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The paper introduces a classification of phase transitions in which each transition is characterized
through its generalized order and a slowly varying function. This characterization is shown to be appli-
cable in statistical mechanics as well as in thermodynamics albeit for different mathematical reasons. By
introducing the block ensemble limit the statistical classification is based on the theory of stable laws
from probability theory. The block ensemble limit combines scaling limit and thermodynamic limit.
The thermodynamic classification on the other hand is based on generalizing Ehrenfest’s traditional
classification scheme. Both schemes imply the validity of scaling at phase transitions without the need to
invoke renormalizaton-group arguments. The statistical classification scheme allows derivation of a
form of finite-size scaling for the distributions of statistical averages while the thermodynamic
classification gives rise to multiscaling of thermodynamic potentials. The different nature of the two
classification theories is also apparent from the fact that the generalized thermodynamic order is un-
bounded while the statistical order is restricted to values less than 2. This fact is found to be related to
the breakdown of hyperscaling relations. Both classification theories predict the possible existence of
phase transitions having orders less than unity. Such transitions are termed anequilibrium transitions.
Systems near anequilibrium transitions cannot be described by conventional equilibrium thermodynam-
ics or equilibrium statistical mechanics because of very strong fluctuations. Anequilibrium transitions
are found to exist in statistical-mechanical model systems. The identification of the Lagrange parameter
3 in the canonical ensemble becomes invalid if a reservoir and a system of the same substance are in
thermal contact and anequilibrium transitions are present. Based on the ergodic hypothesis and the
theory of convolution semigroups it is shown that near anequilibrium transitions the equations of motion
for macroscopic observables of infinite systems may involve modified time derivatives as generators of
the macroscopic time evolution. The general solution to the modified equations of motion exhibits very
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slow dynamics as frequently observed in a nonequilibrium experiment.

PACS number(s): 64.60.—1i, 05.70.—a, 64.70.Pf

I. INTRODUCTION

A number of recent publications [1-5] has reopened
the discussion concerning the classification of phase tran-
sitions. In [1] a thermodynamic classification of normal
and anomalous first-order phase transitions was given. In
[3] and [4] it was shown that also continuous phase tran-
sitions can be usefully classified by extending the thermo-
dynamic classification scheme of Ehrenfest. Based on the
generalized classification scheme a class of phase transi-
tions having order less than unity was conjectured to ex-
ist [5] and it was shown that this transition type is al-
lowed by the laws of classical thermodynamics. Howev-
er, the identification of the corresponding statistical-
mechanical classification theory remained incomplete.
Transitions of order less than 1 will be called anequilibri-
um transitions in this paper.

My objective in this paper is to discuss in more detail
the statistical-mechanical (SM) and the thermodynamical
(TD) classification theories. To this end the classification
scheme introduced in [3] and [4] will first be refined.
Phase transitions of order less than unity [5] will be dis-
cussed thermodynamically. Then the statistical-
mechanical classification is shown to be related to finite-
size-scaling theory and the breakdown of hyperscaling
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other than through the traditional mechanism [6]. Next
it is shown that canonical descriptions of systems which
are a subregion of an infinite sample may require a renor-
malization of temperature. Finally some general conse-
quences for the dynamics of critical systems will be dis-
cussed.

Discontinuities and divergences of thermodynamic po-
tentials along curves which cross a critical manifold can
be characterized mathematically through their general-
ized orders A=1 (with AER) as well as their strengths
[3,4]. Besides providing a convenient language the
classification scheme implies multiscaling for thermo-
dynamic phase transitions [3,4]. Multiscaling has been
defined as a scaling form in which the critical exponents
are functions of the scaling variables [7]. The simplest
form of multiscaling occurs at a multicritical point but
recently more interesting cases have been discussed
[8-16]. The derivation of multiscaling from analytic
continuation of the Ehrenfest scheme represents a deriva-
tion of thermodynamic scaling results without the use of
renormalization-group ideas.

Given these results it was natural to ask whether phase
transitions of order A < 1 are thermodynamically admissi-
ble or not. A rash answer would be negative because
such transitions appear to violate thermodynamic stabili-

2466 ©1993 The American Physical Society



48 CLASSIFICATION THEORY FOR ANEQUILIBRIUM PHASE ...

ty requirements. A more cautious response, however, is
useful. It was shown in [5] that transitions having A <1
are allowed by the laws of thermodynamics. Here the
consequences of this discovery for statistical mechanics
will be studied in more detail while more general conse-
quences have been discussed elsewhere [17].

