For each voxel both the error in the ve-
locity field �v and in �∇ · �v are computed. The program stops when either of them falls below η = 10−6 (cf. Table 2).

6. Conclusion

The domain decomposition into planar slices and linear columns in combination with the SOR pressure-correction al-
gorithm shows the good scaling behavior due to the implementation of strictly non-blocking communication. However, 
because of the method chosen for solving the Stokes equation, there is a strong dependence of the performance on the un-
derlying geometry. If the throats in the geometry of the porous medium are very small (<8 grid nodes), there is a precision 
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Fig. 7. Weak scaling. Because of the system size dependence, a constant (optimal) scaling cannot be achieved.

Table 2
Computation time for solving Stokes equation on geometries with different sizes. In the first column, f means full sample, s means subsample. The second 
column shows the side length of the cubic sample in voxel. The third column shows the resolution of the sample in units of a0 = 0.91552734 μm. The 
forth column lists the total numbers of processors used. In the fifth column, the computation time can be found.

Sample Side length N Resolution [a0] Procs (Π · Ξ ) Time [h]

f 128 128 4 0.03
f 256 64 4 0.56
f 512 32 64 0.79
f 1024 16 256 2.7
f 2048 8 256 60
s 128 64 4 0.04
s 256 32 32 0.08
s 512 16 64 0.39
s 1024 8 256 4.9
s 2048 4 512 125

loss in the result, but the algorithm performs extremely fast. If there are many large throats in the geometry, the algorithm 
is more precise, but significantly slower.

The Stokes flow through a realistic porous medium with a system size of 20483 = 8 589 934 592 voxel and about 5 · 109

unknowns was successfully computed. To the best of our knowledge this represents the largest such computations known 
at present.
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