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The recent classification theory for phase transitions (R. Hilfer, Physica Scripta 44, 321
(1991)) and its relation with the foundations of statistical physics is reviewed. First it
is outlined how Ehrenfests classification scheme can be generalized into a general ther-
modynamic classification theory for phase transitions. The classification theory implies
scaling and multiscaling thereby eliminating the need to postulate the scaling hypothesis
as a fourth law of thermodynamics. The new classification has also led to the discov-
ery and distinction of nonequilibrium transitions within equilibrium statistical physics.
Nonequilibrium phase transitions are distinguished from equilibrium transitions by or-
ders less than unity and by the fact that equilibrium thermodynamics and statistical
mechanics become inapplicable at the critical point. The latter fact requires a change in
the Gibbs assumption underlying the canonical and grandcanonical ensembles in order
to recover the thermodynamic description in the critical limit.

1. Introduction

According to current theories of critical phenomena, the twin concepts of scaling
and universality play a central role for the physics of phase transitions.!™ The
twin concepts are however not equally universal. In fact it is becoming increasingly
apparent that scaling is a far more general concept than universality.> While scaling
applies very fruitfully to almost all systems with many degrees of freedom even
outside theories of critical phenomena the same is not true for the universality
concept. Both concepts arise simultaneously within the renormalization method for
the solution of models in statistical mechanics. Given their closely related origin,
the question, why the scaling concept is so much more general than the universality
concept, becomes important.

More important than the relation between scaling and universality is the con-
nection between scaling and classical thermodynamics. Classical thermodynamics
is a general theory of many-body phenomena which derives its generality from the
general validity and simplicity of its hypotheses. How can thermodynamics fail to
reproduce the most general and ubiquituous features of continuous phase transi-
tions? Why is it necessary to attach the scaling hypothesis as a “fourth law” to

773



774 R. Hilfer

thermodynamics? Is the generality of scaling laws related to the general validity of
the laws of thermodynamics? These fundamental questions remain unanswered by
current theories of statistical physics.

Despite of its fundamental importance and much initial interest,* the question
whether scaling can be obtained within thermodynamics was put to rest after the
theory of renormalization allowed to derive scaling within statistical mechanics.
Recently®™® the discussion about thermodynamic theories of phase transitions was
reopened and the objective of the present paper is to give a brief review over some
recent results.

Given the fact that thermodynamics is not concerned with the microscopic origin
of its potentials it is clear that a thermodynamic theory of phase transitions can
at best provide a mathematical characterization of singularities in thermodynamic
potentials along the lines of Ehrenfest® or discuss restrictions arising from the basic
laws. A thermodynamic theory cannot provide numerical values for critical point
exponents or explicit solutions for scaling functions. Nevertheless thermodynamics
can provide useful general information on phase transitions. This was demonstrated
by Milton and Fisher® who classified anomalous first order transitions arising in
systems with many-body interactions of indefinitely high order. The present paper

will review more recent results®® obtained by generalizing the classification theory
of Ehrenfest.®

2. Classification of Phase Transitions

Let me begin by recalling that Ehrenfest® defined a pth order transition as one
in which the jth order derivatives of a thermodynamic potential with j < p—1
are continuous while the pth derivative shows a jump discontinuity. To be more
specific consider a magnetic system whose free energy F(t, h) is written as a function
of reduced temperature t = (T — T¢)/T. and the ordering field A. The origin
(t =0, h = 0) is assumed to belong to a critical manifold, and represents the
critical point of interest. Let C : R — R?, s + (#(s), h(s)) be an arbitrary smooth
curve through the critical point such that ¢(0) = 0 and h(0) = 0. The phase
transition can now be classified by applying Ehrenfests idea to the singular part of
the free energy restricted to the curve C. Define the limits

