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A simple model for lipid monolayers on water surfaces at high spreading pressure is 
investigated in this work. In this model, the hydrophilic head group of the lipid molecules form 
a rigid regular triangular lattice, and the hydrophobic alkane chains (assumed to be in an all- 
trans state) are represented by rigid rods with two angular degrees of freedom (6, p,) . The rods 
consist of “effective monomers,” and between the effective monomers on neighboring rods a 
Lennard-Jones interaction is assumed. The model is studied by exact ground-state calculations, 
mean-field theory, and Monte Carlo simulations. Basic parameters are rod length a and lattice 
constant b. The ground-state phase diagram shows the following phases: for small b, the rods 
are oriented perpendicularly to the monolayer plane (no-tilt phase, (8 ) = 0); for somewhat 
larger b, a sixfold degenerate uniform-tilt state occurs with all rods tilted towards one of their 
next-nearest neighbors. For still larger b, the rods are tilted nonuniformly and form a “striped” 
structure. These unexpected phases do not occur if we allow a rectangular distortion of the 
lattice. For T> 0, the simplest mean-field theory predicts a gradual disordering of the uniform- 
tilt state via a second-order phase transition. For the transition region, the Monte Carlo results 
disagree with this picture. Instead they show a strong asymmetric first-order phase transition 
with pronounced hysteresis. The transition temperature increases with increasing rod length a, 
qualitatively similar to experiment. 

1. INTRODUCTION AND DEFINITION OF THE MODEL 

Lipid monolayers at the air-water interface are of great 
interest because they are model systems for more complex 
biological membranes and because they exhibit various 
kinds of ordered phases. ‘-’ The lipid molecules forming 
these layers have a hydrophilic head group to which one or 
two alkane chains (CH,),CH, with 12<M<22 are at- 
tached. While there has been enormous activity on the 
“main transition”, i.e., the melting of the layer (see e.g., Ref. 
8 for a review on models of this transition), somewhat less 
attention has been paid towards the understanding of the 
transitions between various solid phases.9Y’0 These transi- 
tions occur at high spreading pressure3,‘-’ and exhibit differ- 
ent kinds of orientational order. Because of the complexity 
of the molecules, it is difficult to develop microscopically 
realistic analytic theories for such systems, and even atomis- 
tic computer simulations can yield only qualitative insight 
into the phase behavior.‘,“-I3 

Following the arguments of Refs. 8-10, we consider 
here only a simplified “coarse-grained” model, where the 
alkane chains are described as rigid rods. In order that the 
model remains tractable, each rod has only two orientational 
degrees of freedom 0, q~ [Fig. 1 (a)]. The rods have the 
length A and are grafted on a rigid triangular lattice with 
lattice constant B. Within the lattice, there are no further 
degrees of freedom. 

For the interaction between the alkane chains, we as- 
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sume a Lennard-Jones potential U, (d) between effective 
monomers 

U, (d) = lJo{(a/d) l2 - 2(a/d)?, (1) 
where U, describes the strength, u the range of this poten- 
tial, and d is the distance between effective monomers. As- 
suming that there are v. effective monomers per rod, and 
measuring all lengths in units of a, we have the resealed rod 
length a = A /aand the resealed lattice parameter b = B /B. 
The total potential energy between a pair of rods becomes, cf. 
Fig. 1 (b) 

VIZ (6 ,pl ,e2,p2 1 = (a2/4 1 2 [ (dlj,21) - I2 
j,I= 1 

- (2dj,,t > - “I* (2) 
Here the units of energy and temperature have been chosen 
such that the constant U, in Eq. ( 1) is absorbed in these 
units. dU2, is the distance between monomerj at rod 1 and 
monomer I at rod 2, where 

Cd,,, I2 = (iah0 j2 + (la/v, I2 + (612 1’ 

- 2(ila2/4 IS, *S, + 2b,, [ (ia/vo IS, 

+ Ud~o)S2], (3) 
with Si = (cos qi sin Bi, sin pi sin ei, cos ei ) denot- 
ing an unit vector along rod i, and b12 = [b cos (k?r/3), 
b sin ( kn-/3 ) , 01, with k = 0, 1, * * * 5 a vector connecting lat- 
tice sites 1 and 2 [Fig. 1 (b) 1. Finally, the model is fully 
specified by the restriction to interactions between nearest- 
neighbor rods. 

