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Semiflexible amphiphilic molecules end-grafted at a flat surface are modeled by a bead-spring chain with
stiff bond angle potentials. Constant density Monte Carlo simulations are performed varying temperature,
density, and chain length of the molecules, whose effective monomers interact with Lennard-Jones potentials.
For not too large densities and low temperatures the monolayer is in a quasi-two-dimensional crystalline
state, characterized by uniform tilt of the (stretched) chains. Raising the temperature causes a second-order
transition into a (still solid) phase with no tilt. For the first time, finite size scaling concepts are applied to
a model of a surfactant monolayer, and it is found that the technique in this case again is useful to locate the
transition more precisely. For comparison, also a one-dimensional version of the model is studied, and
directions for future extensions of this modeling are discussed.

1. Introduction

Monolayers of surfactant molecules at surfaces have found
widespread recent interest, since they have diverse potential
applications for materials and possibly are model systems to
understand more complex membranes.1-7 Simple examples are
provided by systems such as fatty acids (CH3(CH2)NCOOH) at
the air-water interface, the hydrophilic head groups being
immersed into water while the hydrophobic alkane chains are
stretched into the air (Figure 1). These rodlike non axially
symmetric molecules give rise to a large variety of phases and
phase transitions and have a very rich phase diagram.6-11 The
molecular origin of this complex phase behavior and the details
of all these phase transitions are not yet fully understood (see,
for example, ref 12). But a striking feature is that despite
differences in detail, monolayers from fatty acids, phospholipids,
alcohols, and esters exhibit a similar phase diagram.7,8,10,11This
fact already suggests that full atomistic detail may not be
necessary to understand the generic features of this phase
behavior, and coarse-grained models may suffice to elucidate
some of the mechanisms underlying the various phase transi-
tions.
In this spirit we use for our computer simulations13-16 a model

(Figure 1) where we follow the idea of “coarse-graining” along
the backbone of a polymer chain:17-21n≈ 3-6 successive CH2
groups are integrated into one effective bond connecting
effective monomers by (relatively) stiff springs. On this coarse-
grained length scale, the fine structure of the torsional potential
for the CH2 units can be considered as washed out, and the
stiffness of the semiflexible chain is described only in terms of
a phenomenological potential for the angle between the effective
bonds.17-21 As is well-known (e.g. refs 20, 22), chain models
without torsional potentials can be simulated about an order of
magnitude more efficiently than those with torsion. An ad-
ditional gain in efficiency results from the fact that the number
of degrees of freedom is reduced in the coarse-graining: when
the chemically realistic chain has a degree of polymerization
of N, the coarse-grained chain has a degree of polymerization
of only l ) N/n.

Given the fact that for fatty acid monolayers the range of
greatest interest is 12e N e 22, we work with 5e l e 8 (one
effective monomer that is fixed at the surface plane represents
the hydrophilic group, and hence onlyl - 1 ) 4-7 effective
monomers represent the alkane chain, cf. Figure 1.
Of course, there have been numerous previous simulation

studies of both chemically realistic models23-34 and idealized
coarse-grained models35-40 of such surfactant monolayers (and
bilayers34). The atomistically detailed models clearly have an
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Figure 1. Schematic picture of a fatty acid at the air-water interface
and the chosen coarse-grained model of the present paper, where we
combine a number ofn ≈3 successive CH2 groups into one effective
monomer. The effective bonds between these effective monomers are
represented by (stiff) springs. The persistence length of the alkane chain
is controlled by an effective potential depending on the bond angleΘi,
i being the label of the effective monomer, anddi, the length of the
effective bond between effective monomersi andi - 1. Note that the
hydrophilic group at the bottom labeled byi ) 0 is represented by the
same type of effective monomer as those chosen for the alkane chain,
it differs from those only by the restriction that its perpendicular
coordinatez is fixed atz) 0, the position of the air-water interface.
Effective monomers also interact with Lennard-Jones potentials; see
section 2.
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advantage in their chemically realistic description of dense
packing of the atoms in the monolayer. However, molecular
dynamics runs can be carried out for rather short time spans
(less than a nanosecond) and small systems (typically on the
order of 100 molecules) only; while in this way useful results
on structural and dynamic properties in pure phases for
parameters far off the phase transitions can be obtained, for the
study of phase changes a much larger time range and larger
sytems are mandatory.41-43 Another difficulty is that the
effective potentials to be used in chemically detailed descriptions
of polymers and complex molecules are only inaccurately
known.18-20 On the other hand, coarse-grained models clearly
lose some aspects of the physics that one wants to deal with:
for example, treating the short alkane chains of the fatty acids
as rigid rods (as done in refs 35, 36, and 38), one disregards
melting of the layer and the associated intrachain conformational
disorder. Treating the short alkane chain by a lattice model of
semiflexible chains on cubic lattices, as done in refs 37, 39,
and 40, one cannot describe the proper symmetry of any of the
solid phases. While lattice models of polymers are rather good
for long wavelength properties in dilute and semidilute solu-
tions,20 and hence can deal well with systems such as polymer
brushes,44-46 for the short alkane chains and high densities
occurring in lipid monolayers we consider such lattice models
as a crude caricature only, which suffer from various lattice
artifacts.40