d? Fing(t(s), h(s)) '
dsP

i — .
A=(C) = 31_1’1& (2.1)
for the pth derivative of the singular part of the free energy restricted to the curve C.
The order of the phase transition along the curve C was defined by Ehrenfest as the
smallest integer p(C) > 1 such that A*(C) # A~(C). Many authors have discussed
the inadequacy of Ehrenfests classification.>1%11:12 As a consequence, it has become
customary to distinguish only between first order and continuous transitions. Re-
cently, however, it was found in Refs. 6 and 7 that Ehrenfests classification remains
generally adequate and that analytic continuation in p yields a precise classification
of continuous transitions according to their order.
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The key step of Ref. 6 towards a quantitative distinction between continuous
phase transitions of different order was to rewrite (2.1) in terms of a finite difference
quotient. Rewriting (2.1) for the singular part of the free energy reads then

w0t (1) S0 () (=) 1(75)) e

where p is an arbitrary integer variable and the subscript of F has been suppressed
to shorten notation. This reformulation of Eq. (2.1) can be analytically continued
in p to give

0= g g 1t ()70 R 5) (7))
(2.3)

where now p € R. Using the analyticity away from the critical point it was further
shown in Ref. 7 that

o koo gk
T M1 (N 10) S
AT(C) = lim, T(=p)7|s] kz_:o(k—p)k! o @
It follows that there exists a unique pair of numbers p*(C) such that A*(C) = 0 for
p < p¥(C) and A*(C) = oo for p > p*(C). The dependence on the particular curve
has been indicated explicitly. This suggests the definition

P(C) =sup{p € Rlp > 1, A*(C) < o0} (2.5)

for the generalized order of the phase transition along the curve C. The difference
AA =]A* — A7 can be used to characterize the strength of the transition. For the
Ising transition along the temperature direction, one has pt = p~ = 2 — @ where «
1s the specific heat exponent. Similarly the order along the critical isotherm (¢ = 0)
is found to be 14+1/6 by exchanging the role of ¢ and h. Depending on the nature of
the critical point the order may or may not be path dependent. The former occurs
near a multicritical point.

3. Scaling in Thermodynamics

Analytic continuation of Ehrenfests thermodynamic theory leads directly to power
laws with nonclassical exponents as demonstrated in the previous section. In ad-
dition thermodynamic multiscaling arises because both amplitudes and exponents
are in general path dependent.®” Equation (2.4) shows that the singular path of
the free energy has the form

F(t(s), h(s)) = Y (C)|s|F©), (3.1)



776 R. Hilfer

where Y and p are functions of the parameters defining the curve C. Equation (3.1)
represents a very general form of power law scaling. It includes general forms of
multiscaling defined as a scaling form for which the critical indices may become
scale dependent!3-17

The last statement is readily verified by expanding the curve C around s = 0.
Consistency with Eq. (3.1) suggests to require that C can be expanded into a
Frobenius series having the general form [t(s)| = to|s|* + O(|s|***!) and |h(s)| =
hols* +0O(|s|*»t1). Obviously, in the limit s — 0, only the first term depending on
the parameters ¢o, hg, A; and A, remains important. To obtain the behaviour of F
in the ¢-direction near the critical point, one solves |t(s)| and inserts the result into
(3.1) and into |k(s)|. This gives |h| = a|t|® near the critical point with a = hotg®
and A = L%l Thus the free energy obeys the generalized scaling law

F(t, h) = Z(a, At (32)

where ¢(z, y) and Z(z, y) are arbitrary functions. From Eq. (3.2) arise two natural
forms of multiscaling if either one of the parameters a or A is expressed as a function
of t and h. In the first case the scaling variable is @ = |k|/|t|*, in the second case
A = log(|h|/a)/log |t|. While the first scaling variable has been used traditionally
the second has only recently appeared in the multiscaling context.!3-17

4. Transitions of Order Less Than Unity

The previous sections have established that thermodynamics provides a general
classification of phase transitions according to their order p and that this classifi-
cation theory implies scaling, or more generally multiscaling. It is then natural to
ask to what extent are the values p € R for the order restricted by the laws of ther-
modynamics. In particular, are transitions with order p < 1 thermodynamically
admissible or not? This question was investigated in Ref. 8 and a selection of the
results of that study will be discussed next.