II. THERMODYNAMICS

A. Refined thermodynamic classification scheme

Let me begin by recalling the definition of the general-
ized order of a transition [3,4] as well as some of the
mathematical requirements of thermodynamics [18-22].
The energy function U(S,V,N) must be a single-valued,
convex, monotonically increasing, and almost everywhere
differentiable function which is homogeneous of degree 1
and has the coordinates S, entropy, V, volume, and N
particle number. Classically the state variables satisfy
0<V<w,05N<w, —0<S<ow,and —o<U< o,
while for quantum systems S and U must also be bounded
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when pg,, denotes the singular part of the pressure
P =Dreg T Psng and p,, is the regular part. In Ehrenfest’s
original classification scheme [26] a phase transition was
defined to be of order n €N iff

HC,n;0)~ AO(0)+B (2.3)

for 0 =0 where A4,B €R and O(o) denotes the Heaviside
step function defined as ©(o)=1 for o >0 and 6(c)=0
for 0 <0. Equation (2.3) expresses a finite jump discon-
tinuity in the nth-order derivative of the pressure.

In [3] and [4] the classification scheme of Ehrenfest
was generalized by extending the order n from integers to
real numbers. A phase transition was defined to be of or-
der A*ER iff

A(@)=sup{q ER| 1ir{)1+.‘7(@,q;a)< o} (2.4)

which is sufficiently general to allow confluent logarith-
mic singularities. Note that the order will in general de-
pend upon the particular choice of thermodynamic pro-
cess @. A phase transition of order A implies that f
behaves asymptotically like a power function (of index A)
upon approach to the critical point [3,4]. This observa-
tion relates the order of the transition to the critical ex-
ponents as

(2.5a)
(2.5b)

k6=2—-a5=2—a N
Ay=2—ay=1+1/5 ,

where A denotes the thermal order and Ay the order
along the direction of the field conjugate to the order pa-

T
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from below. These conditions are both necessary and
sufficient for thermodynamic stability.

The classification of phase transitions is usually dis-
cussed in terms of the free-energy density or the pressure
p [1,3,4] because other thermodynamic potentials are
continuous for large classes of interactions [1,2,23]. The
pressure is the conjugate convex function [24] to the ener-
gy density u(s,p)=U(S/V,1,N/V)/V as a function of
entropy density s=S/V and particle-number density
p=N /V according to

p(T,,u)=ssup[yp+Ts-—u(s,p)] , 2.1
P

where u denotes the chemical potential and 7 the temper-
ature. The existence of phase transitions requires the
thermodynamic limit ¥— « to be taken appropriately.
Consider a thermodynamic process C:R—R?
o—>(T(o),ulo)) parametrized by o such that
T(c=0)=T,, ulo=0)=pu, corresponds to a critical
point. The classification scheme for phase transitions
[3,4] is based on the fractional derivatives [25]

o—4I— (2.2)

[

rameter. In Eq. (2.5) ag=a and ay=1—1/8 are the
thermodynamic fluctuation exponents for the energy den-
sity & and the order-parameter density ¥ in Fisher’s no-
tation [6,27], where 8§ denotes the equation-of-state ex-
ponent and a the specific-heat exponent.

In this paper a mathematically more refined
classification scheme will be introduced based on the ob-
servation that the function F(@,n;o) in Ehrenfest’s
scheme (2.3) is a slowly varying function [28] of 0. A
function A(x) is called slowly varying at infinity if it is
real valued, positive, and measurable on [ 4, «) for some
A >0, and if

A(bx)

o A 26

for all b>0. A function A(x) is called slowly varying at
zero if A(1/x) is slowly varying at infinity [28,29]. The
function F(C,n;o) in (2.2) is slowly varying for o —0+
as well as for 0 —0—. Therefore in this paper a phase
transition is defined to be of order AT iff

. F(C,AEb /o)
m —
otw FHC,AE1/0)

for all b >0. This means that F(@,AT;0) varies slowly as
a function of o for 0 —0=x. The generalized order in this
refined classification scheme is the same as in the scheme
(2.4) because every slowly varying function A(x) has the
property that lim, _ ox ~€A(x)= o0 and lim, _,yx A(x)=0
for all €> 0.