In previous work on the one-dimensional version of this 
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FIG. 1. (a) Schematic rnodelling of a lipid molecule (labeled by index i) : 

the head group lies in the air-water interface which is oriented in the xy 
plane, while the alkane chain in its all-truns state is characterized by an unit 
vector S, or its associate polar angles ( O,,qi). (b) The interaction between 
two rods 1 and 2 occurs between effective monomers j ( lG<v, ) and I 
( 1 <I<v, ) . If we choose new polar coordinates such that the polar axis coin- 
cides with the vector b,, (connecting the two head groups) and that thex- 
axis lies in the plane formed by the vectors b,, and S, , the distanced,,,,, can 
be expressed in terms of the two polar angles (x, , a,, and one azimuthal 
angle fi, for rod 2. (c) Top view of the layer with uniform-tilt structure. 
Head groups form a regular triangular lattice, and the projections of the 
unit vectors S, into the xy plane (arrows) point towards their next-nearest 
neighbors. 

model it was found” that in the groundstate there are two 
distinct phases: a (nondegenerate) state where the rods are 
oriented perpendicularly to the lattice (no-tilt state), and a 
(twofold degenerate) state where the rods are uniformly tilt- 
ed (i.e., 8, = + t9, for all i). At nonzero temperature T, 
fluctuations destroy the long range order of the latter state, 
and the remaining regions of uniform tilt extend only over a 
finite correlation length. 

In the present two-dimensional case, we expect that in 
addition to the no-tilt state there should be a (sixfold degen- 
erate) uniform-tilt phase [Fig. 1 (c) ] which should be stable 
over a nonzero temperature range. There exists also a third 
ordered phase where the rods lie in the xy plane. This phase 
will remain outside of consideration here because it does not 
correspond to any of the experimentally observed phases. 
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We study the model in Sec. II by exact ground-state 
calculations and in Sec. III by the simplest version of a mean 
field theory. Section IV presents our Monte Carlo method 
and discusses the numerical results. Because for v. = 15 the 
reorientation of a single rod inside its wreath of nearest 
neighbors requires to evaluate 6tio = 1350 Lennard-Jones 
interactions even the simulation of this very simple model is 
not at all straightforward. We have found it convenient and 
feasible to discretize angular space and store the necessary 
pair energies between neighboring rods in a huge table. In 
Sec. V we compare our results briefly to corresponding ex- 
perimental data and discuss possible improvements of the 
present model. 

II. GROUND STATE ANALYSIS 

If we assume a structure of uniform-tilt type, the total 
potential energy U depends only on two angular variables 0, 
and Q)~. It is straightforward to calculate U( 0, ,po ) numeri- 
cally. From its partial first and second derivatives we locate 
the minimum in order to obtain the ground state structure.14 
As in the one-dimensional case, the no tilt phase is the 
ground state for small enough b, i.e., b < 6, (a,v, 1. At the 
critical line b = b, (a,vo) a second-order transition to the 
structure with uniformly tilted rods occurs. This structure is 
characterized by 0, - [b - b, (a,vo ) ] “2 and p. = ?r/6, if, 
because of the sixfold symmetry of the problem, p is restrict- 
ed to the interval 0<~,<~/3, The function 6, (a,vo) is 
found to be identical to the one-dimensional case.” 

While for dimensionality d = 1 no other phases need to 
be considered, this is no longer true ford = 2. We have dis- 
covered this fact from Monte Carlo calculations at low tem- 
peratures. These calculations were started from the uniform- 
tilt configuration, and in a broad regime in the (a,b) plane, 
they generated configurations with a lower energy than the 
energy of the uniform-tilt configuration. 