In classical thermodynamics the energy function U(S, V) must be a convex,
monotonically increasing and almost everywhere differentiable function of the co-
ordinates S, entropy, and V, volume.!®1® Classically the state variables satisfy
0<V <oo, —00< S < 00, and —0 < U < 00, while for quantum systems..S
and U must also be bounded from below. These conditions are both necessary and
sufficient for thermodynamic stability. It is usually also required that U(S, V') be
single-valued but this is a less stringent requirement. Gibbs was willing to consider
multivaluedness in his theory of metastable states.

Consider a thermodynamic system described by the potential U(S, V). The
classification of a transition at a critical point (Se, V) is achieved by classifying the
transition along all possible thermodynamic processes crossing the critical point.
Let me for simplicity restrict the discussion to an isochore. If the transition at S,
is of order p, with p = p* = p~, then it follows from (2.1) and (2.5) that U(S) has
the form

U(S) = Up(S) + UX(S)IS = SeP, (4.1)
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where U,(S) is the regular part and the critical amplitudes A* are given as

lim U%(S) = A%. (4.2)
S5—s¥
Consequently any phase transition with S. < co and order p < 1 violates convexity
for U or the condition U < oo, and is thus forbidden by the laws of thermodynamics.
This appears to restrict thermodynamically admissible transitions to the range p >
1.
But the laws of thermodynamics do not require S. < co. To show this consider
an energy function of the form

U(S) = MS+U(S)S~P (4.3)

where p > 0 and 0 < M < oo is a finite constant. (7(5) is a single valued, mono-
tonically increasing, convex and almost everywhere differentiable function which is
assumed to have a Laurent-expansion of the form

U(S)=Uo+ Y UrS7F (4.4a)
k=1

and is assumed to be such that
lim U(S)S™? =Up. (4.4b)

The proposed U(S) is compatible with all the laws of thermodynamics and has a
phase transition of order p > 0 at infinite entropy. Note that the range 0 < p < 1
i1s now admissible while for S. < oo it was not.

. The energy function U(S) given in (4.3) implies that the system is restricted
to a finite temperature range 0 < T < T, where T, = M. This result appears to
establish a contradiction between thermodynamics and equilibrium statistical me-
chanics because the conventional canonical partition sum is defined for all values of
B = 1/kgT where kg denotes Boltzmann’s constant. I shall return to this problem
after exploring the consequences for the thermodynamic free energy. To explore
thermodynamics first, and statistical mechanics second is the correct methodolog-
ical order of investigation, because statistical mechanics must conform to thermo-
dynamics and not vice versa.

The singular behaviour of the free energy F(T') corresponding to the function

U(S) as given by Egs. (4.3) and (4.4) is obtained through a Legendre transformation

® FT) (14 p)Ve

Tt (T T)P (pU)TH

(4.5)

where as before T, = M. The free energy shows a finite temperature phase transition
of order (p/p+1) < 1 for all p > 0 as T, is approached from below.
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The foregoing considerations raise the question as to what happens if the system
is heated from a temperature T} < T, = M to a temperature To > T, = M by
placing it into an appropriate heat bath. If thermodynamics is applicable in the
vicinity of both temperatures it must be concluded that the transition form Tj
to Ty (or backwards) can never be achieved as a quasistatic process. The system
cannot exist in equilibrium at 7' = T¢ and it therefore drops out of equilibrium upon
heating from below Tt as well as upon cooling from above T.. Therefore a phase
transition of order p~ < 1 requires an accompanying transition of order 0 < p* < 1
when approaching 7; from above.