The model of Figure 1 hence should be viewed as a
compromise in between these extreme choices. While our
choice of fixing the head group exactly in one plane (z) 0) is
a reasonable approximation for surfactants grafted at solid
surfaces, as are also sometimes studied experimentally,47-50 it
suppresses vertical fluctuations, which clearly are important for
surfactants at fluid interfaces; also our choice of the grafted
end group having the same interactions as other effective
monomers is a crude approximation, which deserves refinement
in future work. A crucial shortcoming of our model, of course,
is the cylindrical symmetry of our chains when they are stretched
out in the z-axis: the corresponding all-trans zigzag-like
configuration of the chemically realistic alkane chain lacks this
symmetry. Hence in planes perpendicular to thez-axis herring-
bone-like orientational ordering occurs, which cannot occur in
our model where effective monomers lack a corresponding
orientational degree of freedom.
Keeping in mind all these limitations of our model, it

nevertheless can provide useful qualitative insight, as will
become apparent in the following sections. We start (section
2) by defining the parameters of the model and briefly comment
on the Monte Carlo simulation technique in the constant volume
ensemble. Section 3 then discusses the continuous transition
from the “uniform tilt” phase to the “no tilt” phase, paying
attention to an analysis of finite size effects. Section 4 presents
results describing the effects of varying the density of the
monolayer, while section 5 reports the effects of varying the
chain length. Section 6 contains our conclusions, while results
on a corresponding one-dimensional version of our model are
summarized in the Appendix.

2. The Model and the Simulation Technique

Here we specify the parameters of the coarse-grained model,
shown already in Figure 1, that is used in our simulations.13-15

Each surfactant molecule is represented by a bead-spring chain
containingl effective monomers, withl ) 5-8; typically l ) 7
was chosen. As mentioned above, for a fatty acid molecule
this should correspond to about 20 CH2 groups in the alkane
chain. The effective bond is represented by a finitely extensible

but otherwise harmonic potential,

Thusd0 describes the distance between effective monomers for
which the potential is minimal,dbl is the maximal extension of
the spring, and 2cbl its spring constant. The bond angle potential
is chosen as

wherecba > 1 is the force constant (ensuring a minimum for
Θi ) π, i.e. a fully stretched chain),Θi being the angle formed
by the two bondsdi, di+1 (Figure 1).
All monomers except nearest neighbors along a chain interact

with a Lennard-Jones potential. This potential is truncated at
a distancedLJσ and shifted such that it vanishes at the truncation
point. If ε is the interaction strength andσ its range, then

Note that the head groups (i ) 0) interact with each other and
with other effective monomers with the same potential, the only
distinction being that the head groups are restricted to move in
the surface plane,z) 0. This surface is ideally flat, structure-
less, and rigid, and hence at this level of idealization we do not
distinguish whether the substrate is a fluid or a solid.
We choose dimensionless parameters by settingε ) 1 andσ

) 1. In these units the bond lengthd0 is set tod0 ) 0.7.
Remembering that in an alkane chain the C-C bond length is
1.53 Å and in an all-trans state of a chain stretched in the
z-direction three successive C-C bonds correspond to a distance
of about 3.5 Å, our length unit hence is about 5 Å. We then
choosedbl ) 0.2 (i.e. about 1 Å) and the cutoff for the
nonbonded interactiondLJ ) 2 (i.e. about 10 Å). The energy
scalescbl for the bond length potential andcba for the bond angle
potential are chosen ascbl ) 100,cba ) 10. These choices of
the parameters ensure that the chains are rather strongly stretched
at the temperatures of interest (T of orderε and hence of order
unity, choosing Boltzmann's constantkB ≡ 1). Note also that
the rods cannot intersect each other during the simulations, using
randomly and uniformly distributed displacements from a cubic
box around the previous position (x, y, z) of an effective
monomer (x ( ∆, y ( ∆, z( ∆) as an attempted Monte Carlo
move. The jump distance parameter∆ was chosen temperature
and density dependent such that the average acceptance rate of
these moves was about 50%.
In the present paper we applied theNATensemble throughout;