Visual inspection of these configurations revealed var- 
ious patterns of structures with nonuniformly tilted rods. 
This fact suggested to include a two-sublattice striped phase 
into the ground-state analysis. In this phase the triangular 
lattice is decomposed into rows, where the vectors Si are 
characterized by angles f3,, , poO alternating with rows where 
the vectors Si are characterized by angles e,, , pal,. Using 
“simplex-downhill” minimization routines, l5 we located the 
minima of the resulting fourdimensional energy hypersur- 
face for some points of the (a,b) plane. In Table I the energy 
of this two-sublattice structure is compared to the energy of 
the uniform-tilt state. It is seen that the two-sublattice struc- 
ture in this case (a = 5) is lowest in energy from about 
b= 1.08 to about bz 1.36. For other values of b the two- 
sublattice solution converges also to the uniform-tilt state. 
However, Monte Carlo simulations for some values of b lead 
to even lower energies than those of the two-sublattice state 
(Table II). 

The nature of these phases with nonuniformly tilted 
rods is difficult to identify, since the variation of the energy 
with the lattice size L is nonuniform. For arbitrary values of 
L, structures with sublattices will not fit to the lattice, be- 
cause, due to the periodic boundary conditions, a misfit oc- 
curs if L is not an integer multiple of the period of the struc- 
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TABLE I. Potential energy per lattice site for unifortn and double-striped 
configurations; a = 5.0. 

b 

0.80 + 29.526 031 
0.90 - 20.037 141 
1.00 - 22.071011 
1.05 - 21.029 010 
1.07 - 20.577 621 
1.08 - 20.351 128 
1.10 - 19.901 882 
1.15 - 18.833 338 
1.20 - 17.877 487 
1.25 - 17.039 778 
1.30 - 16.307 144 
1.35 - 15.665 778 
1.36 - 15.547 412 
1.37 - 15.432 129 
1.40 - 15.103 769 
1.50 - 14.165 706 

+ 29.526 03 1 
- 20.037 141 
- 22.071011 
- 21.029 010 
- 20.577 62 1 
- 20.351 130 
- 19.919 490 
- 18.935 529 
- 18.062 125 
- 17.242 076 
- 16.446 018 
- 15.685 392 
- 15.551 187 
- 15.412 329 
- 15.103 769 
- 14.165 706 

ture. The small energy differences between odd and even L 
suggest that possibly long period superstructures might oc- 
cur. We have not investigated the ground-state phase dia- 
gram (Fig. 2) further, since this would be a formidable nu- 
merical problem. Any results of that kind are probably 
irrelevant because only no-tilt phases and various uniform- 
tilt phases have been detected so far in experiments on fatty 
acids.’ Experimentally, the triangular lattice has the full 
hexagonal symmetry only in the no-tilt phase: in the uni- 
form-tilt phase, an orthorhombic distortion occurs so that a 
centered rectangular lattice results rather than a standard 
triangular lattice. Allowing such orthorhombic distortions 
of the lattice [which are measured by a distortion factor f 
with (aU/af = 01, we obtain Table III. In this calculation 
the elastic energy of the deformation is neglected in compari- 
son with the Lennard-Jones interactions. It shows that the 
lattice contracts in the direction perpendicular to the tilt, 
and that the phase with uniformly tilted rods is always stable 
for b > 6, (a). In this case, the phase diagram for T = 0 is 
again simple (Fig. 3). The angle 0, in the uniform-tilt phase 
depends only very little on whether the lattice is deformable 
or not (see Table III ). This indicates a considerable robust- 
ness of our model against changes of details. 