From this follows immediately that S(T') — Foo as T — T£. Thus transitions
with p < 1 are fundamentally asymmetric. Moreover the third law requires existence.
of a second “critical” temperature Ty > T, defined by the condition

S(Ty) = 0. (4.6)

Consequently the system cannot be described by thermodynamics (including the
third law) in the whole range T < T' < To. The transition is fundamentally
broadened by quantum effects. The fact that F(T) is now only locally but not
globally concave implies that U(S) becomes multivalued. This does not violate
the second law because there exists no quasistatic connection between different
globally convex sheets. The critical temperature T, can never be reached through
a quasistatic thermodynamic process, neither from above nor from below, and it
resembles absolute zero in this respect.

In addition to predicting a temperature range T, < T < Tj in which the system
cannot exist in equilibrium, thermodynamics predicts two more temperatures Ty
defining the critical region. They are the solutions of the tangent equations

_ (T = Py(Ty).

St(Ty) = S-(T-) . T,

(4.7)

An equation analogous to (4.7) may be derived also for transitions with p > 1 by
considering higher derivatives. Equation (4.7) or its analogues may be used as a
precise definition of the “critical region”. For transitions with p < 1 there exist four
characteristic temperatures which generally obey the inequalities T_ < T.. < T <
T, while for transitions with p > 1 the temperature T is absent.

Summarizing the preceding discussion, thermodynamics allows phase transitions
or order p < 1 if the potential U(S, V) is allowed to become multi-valued. Tran-
sitions with p < 1 are fundamentally broadened and they are asymmetric. This
immediately brings to mind nonequilibrium phenomena as a realm for possible re-
alizations and it was indeed found in Ref. 8 that the entire phenomenology of the
glass transition may be derived from the assumption that there exists a transi-
tion with p < 1 underlying the glass transition. But a discussion of those results
would go beyond the scope of this brief review. Transitions of order p < 1 will be
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called non-equilibrium phase transitions to distinguish them verbally from equilib-
rium phase iransitions having p > 1. Note that first order transitions are marginal,
and are therefore not covered by this distinction.

5. Consequences for Statistical Mechanics

Nonequilibrium transitions in the sense defined above present a serious problem to
statistical mechanics. The canonical free energy Fean(T, V) is a well defined convex
function of § over the whole temperature range 0 < 8 < oo. Correspondingly
Ucan(S, V) must be single valued. The convexity of F holds already before passing
to the thermodynamic limit.!® This raises the problem how convexity can ever
be violated in statistical mechanics, before or after taking the limit? Is there a
mathematical mechanism similar to the classification scheme in thermodynamics
through which statistical mechanics could become inapplicable at a critical point?
The answer was found to be positive in Ref. 8. The mechanism in question is the
same breakdown of the central limit theorem in the critical limit that is familiar from
equilibrium transitions.?? To define the critical limit consider a regularized system
with Hamiltonian H{¢} on a d-dimensional hypercubic lattice of volume V = L¢
and lattice spacing a. If L is the linear dimension of the system then (L/a)? is the
number of lattice points. Let the system be at a noncritical temperature 7' such
that its correlation length £ for energy fluctuations is finite. More generally £ is
the correlation length corresponding to those fluctuations which become critical.
Divide the system into blocks of size . Then there are N = (L/¢)? blocks each of
which contains M = (§/a)? degrees of freedom. The critical limit is defined as the

limit in which -
a0, L — o0, T— T.such that aL =¢. (5.1)

In this limit the number of uncorrelated blocks grows as N = a~¢ and the number
of degrees of freedom inside each block grows simultaneously as L? = V. The
correlation length £ diverges in units of a. The critical limit combines three limits:
1. the thermodynamic limit controlling the number of degrees of freedom in each
block; 2. the continuum limit controlling the number of uncorrelated blocks and 3.
the approach to the critical point. ‘

Let ¢; n(j) denote a physical observable 1 at lattice site j(j = 1, ..., M) inside
the block i(i = 1, ..., N)). The lattice sites inside each of the N blocks are labeled
from 1 through M. The probability distribution e=#"{¥} induces a probability
distribution on the v variables and therefore the sums