that is, the areaA ) LxLy of the substrate was held fixed, and
the conjugate variable, the spreading pressureπA, then can be
calculated using the virial theorem.51 The third linear dimension
Lz was chosen distinctly larger than the length of the stretched
chain, which ensures that there are no finite size effects caused
by this choice. We choose the planar linear dimensions of the
box according toLx/Ly ) 2/x3, which allows a perfect
triangular lattice of the head groups in the planez) 0. This is
appropriate for the “nontilt” structure and the fluid phase, but
causes problems in the case of the “uniform tilt” structure, where
it is known6-8,10,11 that the triangular head group lattice is
distorted into a centered rectangular lattice. This distortion is
also expected for the present model, as calculations in theNπAT

Vbl(di) ) cbl(di - d0)
2, for |di - d0| e dbl, i ) 1, ...,l

(1)

Vbl(di) ) ∞, for |di - d0| > dbl (2)

Vba(Θi) ) cba[1 + cosΘi] (3)

VLJ(r) )

{ε[(σ/r)12 - 2(σ/r)6] - ε(dLJ
-12 - 2dLJ

-6), r e dLJσ
0, r > dLJσ

(4)
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ensemble show.16 Suppressing this distortion by fixingLx/Ly
) 2/x3 (and choosing periodic boundary conditions to avoid
the disturbances associated with free boundaries) has the effect
that the components of the pressure tensor inx andy directions
become nonequivalent, as will be seen below.
Despite these systematic problems, we use here theNAT

ensemble, since equilibration is considerably faster than in the
NπAT ensemble.15,16 At each temperature 20 000 Monte Carlo
steps (MCS) per effective monomer are carried out for
equilibration, and at least 50 000 MCS for taking averages (only
every 500 MCS are the system configurations analyzed, to avoid
too strong correlations between these configurations, so that data
are based on averages over 100 individual configurations for
each combination of parameters). Near the critical temperature
of the transition from the “uniform tilt” to the “no tilt” phase,
substantially longer runs were needed because of “critical
slowing down”.41-43 Although we use a link-cell algorithm,51

the rather large interaction range (dLJ ) 2) and the complicated
potential (eqs 1-4) require substantial computation for each
attempted Monte Carlo move, and hence the CPU time
requirements of the present work were substantial (on the order
of 103 h on IBM 6000/370 RISC workstations). Even then the
maximum size simulated was only 11 200 effective monomers
(corresponding to 1600 fatty acids with about 20 CH2 groups
each). While this number of degrees of freedom still is several
orders of magnitude less than what is feasible for lattice
problems (for example, for phase separation of polymer blends
on the order of 105 effective monomers were used52), it is about
1 order of magnitude larger than what is used for chemically
detailed models.23-34

In any case even for this simplified model one has to be very
careful in asserting the nature of the phase structure, since there
is a subtle competition between intramolecular (bond length and
bond angle) potentials and the Lennard-Jones forces, in addition
to the possible misfit created by the size and shape of the
simulation box. As an example of the problems that occur,
Figures 2 and 3 compare snapshot pictures of a system of 100
chains withl ) 7 atT ) 0.2 at two neighboring coveragesF )
1.253 (Lx ) 9.6, Figure 2) andF ) 1.307 (Lx ) 9.4, Figure 3).
Both systems have been started atT) 0.1 in a state of uniform
tilt toward the next nearest neighbor of the triangular lattice of
the head groups in the planez ) 0. While this state is
maintained for the case of the lower density (cf. also the
corresponding Voronoi diagram), in the case of the higher
density the system has switched over to a state with uniform
tilt toward the nearest neighbor direction (Figure 3). While at
small enough densities all monomers of the same layer (labeled
by the indexi of the effective monomers along a chain) lie
roughly in the same plane, this is no longer possible for high
densities, where monomers can no longer all be in the minima
of both the bond length potential and Lennard-Jones potential
simultaneously. Due to this “frustration” a modulation of the
height of the monomers above the surface occurs, which is quite
evident from the snapshot pictures (compare the smooth surface
of the layer in Figure 2 with the more corrugated one in Figure
3). But these effects are very sensitive to size and shape of the
simulation box, and one sometimes also has to fight against
pronounced hysteresis effects resulting from other boundary-
induced defects. And while experimentally indeed both phases
with uniform tilt toward nearest neighbors and toward next
nearest neighbors have been observed,6-8,10,11 due to the
limitations of the present study, we refrain from making hasty
statements about the full phase diagram of the present model.
Somewhat simpler, of course, is the one-dimensional case where
the “uniform tilt” to “no tilt” transition exists in the ground