In the refined classification scheme (2.7) each phase
transition is classified by its generalized left and right or-

=1 (2.7)
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ders At and functions A* which are slowly varying at the
critical point. The classification scheme also allows to
distinguish differences between transitions having the
same order. The two-dimensional Ising model is of
second order (A,A)=(2,log) while the mean-field theory
will be classed as second order (A,A)=(2,0) where O
denotes the Heaviside step function defined above.

Phase transitions of order A=2 occupy a special place
in the thermodynamic classification scheme because they
are self-conjugate under Legendre transformation as will
be shown next. Consider a thermal phase transition of
order (A,A) for 7—0% in p(7,u) where 7=(T—T,)/T,
and p=p, is constant. Then p(7) behaves as

p(r)~TA(T) (2.8)
for T—T," where A(7) is slowly varying for 7—07.

Define a slowly varying function L (x) through

A= L*=D AR 2.9)
It is a standard result in the theory of slowly varying
functions that for A>1 the conjugate convex function
u(o)=sup,[70 —p(7)] behaves as

u(a)~—1*-07‘*L € (AF—1/A* (A% (2.10)
for 0 —0" where A* > 1 is given by
A
= 2.11
ar=t @.11)

and L*(x) is the slowly varying function conjugate to
L(x) [29]. For every L(x) slowly varying at zero there
exists a conjugate slowly varying function L*(x) which is
defined such that

lirnOL(x)L*(xL(x))=1 , (2.12)
lin})L*(x)L(xL"‘(x))=1 R (2.13)
L**(x)~L(x) for x—0. (2.14)

L *(x) is asymptotically unique in the sense that if there
exists another slowly varying function L’(x) with the
properties (2.12)—(2.14) then L'(x)~L*(x) for x—0.
Thus to every phase transition of order (A, A) in the pres-
sure there corresponds a conjugate transition in the ener-
gy density which is of order (A*,A*) with A* given by
(2.11) and A* related to L* as A to L in (2.9). Phase
transitions of order A=2 are self-conjugate in the sense
that A=A*. Phase transitions of order A=1 are conju-
gate to transitions of order A*= o and represent a spe-
cial limiting situation.

B. Anequilibrium phase transitions

This section turns to the question posed in the Intro-
duction whether phase transitions of order A <1 are ther-
modynamically permissible. Consider u(s,p) for a ther-
modynamic process in which the density p=N /V is kept
constant and which crosses a critical point at s,. If the
phase transition at s, is of order A=A"=A" then u(s)

has the form

u($) =t (s)+ut(s)s—s.[*, (2.15)

where u,,(s) denotes the regular part and u*(s) varies
slowly near s,. Consequently any phase transition with
s, < o and order A <1 violates the requirement of con-
vexity for u or the condition u < « (for A <0), and is thus
forbidden by the laws of thermodynamics. This appears
to restrict thermodynamically admissible transitions to
the range A > 1.

Although the restrictions on the thermodynamic state
variables require a finite entropy or energy density, i.e.,
s < oo or u < o, the laws of thermodynamics do not re-
quire s, < o, i.e., finiteness for the critical point. In fact
the simplest solid-fluid phase diagrams in the (s,v) plane
are consistent with a critical point at s, = c terminating
the solid-fluid coexistence. To exhibit the theoretical pos-
sibility of such infinite entropy density transitions it
suffices to consider an explicit example which is compati-
ble with the mathematical requirements specified in the
previous section. Such an example is given by the follow-
ing single-valued, continuous, and differentiable energy-
density function

u(s)=as+b(s*+c?)!"?, (2.16)

where a,b,c >0 and a >b. Clearly T(s)=0u /ds >0 and
3%u /3s*>0 and thus u (s) is convex and monotonically
increasing. u (s) fulfills all requirements for the energy
density of a thermodynamically stable system. Note that
u(s) exhibits transitions of order Af=1 at s,=+ 0.
Moreover the thermodynamic system described by Eq.
(2.16) has the curious property that the set of possible
temperatures is restricted to the range

a—b=T <T<Tp,=a+b . 2.17)

The pressure obtained from Egs. (2.1) and (2.16) reads as
p(T)={c?[b?—(T—a)*]}!? (2.18)

and it again exhibits the restricted temperature range.
The pressure (2.18) has transitions of order k;t=% at T,
and T,,, respectively. More generally transitions of or-
der A, >0 in u are related to transitions of order

Msz
.1

(2.19)

in p [5]. Note that now 0<A, <1 while0<A, < .