YN

N N
Z Yi N = Z > v, n () (5.2)

i=1 j=1

are in general random variables. The ; ny are called block variables. Note that the
block variables are uncorrelated by construction while the site variables ¢; n(j) are
strongly correlated in the critical limit.
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The ensemble interpretalion of statistical mechanics requires that the block vari-
ables become statistically independent and identically distributed in the critical
limit. The first equality of Eq. (5.2) implies that the distribution of the random
variable 9 becomes infinitely divisible in the critical limit.?! The usual assumption
of the real space renormalization group is even stronger. It demands that in the
critical limit the distribution of ¥y is identical to the distribution of the individ-
ual block variables v; N except for location and scale parameters. The shorthand

notation X £ ¢¥ + b will be used to indicate that the distributions of the random
variables X and Y differ only by location and scale parameters. If the renormal-
ization assumption is made then the question arises whether there exist constants
cy > 0 and by € R such that

e cnti N+ bN (5.3)

holds in the critical limit. This question has been studied in probability theory.?!
If Eq. (5.3) holds then the distribution of ¢y is stable and the norming constants
have the form ey = N¥ with 1/2 < v < 0o. The central limit theorem corresponds
to the case v = 1/2 where fluctuations become Gaussian. The value v = 1 is special
in several respects. For v > 1 not only correlations but also averages diverge.

The exponent v is determined by the Hamiltonian and it classifies possible crit-
ical behaviour in statistical mechanics. Transitions with 1/2 < v < 1 correspond
to equilibrium transitions with diverging correlations but finite expectation values.
Transitions with v > 1 correspond to nonequilibrium transitions with diverging ex-
pectation values. The exponent v is analogous to the thermodynamic order p and
must be related to it. If £ is the thermal correlation length and v the energy then
v is identified as the usual correlation length exponent. The relation with p is then
given by the hyperscaling relation

p=dv (54)

which holds for v # 1, v # 1/2. Remember that p = 2 — o where « is the specific
heat exponent. The cases v = 1/2, v = 1 (and also ¥ = 00) must be excluded
because in these cases the possible limiting distributions in (5.3) are not sufficiently
characterized by their values of v. It is important to note that Eq. (5.4) holds only
if the source of fluctuations is unique, resulting, for instance, from thermal motion.
In the presence of more than one source for fluctuations, e.g., in spin glasses having
quenched disorder, Eq. (5.4) need not hold.

The next question is how the conventional formulation of statistical mechan-
ics must be modified in order to be able to reproduce the divergence of thermal
expectation values when v > 1. The answer depends on the choice of ensemble.
The microcanonical formulation of statistical mechanics remains unchanged. If a
microscopic Hamiltonian gives rise to a p < 1 transition then qualitatively new
physics enters at the transition and it is necessary to reconsider the definition of
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the microscopic degrees of freedom. This necessity does not affect the microcanon-
ical formalism although it may require to switch to the microscopic Hamiltonian.
An example is the glass transition. Although it is possible to describe the glass at
low temperature as a slow liquid it is better to describe it as a solid with quenched
disorder. The nonuniqueness of the microscopic description implies multivalued-
ness of the microcanonical density of states and hence multivalued thermodynamic
potentials in agreement with the previous section.

For the canonical and grandcanonical formulations of statistical mechanics the
situation is different, because temperature appears explicitly in the basic probability
densities. If the Hamiltonian gives rise to a nonequilibrium critical point then care
must be taken to associate thermodynamic derivatives of the partition function,
such as temperature, with the correct sheet of U(S, V). This can be accomplished
through a renormalization of temperature. Therefore the basic assumption of statis-
tical mechanics in the canonical and grand canonical formulation must be modified.
The canonical ensemble is redefined as

o = S, 559

Zean = Tr{exp[—‘BH]; (5.5b)