state as well, and a rounded version of this transition persists
at finite temperatures (see the Appendix).

Figure 2. Snapshot picture (a, top) and corresponding Voronoi diagram
(b, bottom) for a system of 100 chains withl ) 7 effective monomers
at a temperatureT) 0.2 and at a coverage ofF ) 1.253. Each effective
monomer is represented by a sphere of diameter unity. In the Voronoi
diagram the projection of the “director” (i.e. the vector connecting the
head group (denoted by a dot) and the end monomer of the surfactant
molecule) is shown by a straight line in thexy-plane, together with the
Voronoi tesselation for the head group lattice. Note that here the tilt is
in the+y direction (i.e., away from the spectator in part a and thus
difficult to recognize visually).

Figure 3. Same as Figure 2 but for the coverageF ) 1.307. A tilt in
the nearest neighbor direction of the triangular lattice is easily
recognized from both the snapshot picture (a, top) and the projection
of the director (b, bottom).
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3. Finite Size Scaling Analysis of the Phase Transition
from the “Uniform Tilt” to the “No Tilt” Structure

As is well-known, phase transitions can only occur in the
thermodynamic limit, while in finite size systems transitions
are rounded and shifted.53,54 However, finite size scaling
theory53,54 has become a valuable tool for the extrapolation of
data from very small systems to the thermodynamic limit, and
this analysis of finite size effects has become a standard method
for the study of various phase transitions.41-43 Hence we apply
these concepts also for the orientational phase transition of
surfactant monolayers here.
We need to introduce an order parameter that distinguishes

between the “uniform tilt” and the “no tilt” phases. For this
purpose, we first consider an average of the end-to-end vector
ebν of the individual chains,ebν ) (lνx, lνy, lνz),

whereN is the total number of surfactants in our model system.
The root mean square projection of this average end-to-end
vector into thexy-plane is then defined by taking a configura-
tional average〈...〉 as follows:

Note that in the ordered phase there are six equivalent tilt
directions (considering an ordering where uniform tilt in the
direction of next nearest neighbors of the triangular head group
lattice occurs, as is the case for the ground state of our model13).
The quantityRxy is independent of this tilt direction. Note that
in a finite system quantities such as〈ex〉, 〈ey〉 vanish
identically41-43,53,54since there is always a nonzero probability
that the system jumps from one of the six degenerate orientations
to another one (even if for a short run such a state with a specific
orientation might be metastable, this problem is of practical
relevance always near the second-order transition). Thus
quantities such as〈ex〉, 〈ey〉 are unsuitable to study this transition,
while Rxy is of order unity in the regime of the ordered phase
and of order 1/xN in the disordered phase. This is a trivial
consequence of the self-termseνx

2 + eνy
2 that appear when one

works outRxy from eq 6.
The numerical data (Figure 4) bear out these expectations

very well. We have chosen here a coverage where the lattice
spacing (a) of the triangular head group lattice also isa ) 1.

One can see that at low temperatures the order parameterRxy is
nearly independent of size, while at high temperatures there are
pronounced finite size tails, which decrease with increasingN.
Note thatRxy is not normalized to unity in the ground state
[rather atT ) 0 we haveRxy ) (l - 1)d0 sin Θ0, for a chain
with l effective beads (Figure 1) that have the lengthd0 atT )
0, andΘ0 is the angle between the director and thez -axis in
the ground state13].
Of course, Figure 4 allows only a rough estimation of the