III. MEAN-FIELD THEORY 

A prerequisite for a mean-field calculation is the identi- 
fication of the ordering that one wishes to study. Here we 
restrict attention to the uniform-tilt state only. This yields 
two self-consistency conditions for the two angular degrees 
of freedom of the central rod. With the notation 
ai = ( ei ,vi ) (i = 1,2) one obtains as a self-consistency con- 
dition 

S,=(6,)= %%,61 Z=, exp[ - U,(Q,&)/T] 
- LAJLO exp[ - u,(8,,8,)/T] 

(4) 

In our notation we have already expressed the fact that 
for the numerical implementation the integrals over the an- 
gles of the central rod (f9r ,pr ) in the “field” of its six neigh- 
bors (which all have orientation 6, ) are discretized. The 
product II: = o represents the decomposition of the total en- 
ergy into six contributions U, of single nearest-neighbor 
pairs [ Eqs. (2) and (3) 1. Note that we have chosen k, E 1. 

The numerical solution of Eq. (4) is laborious because 
of the complexity of the energy surface 8: = o U, (6, ,6, ), 
see Fig. 4 for an illustrative example. One can see that the 
uniform-tilt minim urn disappears for 0, > 0.8, indicating the 
importance of states with nonuniform tilt also on the mean- 
field level. This must be expected, since such states appeared 
in the T = 0 calculation. 

At low temperatures it is clearly permissible to exploit 
the approximate degeneracy of Eq. (4) in the q variable. 
Restricting qr ,q2 as q, = q2 = n/6 leads to an one-dimen- 
sional self-consistency equation 3, = (8, ), which can be 
solved straightforwardly (Fig. 5). This procedure obviously 
leads to a second order transition. We shall compare the 
results of this treatment to the Monte Carlo data in the next 
section. 

IV. MONTE CARLO STUDIES 

As has been mentioned in Sec. I, for Q = 15 already 
64 = 1350 Lennard-Jones interactions must be considered 
for reorienting a single rod. Consequently, such a Monte 
Carlo algorithm is very slow: for a small 2 1 X 2 1 lattice, lo4 
Monte Carlo steps (MCS) per rod take already 30 min CPU 
time on a CRAY-XMP or Siemens-Fujitsu VP 100 comput- 
er. Therefore, even a study of this very simple model by 
Monte Carlo methods using continous angles (Bi,~i ) would 

TABLE II. Simulation results for various system sizes at T = 0.001 (potential energy per lattice site). 

b L=5 L=8 L= 11 L= 14 L= 17 L = 20 

1.00 - 22.070 - 22.070 - 22.0701 
1.10 - 19.989 - 19.9705 - 19.915 - 19.988 - 19.982 - 19.981 
1.20 - 18.0686 - 18.061 - 18.063 - 18.066 - 18.065 - 18.066 
1.25 - 17.199 - 17.241 - 17.223 - 17.212 - 17.198 - 17.205 
1.30 - 16.438 - 16.445 - 16.38 - 16.428 - 16.436 - 16.433 
1.35 - 15.666 - 15.666 - 15.673 - 15.686 - 15.706 - 15.705 
1.40 - 15.1027 - 15.1027 - 15.1027 - 15.1027 - 15.1027 - 15.1028 
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FIG. 2. Ground-state phase diagram for the model with rigid regular trian- 
gular lattice. Lines separate different phases in the plane of variable (I (res- 
caled rod length) and b (resealed lattice spacing). 1 labels the no-tilt phase, 
2 labels the uniform-tilt phase, 3 contains (possibly several) phases with 
structures of nonuniformly tilted rods. This phase diagram corresponds to 
the choice v,, = 15 [in the limit v, - CO the boundary between the no-tilt 
and uniform-tilt phase would be at b = b, (a) = 11. 

take excessive amounts of computer time. In the one-dimen- 
sional case” it has been found that discretizing the angles 
{6,} into 500 values, which must be situated in a suitably 
chosen interval, yields a program speedup by a factor of 25. 