Fean(T, V, N) = —(‘8)"' In Zean(T, V, N); (5.5¢)
ca_ 1

B= k(T -T.)° (5.6)

where T, is defined as the critical point with v > 1 which is closest to the tem-
perature T' > T, at which averages are to be calculated. This definition is unique
if absolute zero, T' = 0, is also interpreted as a nonequilibrium critical point. In
(5.5) V is the volume, N the number of particles and kp the Boltzmann constant as
usual. Equation (5.6) was called temperature renormalization in Ref. 8. Similarly,
if calculating in the grand canonical ensemble the parameter Sy must be replaced
by

Q, — #
Bu = m~ (5.7)

Apart from this renormalization of temperature all calculations of statistical aver-
ages can be performed in exactly the same way as when T, = 0 by replacing 8 with
‘B. This will ensure the correct correspondence with thermodynamics including the
special role played by temperature. Equations (5.5) through (5.7) emphasize and
elucidate a basic difference for calculations just above a nonequilibrium transition.
The value of T¢ is not known a priori. In general calculations require T; as exper-
imental input. Note that in the limit 7. — 0, Eq. (5.5} reduces to the traditional
form of the basic assumption.

Equation (5.5) applies also for p > 1 equilibrium transitions, and a similar need
for a prior: information occurs in that case as the problem of critical dimensions.
In order to perform an e-expansion for critical exponents one needs to know the
upper critical dimension. If the upper critical dimension is defined as the dimension
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beyond which the theory becomes Gaussian, i.e., v = 1/2, then from equation (5.4)
follows d = 2p. But the order p of the transition is not known before calculating
the exponents and thus the upper critical dimension is not known a priori. The
same applies to the lower critical dimension defined as the dimension at which the
theory becomes Cauchyian, i.e., where v = 1. To say that the Landau-Ginzburg-
Wilson theory has d; = 4 and dj = 2 is then equivalent to the assertion 1 < p < 2.
The Onsager solution has ¥ = 1 and p = 2 and therefore the solved model must
have d = 2. No conclusions may be drawn from this for the Ising model in any
other dimension, larger or smaller.

The concept of critical dimensions is useful in cases where experimental or nu-
merical information on v or « is known. Suppose it is known that p;, < p < p,
and v, < v < v,. It then follows that the dimensionality of the system must fall
within the range (pe/vy) < d < (pu/ve). This works well for equilibrium tran-
sitions. Suppose that one is confronted with an experimental determination of
v = 0.65 % 0.05 and wishes to test the idea that the transition is 3d-Ising iike where
Plsing = 1.89 £ 0.02. Then the system should fall into the range 2.6 < d < 3.2.

The discussions in this and the previous sections have shown that statistical me-
chanics as well as thermodynamics both contain within themselves a mathematical
mechanism which limits their own applicability. In traditional thermodynamics the
mathematical classification scheme reviewed in Sec. 2 implies that U(S, V) may
become multivalued. In statistical mechanics the limit theorems of probability the-
ory require to modify the temperature ensembles by renormalizing £ as in (5.6).
The physical phenomena corresponding to these mathematical mechanisms are di-
verging entropies in thermodynamics and diverging expectation values in statistical
mechanics. The appearance of singularities with p < 1 has been termed spontaneous
ergodicily breaking® in analogy to spontaneous symmetry breaking for p > 1 transi-
tions. In a nonequilibrium transition not only the symmetry of the Hamiltonian is
broken but the Hamiltonian itself breaks -down and the microscopic degrees of free-
dom must be redefined. Nonequilibrium transitions do not have order parameters
in the traditional sense because there exists no continuity across the critical point.