transition temperature, since the curves for the different values
of N start to broaden somewhat already in the region of the
ordered phase. The situation is not better when one considers
the specific heatC, which should show a peak near the
transition. But Figure 5 shows only a very mild peak, and since
with the chosen computational effort there are still large
statistical errors, we have not attempted to analyze the specific
heat as a function ofN. The lack of a clear-cut peak in Figure
5 is evidence that the transition is second order and not first
order (otherwise one would see a smeared out remnant of the
delta function singularity representing the latent heat of the
transition). The fact that two different methods to estimateC
yield equivalent results is another check that thermal equilibrium
has been reached,41-43 which is a nontrivial finding for a
complicated model like the present one, for which equilibration
times may be huge and are difficult to assess a priori.
A more reliable estimation of the phase transition pointTc

comes from the cumulant intersection method.42,54 Defining
the order parameter squareM2 ) ex2 + ey2, we expect from the
finite size scaling theory nearTc that moments〈M2k〉 depend
on the temperature distance 1- T/Tc and the linear dimension
L basically via the scaled combinationL/ê, where the correlation
lengthê ∝ |1 - T/Tc|-ν,53,54

whereM̃2k(L/ê) is a scaling function which for large arguments
behave asM̃2k(L/ê) ∝ (L/ê)2kâ/ν in order to yield〈M2k〉Lf∞ ∝
ê-2kâ/ν ∝ |1 - T/Tc|2kâ, â being the order parameter exponent.
Note however the suggestion55 that the scaling function may
contain nonuniversal elements whenk is too large. Obviously
the power law prefactor in eq 7 is constructed such that it ensures
a sensible thermodynamic limit. The power law prefactors
cancel, however, if we form suitable combinations of such

Figure 4. Order parameterRxy plotted vs temperature for a coverage
F ) 2/x3 ) 1.155 and four choices of the number of surfactant
moleculesN as indicated. Data refer tol ) 7 effective monomers.

eb ) (1/N) ∑
ν)1

N

ebν (5)

Rxy ) 〈(ex
2 + ey

2)〉1/2 (6)

Figure 5. Specific heatC/Nl per effective monomer plotted vs
temperature for the choicel ) 7, N ) 144,F ) 1.155. Crosses show
data extracted from the standard fluctuation relation from fluctuations
of the internal energyE, while diamonds are data obtained from a
numerical differentiation of the〈E〉 vs T curve.

〈M2k〉 ) L-2kâ/νM̃2k(L/ê) (7)
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moments, such as the (unnormalized) fourth-order cumulant
gL(T),42,54

From eq 7 we recognize that nearTc gL(T) should be a function
solely dependent on the ratioL/ê, gL(T) ) g̃(L/ê). Sinceê
diverges atTc, curvesgL(T) for different choices ofL should
intersect atTc in a common intersection point. This “cumulant
intersection method”42,54 is well-known and established for the
study of phase transitions in simple systems, but has not yet
been applied to orientational transitions in surfactant monolayers.
Figure 6 showssdespite considerable statistical scatter of the
datasthat the method is useful for the present problem, too,
and we estimate the transition temperature asTc ) 1.80( 0.05.
Comparing the behavior of the order parameter in Figure 4

to corresponding data for simple two-dimensional models such
as Ising and Potts models,41-43,53,54we recognize characteristic
differences: first of all, finite size effects are much less
pronounced in Figure 4, and also the decrease of the order
parameter with temperature is much less steep. All these
observations indicate that in the present case the behavior is
much closer to mean field theory (whereâ ) 1/2) rather than
in these standard models. The fact thatgL(Tc) ≈ 1.6 is closer
to the value 1.59 for thed) 3 Ising class56 instead of the values
2.0 to 2.1 for the mean field universality class57,58 does not
change our conclusion because the convergence ofgL (Tc) often
is rather slow.59 Probably the reason for this mean field
character is that in the present case each effective monomer
interacts with many neighbors.
It is interesting to note that the order of the transition from

uniform to no tilt phases does depend sensitively on the detailed
degrees of freedom, which are included in the model, and the
nature of the interactions: using rigid rods (rather than flexible
chains as done here) grafted to a perfect lattice, Scheringer et
al.38 did obtain a first-order transition, while here we find a
second-order transition. Note that both models include strong
attractive forces between effective monomers and thus do not
contradict the result60 that there is no such transition with purely
repulsive forces.60