Direct extension of this technique to the two-dimension- 
al model is not possible, because each rod has now two de- 
grees of freedom ( Bi,pi ) . In order to discretize the four an- 
gles (Or, pr, O,, pZ ) of a pair of neighboring rods and to 
store the corresponding interaction energies, we first tried to 
use the largest possible table fitting into the computer mem- 
ory. But it was found that there were still systematic discre- 
pancies between this discretized program version and the 
correct calculation using continuous angles. However, as in- 
dicated in Fig. 1 (b), for each pair of rods it is possible to 

TABLE III. Groundstate energy U, and tilt angle 6Je for the orthorhombic 
lattice; a = 5.0. U; and B 0” are the corresponding quantities for the uniform 
tilt state of the undeformed lattice. 

b uo 4 f u: 0: 

0.95 - 22.649 0 
0.96 - 22.629 0.1328 
0.97 - 22.598 0.2102 
0.98 - 22.562 0.2656 
1.00 - 22.487 0.3492 
1.05 - 22.290 0.4906 
1.10 - 22.082 0.5880 
1.15 - 21.866 0.6635 
1.20 - 21.652 0.7252 
1.25 - 21.440 0.7772 
1.30 - 21.228 0.8217 
1.35 - 21.016 0.8606 
1.40 - 20.807 0.8951 
1.45 - 20.602 0.9260 
1.50 - 20.399 0.9538 

1 - 22.649 0 
0.9904 - 22.610 0.1332 
0.9802 - 22.521 0.2116 
0.9702 - 22.244 0.2682 
0.9508 - 22.07 1 0.3549 
0.9055 - 21.029 0.5064 
0.8644 - 19.902 0.6158 
0.8268 - 18.833 0.7043 
0.7923 - 17.877 0.7800 
0.7607 - 17.040 0.8464 
0.7314 - 16.307 0.9059 
0.7043 - 15.666 0.9604 
0.6792 - 15.104 1.0111 
0.6557 - 14.608 1.0590 
0.6339 - 14.166 1.1045 
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FIG. 3. Ground-state phase diagram for the model with deformable lattice. 
Nature of the phases is indicated in the figure. 

carry out a coordinate transformation from the angles 
(19~,~~,19~ ,p2 ) to a new set (a,, a,, pz ) involving three an- 
gles only. A discretization where a, , /3* take 199 values and 
a2 takes 398 values has been found to reproduce with suffi- 
cient accuracy the results of the Monte Carlo program which 
uses continuous angles. Although this discretization in- 
volves a lookup table of 64 MByte for the pair energy, it is 
still faster than the continuous program version by a factor 
of 20. 

In both versions of the Monte Carlo program the stan- 
dard Metropolis algorithm was used,16 and the triangular 
lattice was decomposed into three sublattices so that 
straightforward vectorization (in analogy with the checker- 
board algorithm for the square lattice” ) was possible. 

The following quantities were recorded (N = L x L is 
the number of rods) : 
(I) The potential energy per rod ( U ). 
(ii) The tilt angle (0,) of each rod as well as the average tilt 
angle 

(e)=wiv) 5 (~9~). 
i= I 

(5) 

(iii) The polar angle (pi ) of each rod as well as the average 

(v)=(l/N) i: (Pi). 
i= 1 

(6) 

(iv) Thezcomponent ofthe orientational vector Sj, (ST), as 
well as its average 

(S”) = (l/N) 2 (ST). (7) 
i= 1 

(v) The root mean square value of the transverse compo- 
nents S :, S j’, which can be interpreted as an order parameter 
for the uniform-tilt-no-tilt transition, 

(KY) = ((S”Y + (syY)o.s, (S”) = (l/N) i (ST), 
i= 1 

(SY) = (l/N) i: (ST). (8) 
i= 1 
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FIG. 4. Contour plot of the energy surface log,, {Xi= 0 U, (6, ,a, ) - U,,,,, + 1) for the choice q, = 15, CI = 5, b = 1, as a function of 8, (y axis) and q~, (X 
axis). Case (a) corresponds to ~9, = 0, q2 = 0.2, case (b) to 0, = 0.35, q2 = 0.2, case (c) to 0, = 0.7, pz = 0.2, and case (d) to 0, = 1.0, pz = 0.2. 
Contours correspond to values i/2, i = 1, . . .20. In case (a) the minima occur at q = kn/6, k = 0, * * ‘5, the global minimum at 0 = 0 and further minima at 
d2. 