6. Conclusion

Thermodynamics allows to classify every phase transition according to its order
p > 0. Transitions with order p > 1 are well known as continuous phase transitions
in the theory of equilibrium critical phenomena. Transitions with order p < 1 are a
novel class of transitions. Although they are allowed by the laws of thermodynam-
ics, they correspond to nonequilibrium phase transitions in the sense that equilib-
rium theories become inapplicable at the critical point. First order transitions are
marginal. The classification theory gives rise to a very general form of multiscaling
from which traditional scaling emerges as a special case. This eliminates the need
to postulate scaling as a fourth law in the context of thermodynamics.
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The discovery of phase transitions with order p < 1 necessitates to reconsider
the connection between statistical mechanics and thermodynamics. Statistical me-
chanics is shown to contain an analogous classification scheme for phase transitions.
Each phase transition in statistical mechanics is characterized by the index v of a
stable distribution governing the critical limit. Equilibrium transitions are charac-
terized by 1/2 < v < 1, nonequilibrium transitions by v > 1. Transitions with v = 1
are again marginal. The classification schemes of thermodynamics and statistical
mechanics are related through the hyperscaling relation (5.4). The requirement
that calculations in statistical mechanics should reproduce the thermodynamic be-
haviour of the appropriate sheet of multivalued thermodynamic potentials requires
to modify the formulation of the canonical and grandcanonical ensembles. For
calculations above a nonequilibrium critical point, the temperature must be renor-
malized according to (5.6). The discovery of nonequilibrium transitions and the
predicted temperature renormalization are in perfect agreement with experiment.®

Acknowledgement

I thank the German-Norwegian Research Programme (Project B-2) for financial
support.

References

1. F. J. Wegner, in Phase Transitions and Critical Phenomena, Vol. 6, ed. C. Domb and
M. S. Green (Academic Press, 1976), p. 8.

2. M. E. Fisher, “Scaling, Universality and Renormalization Group Theory”, in Critical
Phenomena, ed. F. J. W. Hahne (Springer, 1983), p. 1.

3. L. P. Kadanoff, “Scaling and Universality in Statistical Physics”, Physica A163, 1
(1990).

4. H. E. Stanley, Introduction to Phase Transitions and Critical Phenomena (Oxford

University Press, 1971).

G. W. Milton and M. E. Fisher, Physica A138, 22 (1986).

R. Hilfer, Physica Scripta 44, 321 (1991).

R. Hilfer, Phys. Rev. Lett. 68, 190 (1992).

R. Hilfer, “Classification Theory for Nonequilibrium Phase Transitions”, JoGuU/UiO

preprint, February 1992; R. Hilfer, “Thermal Field Theory and Its Fundamental Con-

stant”, Nucl. Phys. B, in print.

9. P. Ehrenfest, Supplement No. 75b zu den Mitteilungen aus dem Kamerlingh Onnes-
Istitut, Leiden (1933).

10. H. B. Callen, Thermodynamics and an Introduction to Thermostatics (Wiley, 1985).

11. A. B. Pippard, The Elements of Classical Thermodynamics (Cambridge University
Press, 1957). '

12. L. Tisza, Generalized Thermodynamics (MIT Press, 1966).

13. A. Coniglio and M. Zanetti, Europhys. Lett. 10, 575 (1989).

14. U. Frisch and M. Vergassola, Europhys. Lett. 14, 439 (1991).

15. L. P. Kadanoff, S. R. Nagel, L. Wu, and S. M. Zhou, Phys. Rev. A39, 6524 (1989).
16. X.Z. Wu, L. P. Kadanoff, A. Libchaber, and M. Sano, Phys. Rev. Lett. 64, 2140 (1990).
17. M. H. Jensen, G. Paladin, and A. Vulpiani, Phys. Rev. Lett. 67, 208 (1991).

N o W



784 R. Hilfer

18. A. S. Wightman, in Convezity in the Theory of Lattice Gases, ed. R. B. Israel (Prince-
ton University Press, 1979).

19. H. B. Callen, Thermodynamics and an Introduction to Thermostatics (Wiley, 1985).

20. Ya. G. Sinai, Theory of Phase Transitions: Rigorous Results (Pergamon Press, 1982).

21. W. I‘;eller, An Introduction to Probability Theory and Its Applications, Vol. 11 (Wiley,
1971).