4. Coverage Dependence of the “Uniform to No Tilt”
Transition

The physical reason for the existence of tilted structures, of
course, is that at low coverage by tilting of the chains the density

in the monolayer increases as its height decreases, and in this
way a lower energy state can be found. Conversely, when the
coverage increases, also the density of the no tilt structure can
get large enough such that the effective monomers sit in the
minima of the Lennard-Jones potential of their neighbors.
This expectation is indeed borne out by our numerical

simulations (Figure 7). One sees that both the tilt angle atT)
0 (where it is maximal) and the corresponding order parameter
Rxy(T)0) decrease with increasing coverage, so the tendency
of the system to develop a tilted structure is less pronounced
the higher the density. Consequently also the critical temper-
atureTc for the transition from the uniform tilt structure to the
no tilt structure decreases with increasing coverage. From the
ground state analysis presented previously13 we know that atT
) 0 the transition occurs at a coverage ofFc ≈ 1.804. This is
a much larger coverage than analyzed in Figure 7.
It is also interesting to note that the transition to the no tilt

phase gets more and more rounded as the coverage increases.
This fact indicates that fluctuations are then more pronounced.
In our opinion this instability of the system against fluctuations
is related to the fact that a corrugated structure with uniform
tilt in nearest neighbor direction (Figure 3) may be more stable
than the usual structure with tilt in next nearest neighbor
direction (Figure 2). Only the latter has been included in the
ground state analysis of ref 13, and since there is also an obvious

Figure 6. Unnormalized cumulantgL(T) plotted vs temperature for
four different linear dimensionsL ) Lx (rememberLy ) Lxx3/2).

Figure 7. (a, top) Average of the absolute value of the tilt〈|Θ|〉 plotted
vs temperature for various coverages as indicated forl ) 7 andN )
100 molecules. Note that the nonzero value of〈|Θ|〉 in the no tilt phase
simply results from the fact that in a finite system the probability
distributionP(Θ) of the tilt angle is a Gaussian-centered zero but with
a small nonzero width, and〈|Θ|〉 is of the same order as this width. (b,
bottom) Order parameterRxy plotted vs temperatureT for various
coverages as indicated.

gL(T) ≡ 〈M4〉/〈M2〉2 ) 〈(ex
2 + ey

2)2〉/〈ex
2 + ey

2〉2 (8)
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problem of distinguishing which of these phases is truly
thermodynamically stable and which of them is only metastable,
we cannot yet present a reliable phase diagram. But we note
that the corrugated structure is also easily recognized from a
different behavior of the monomer density profiles (Figure 8).
In the uniform tilt structure, there are pronounced peaks for the
individual layersi ) 1, 2, ...,l - 1 corresponding to the labels
of the effective monomers along each chain, and these peaks
are well separated from each other by distinct minima. In the
no tilt phase, however, these minima are washed out in the
exterior region of the monolayer (only near the grafting plane
z ) 0 is the layered structure stabilized by the boundary
condition that the first effective monomer representing the head
group is fixed precisely at the surface plane). For the corrugated
structure of Figure 3, however, we recognize that each individual
layer is split into a double peak structure (Figure 8d).
It is also interesting to analyze the spreading pressure in our

model system. Note that the spreading pressure is a (2× 2)
tensor,

where the off-diagonal componentπA
xy ) πA

yx represents the
shear forces. From the virial theorem (the symbolX stands
for a tensorial product)

one can readily obtainπA calculating the forcesFbi on particle
i from the respective potentials. One can show that intramo-
lecular potentials do not contribute to the spreading pressure.22,61

While in the fluid phase there are no shear components andπA

is simply proportional to the unit tensor 1, this is not necessarily
true in the solid phases in theNATensemble, because by fixing
the linear dimensionsLx, Ly a priori we may strain the “natural”
structure of the system, and henceπA

xx * πA
yy may result.

Figure 9 shows that the pressure is isotropic in the no tilt phase
but becomes anisotropic in the uniform tilt structure, the
componentπA

yy being then consistently higher (note thaty is
the direction of the tilt, andx the direction normal to the tilt).
In fact, negative values ofπA

xx for low temperatures and low
coverages in Figure 9a indicate that the structure withLx/Ly )
2/x3 then is not thermodynamically stable but only meta-
stable. Fixing such a ratio of linear dimensions, one could
expect phase separation into a low-coverage (two-dimensional)
gas and the high-coverage equilibrium structure in the thermo-
dynamic limit: of course, due to unfavorable boundary effects
(and too small observation times), such phase separation was
never observed in our studies. We have observed however long-
lived defect structures induced through the boundaries. In any
case, these findings are an indication that, in principle, simula-
tions in theNπAT ensemble should be preferred; they should
more easily yield thermal equilibrium. Such simulations have

Figure 8. Total monomer density profilesFtot(z) in thezdirection forl ) 7 at four temperatures as indicated in the figure, for coveragesF ) 1.202
(a, top left), 1.253 (b, top right), 1.279 (c, bottom left) and 1.307 (d, bottom right). Note the splitting of the peaks corresponding to the individual
layers at the highest coverage atT ) 0.2. Note that all density profiles are normalized such that∫0∞dzFtot(z) ) l - 1 excluding the effective
monomer atz ) 0.