(vi) The heat capacity cV is calculated from energy fluctu- 
ations as usual, 

CI’ =N((U2) - (u)2)/T2. 

(vii) The orientational pair correlation function 

(K,)=(1/6N) 5 i (3(cos2{@(r,) 
i= 1 k=O 

(9) 

- e(ri + Abt2 (k) )I> - I)/29 (10) 
where A = 1,2,...L /2 and b,, (k) is a nearest-neighbor vec- 
tor as defined in I$. ( 3 ), while ri is the lattice vector labeling 

the site i, f3( ri ) E 19~. In practice, we have calculated the aver- 
age of all correlations with the same value of the distance A 
(measured in units of the lattice constant b = lb,, I). 

For the parameter values a = 5, b = 1, all simulations 
were carried out for three lattice sizes 15 X 15, 21 X 21, and 
36X 36. Because the finite size effects were found to be 
smaller than the statistical errors, simulations for a = 4 and 
a = 6 were carried out for one lattice size (L = 15) only. 

We now briefly describe our numerical results. Figure 
6 (a) and 6 (b) show the average tilt angle (0 ) and order 
parameter (R, ) over the full temperature range studied and 
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FIG. 5. Plot of the simplified mean field construction (8, ) - 0, vs 0, (ze- 
ros in this plot correspond to selfconsistent solutions). Parameters chosen 
are v, = 15, a = 5, b = 1, and the various temperatures as indicated in the 
figure. 
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compares these results to the mean field calculation of the 
previous section. It is seen that for TS 2 Monte Carlo and 
mean field results are in very good agreement, while for T> 2 
there is marked disagreement: both order parameter (R,) 
and the angle (6 ) stay roughly constant, until at TZ 4 (i.e., a 
temperature much higher than the mean field transition tem- 
perature T y z 2.6) a pronounced first order transition oc- 
curs. This transition leads to a disordered high-temperature 
phase, and after all, in the temperature range studied, the 
model shows three different regimes. In Fig. 9 we display 
equilibrated configurations at T = 1, T = 3, and T = 7, cor- 
responding to these three regimes. 

We interpret the surprising discrepancy between mean- 
field theory and Monte Carlo simulations as an indication 
that the simple order with uniform tilt and orientation per- 
sists only for T< 2, while for T> 2 a nonuniform type of 
ordering takes over. This interpretation is confirmed by 
Figs. 9 (a) and 9 (b) . It is interesting to note that the angular 
correlation (K ) stays nearly perfect in the intermediate re- 
gime [Fig. 7(a) 1. In the disordered high-temperature phase 
(K) decreases steadily with temperature, however. Not un- 
expectedly, the structure of this high-temperature phase de- 
pends critically on the restriction of the model to interac- 
tions between nearest-neighbor rods: there are intersections 
of not neighbouring rods [see Fig. 9 (c) 1. 

Both from (KA) and from the potential energy (U) 
[Fig. 7(b)] we notice pronounced hysteresis at the first- 
order transition to the disordered phase. The first-order 
character of this transition is also evident from the lack of 
significant finite size effects in both (U ) and the heat capac- 
ity cy [Fig. 7(c) 1. Only in the order parameter (R,) in the 
disordered phase there is a systematic size effect, which is 
trivially understandable since (R, ) in Eq. ( 8 ) is defined as 
a nonnegative quantity and the fluctuations measured there 
are the larger the smaller the system. This first order charac- 
ter becomes somewhat less pronounced for longer rod length 
a (Fig. 8). The transition temperature increases with the rod 
length a, qualitatively consistent with experiment.’ 

V. DISCUSSION 

I @  
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u 
L o- I Q  cb (0 al 
0 

IIIIIIIl l l l l l l l l l l~I~I~~~Il~~~JI~~J~I~~~~ 

0 1 2 3 4 5 6 7 0 9 

(b) temperature T 

FIG. 6. Average tilt-angle (0) (a) and order parameter (R,) (b) plotted 
vs temperature for the model with V, = 15, b = 1 and cz = 5. Points denote 
Monte Carlo data for L = 15,21, and 36, while the full curves are the result 
of mean-field theory, which implies a second-order transition at Tz2.6. 