πA ) (πA
xx πA

xy

πA
yx πA

yy) (9)

πAA) NkBT1+ 〈∑
i

rbi X Fbi〉NAT (10)
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been carried out for the present problem,16 but unfortunately,
they are considerably more demanding in computer time. The
onset of a differenceπA

xx - πA
yy in Figure 9 can again be taken

as a rough indication of the transition temperature.

5. Chain Length Dependence of the “Uniform to No Tilt”
Transition

A variation of the chain length of the alkane chains is
interesting, since it is established from experiment that for fatty
acids there is a linear increase of phase transition temperatures
with chain length.8,10 While such an effect has readily been
reproduced with the rigid rod model of ref 38, it turns out that
in the present model the transition temperature to a good
approximation is independent of chain length (Figure 10). At
fixed coverage, both the average tilt angle〈|Θ|〉 and the order
parameter per bondRxy/(l - 1) practically superimpose inde-
pendent ofl. Analysis of the spreading pressure shows (Figure
11) thatπA

xx, πA
yy increase with increasingl in the no tilt phase,

while near the transition temperature there is rather little
dependence of the spreading pressure on chain length, and in
the uniform tilt phase the tendency is opposite, longer chains
exhibiting lower pressure.
We can only speculate why the present model does not show

any tendency for an increase of the transition temperature with
chain length. One possible reason is that the stabilization of
the structure by fixing the head groups in the planez ) 0 is
more effective the shorter the chains. This effect is obvious
when one compares the density profiles (Figure 12), where a

fluid-like layer (constant density) occurs on top of the monolayer
for the temperatureT ) 2.0 for l ) 7 andl ) 8, while for l )
5 andl ) 6 the layering effect caused by the first head group
plane atz) 0 has not yet fully decayed. Such an effect is not
expected to be present for real fatty acids at the air-water
interface, of course, where the natural roughness of such an
interface should allow significant fluctuations of the head groups
in the vertical direction as well. Suppressing these fluctuations
artificially, as done in our model, very likely raises transition
temperatures of the ordered phases, and this effect is expected
to be more pronounced the thinner the surfactant monolayer is.
Another possible source of less stability of thin layers is a
possible conflict between the interactions among head groups
as compared to interactions among the monomers of the alkane
chains. Thus the discrepancies between our model and experi-
ment give rather plausible directions for future improvement
of the model.

6. Concluding Remarks

In the present work, we have given a first orientation about
the phase behavior of a coarse-grained model for surfactant
monolayers at surfaces, such as fatty acids at the air-water
interface. Attention was focused on the transition from the
“uniform tilt” to the “no tilt” structure of the layer (an additional
transition from a solid to a liquid state occurs in this model as
well,13,16but for the chosen parameters this transition occurs at
a distinctly higher temperature, and it is not discussed further
in the present paper). We have studied, in theNAT ensemble,

Figure 9. Spreading pressure componentsπA
xx (a, top) andπA

yy (b,
bottom) plotted vs temperature forl ) 7 and various coverages.

Figure 10. Average of the absolute value of the tilt angle〈|Θ|〉 (a,
top) and order parameter per bondRxy/(l - 1) (b, bottom) plotted vs
temperature, at a coverageF ) 1.155 and four choices ofl as indicated.
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how this orientational phase transition depends on both the
density and the chain length of the molecules.
The present model has the advantage that it is simple enough

so one can analyze13 rather straight-forwardly the ground state
phase diagram atT ) 0, use the knowledge of the ground state
structure as an initial condition for Monte Carlo runs at low
temperatures, and thus generate well equilibrated system
configurations. We have shown that it is feasible to apply then
the standard techniques to analyze phase transitions from
simulations of small systems, such as the cumulant intersection
technique motivated by the finite size scaling approach.
A serious problem of theNAT ensemble is the fact that in

the “uniform tilt” phase the spreading pressure gets anisotropic,
since in an unconstrained system the perfect triagonal head
group-lattice is not the equilibrium structure, but rather this
lattice structure gets distorted into a centered rectangular lattice.
The periodic boundary condition of theNATensemble enforces
a perfect triangular lattice at low temperatures, however. While
we can locate the phase boundary from the “no tilt” structure
to the “uniform tilt” structure, possible further transitions at
lower temperature (changes in tilt orientation, for instance)
cannot be reliably investigated. In principle, this problem is
avoided by the use of theNπAT ensemble, but at the expense
of a much higher computational effort.16 Nevertheless this
ensemble is also preferable for a study of the melting transition
at higher temperatures: the strong increase ofπA at constantA
shows that in reality the model would show a strong expansion
of the layer with increasing temperatures ifπA is held fixed (at
a physically realistic value).

Thus it is clear that the present work can be viewed as a first
step only, and improvement of the model is desirable in several
directions. We have already emphasized that it is clearly too
crude to make the head groups virtually identical to the effective
monomers: in future work, we hence plan to study the
competition that arises when the Lennard-Jones parameters of
the head groups prefer a different lattice spacing than the
Lennard-Jones parameters of the effective monomers. Proceed-
ing with such step-by-step improvements, it will be possible to
identify the detailed mechanisms underlying the structure and
physical properties of real surfactant monolayers.

Figure 11. Spreading pressure componentsπA
xx (a, top) andπyy (b,

bottom) plotted vs temperature forN ) 100, F ) 1.155, and four
different chain lengths as indicated.

Figure 12. Total monomer density profilesFtot(z) in the z direction
for a coverageF ) 1.155 and several temperatures as indicated in the
figure, for l ) 5 (a, top),l ) 6 (b, middle), andl ) 8 (c, bottom). All
profiles are normalized such that∫0∞dzFtot(z) ) l - 1, excluding the
effective monomer atz ) 0.
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Appendix: The One-Dimensional Model

For the sake of completeness and in order to provide a
comparison, also the one-dimensional variant of the model has
been studied. The snapshot pictures (Figure 13) and the
variation of the order parameter (Figure 14) again give evidence
for a “uniform tilt” structure at low temperatures which gradually
disorders as the temperature is raised. Of course, on general
grounds one expects that atT > 0 in one dimension uniform

Figure 13. Snapshot pictures of the one-dimensional model withLx
) 30, l ) 7, and three temperatures:T ) 0.1 (a, top),T ) 0.8 (b,
middle) andT ) 2 (c, bottom).

Figure 14. Average tilt angle (a, top) and order parameter〈x〉 (averagex-component of the end-to-end vector of the chain) (b, bottom) plotted vs
temperature, for three choices of the system linear dimensionLx as indicated.
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tilt order at(Θ is unstable against the spontaneous formation
of kinks,36 so domains with positive tilt angle+Θ and negative
tilt angle-Θ should alternate. However, at low temperatures
the average domain size〈ld〉 is clearly much larger than the linear
dimensionLx chosen here, and thus the probability to have a
kink-antikink pair in the system is very small at the temper-
atures of interest.
It is also interesting to study the ordering at fixed temperatures

as a function of the spreading pressureπx (which is a scalar
quantity here); see Figures 15 and 16. The behavior at the
lowest temperature shown (T ) 0.2) resembles a first-order
transition atπx ≈ 32, while at higher temperature the decrease
of the order parameterXRMSwith increasing spreading pressure
is rather smooth. As mentioned above, in principle this variation
should be smooth at all nonzero temperatures, while the behavior
at T ) 0.2 presumably is a remnant of the zero-temperature
behavior. As expected, this “transition” atT ) 0.2 is rather
sensitive to the size of the system,15 but large statistical
fluctuations prevented us from performing a more detailed
analysis. Isotherms (Figure 16) are rather smooth, they exhibit
less structure than recent theories of one-dimensional lipid
models suggest,62 and hence they do not allow a straightforward
conclusion on the ordering behavior of the system, however.
Finally, Figure 17 shows the variation of the tilt angle with

the distance between the head groups (which is nothing but〈Lx〉/
N, of course). It is seen that for low density (large〈Lx〉/N) the
behavior at finite temperature is rather similar to the ground

state results, while near the transition from the “no tilt” to the
“uniform tilt” structure the variation at nonzero low temperature
is much more steep.
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