In the present paper, we studied a model of orientational 
ordering in dense lipid monolayers by investigating the 
ground state by exact analysis and the finite-temperature 
behavior by Monte Carlo simulations. In the model the al- 
kane chains are treated as perfectly rigid rods interacting 
with each other by a Lennard-Jones potential; the head 
groups of the lipid molecules were assumed to form a perfect 
and rigid triangular lattice. The rods are discretized into ef- 
fective monomers and the interactions were restricted to 
nearest- neighboring rods. Of course, this crude model is no 
longer related to any particular material, but it may still 
capture some of the essential physics of hard-rod-like mole- 
cules grafted on a planar surface at high surface density. 

We have found that already in the ground state several 
phases occur-a phase where the rods are oriented perpen- 
dicularly to the surface (no-tilt phase), a sixfold degenerate 
phase where the rods are uniformly tilted in the direction 
towards a next-nearest neighbor, and various phases with 
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nonuniformly tilted rods. Which phase is stable depends on 
the two parameters of the model, the rod length a and the 
lattice spacing b (measured in units of the W-interaction 
range). Thus at T = 0, the ordering is considerably more 
complex than in the corresponding one-dimensional version 
of the model, where only the no-tilt phase and a twofold 
degenerate uniform-tilt phase occur. 

At nonzero temperature, we have focused attention on 
the disordering of the uniform-tilt phase only. It turns out 
that three different regimes can be distinguished: in the first 
regime, the character of the sixfold degenerate ordering is 
still the same as at T = 0, only the tilt angle decreases with 
increasing temperature. This ordering is well accounted for 
by a mean-field theory, which is in quantitative agreement 
with our Monte Carlo results. In the second regime, the sym- 
metry breaking with respect to the azimuthal angle is de- 
stroyed, as can be verified by direct inspection of Fig. 9 (b), 
and thus there is considerable disorder with respect to this 
azimuthal variable, while the polar tilt angle stays nearly 
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is an unphysical feature of our model and has probably no 
counterpart in real systems, where there is repulsive interac- 
tion between head groups and the rods. 

Changing the rod length, we find that the temperature 
of the transition to the fully disordered phase increases sig- 
nificantly with rod length. Qualitatively, but not quantita- 
tively, the same trend is observed in recent experiments on 
fatty acids. 

The present work should only be considered as a first 
step, and further refinement of the model would be desirable 
to allow for abetter comparison with experiments: the lattice 
of the head groups should not be treated as rigid and strictly 
triangular, but one should allow for elastic deformations 
towards centered rectangular structures. The latter are ob- 
served experimentally. As mentioned above, forces between 
the monomers of the rods and the head groups should be 
accounted for. We have not yet tried to implement and study 
such improved models, since already the model studied here 
took an extremely large amount of CPU time. This amount 
of CPU time could not be further reduced in spite of our 
working technique of using a discretized instead of a contin- 
ous angular space. With the latter, our simulations would 
have taken CPU times larger by .a factor of 20. Thus the 
formulation of tractable coarse-grained models, by which 
phase transitions in lipid monolayers or other systems con- 
taining rods grafted on surfaces can be studied, remains a 
challenge for every computational treatment. 
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FIG. 9. Equilibrated configurations of a 15 x 15 lattice for V, = 15, b = 1, 
anda = 5. (a) T= 1; (b) T= 3; (c) T= 7. 

independent of temperature. This phase is somewhat remi- 
niscent of the “floating phase” of the well-known six-state 
clock model. The third regime is characterized by a complete 
loss of long range order. The transition between regime II 
and III is strongly of first order, with pronounced hysteresis, 
while the transition between regime I and II is continuous. 
In regime III there is a pronounced increase of the average 
tilt angle with temperature, because some of the rods are 
strongly tilted and almost reach the xy plane. The fact that 
such an orientation may be energetically favorable certainly 
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