The simple example (2.16) demonstrates that thermo-
dynamics allows two fundamentally different types of
phase transitions: On the one hand traditional phase
transitions of order k;t = 1 and on the other hand unusual
phase transitions of order 0<)»1;,i <1 for which the set of
possible equilibrium temperatures appears to be restrict-
ed to a subset of the absolute temperature scale. The in-
terest in this observation derives from the fact that equi-
librium thermodynamics formally admits transitions
whose presence would restrict its own applicability in the
sense that the limiting critical temperatures 7T, and
T ,.x cannot be reached in any quasistatic thermodynam-
ic process. A quasistatic process is a sequence of state
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changes which proceeds infinitely slowly compared to the
time scale for the establishment of equilibrium. This
raises the question of whether the identification of the ab-
solute temperature scale with the ideal-gas temperature
scale remains valid when A <1 transitions are present. In
such systems T, plays the role of absolute zero and
Tppax that of T=co. In [5] it was suggested to circum-
vent the self-limitation to a finite temperature range
through multivalued thermodynamic potentials and
phase transitions of order A <1 were called nonequilibri-
um phase transitions because transitions between
different sheets cannot occur quasistatically. The present
paper, however, restricts all thermodynamic functions to
remain single valued. In order to avoid confusion with
standard literature usage of the terminus ‘“‘nonequilibri-
um phase transitions” I will use instead the word ane-
quilibrium phase transition from now on.

The entropy density s(7)=(dp/dT), derived from
(2.18) diverges to —o as T—T;,+. Therefore the
third law implies the existence of another special temper-
ature T, defined by the condition

s(Ty)=0 (2.20)

of vanishing entropy density. Because the third law is of
quantum-mechanical origin the temperature T, is expect-
ed to be the minimal temperature for quantum systems
while T ;, is the minimal temperature for classical sys-
tems. Clearly Ty > T, is always fulfilled.

III. STATISTICAL MECHANICS

A. Ensemble limit

Given the thermodynamic classification of phase tran-
sitions it is natural to ask whether anequilibrium phase
transitions and a statistical-mechanical classification cor-
responding to the thermodynamic scheme exist for criti-
cal behavior in statistical mechanics. These questions are
discussed in the following sections. Statistical mechanics
for noncritical systems is based on the law of large num-
bers [30]. This suggests that the theory of critical phe-
nomena may be founded in the theory of stable laws. Al-
though natural this idea is usually rejected because the
divergence of correlation lengths and susceptibilities ap-
pears to imply that the microscopic random variables are
strongly dependent [31-33] while the standard theory of
stable laws applies only to weakly dependent or indepen-
dent variables [28,34,35].

The problem of strong dependence arises from the par-
ticular choice of performing the infinite-volume limit and
the continuum limit. One usually starts from an infinite-
volume lattice theory and then asks for possible continu-
um (or scaling) limits of the rescaled infinite-volume
correlation functions [33]. Depending on whether the
rescaled correlation lengths remain finite or not one dis-
tinguishes the “massive” and the “massless” scaling limit
but in either case the infinite-volume limit has been per-
formed before taking the scaling limit.

The idea of the present paper for basing a statistical
classification of critical behavior on the theory of stable
laws is related to that of finite-size scaling [36—40] and
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uses a different method of taking infinite-volume and con-
tinuum limits. Consider a d-dimensional simple cubic
lattice with lattice spacing a >0 in ‘‘block geometry,” i.e.,
having finite side length L < o in all d directions. Let X
be a scalar observable associated with each lattice point.
The lattice represents a discretization of a large but finite
statistical-mechanical system [41]. Let the lengths a,L
and the parameters II of the statistical-mechanical sys-
tem be such that

0<a <<€x(I)<<L < o . (3.1)

Thus the system decomposes into a large number of un-
correlated blocks of linear extension £y. The ensemble
limit is defined as the simultaneous limit in which

a—>0, Lo, II-II,

such that £x(I1)—>E&x(I, )< o . (3.2a)

Two cases can be distinguished: In the critical ensemble
limit

0<éx(Il)< o0, (3.2b)
while for the noncritical ensemble limit
§X(HC)=O . (3.2¢)

If N=(L /£x)? denotes the number of uncorrelated
blocks of size £y and M =(£y /a)? is the number of sites
in each block then NM =(L /a)? is the total number of
lattice sites. The correlation length £y diverges in units
of a in the critical ensemble limit but stays finite in the
noncritical ensemble limit. Note also that N — oo in the
critical ensemble limit while N remains finite in the mas-
sive scaling limit or the finite-size scaling limit [37]. The
critical ensemble limit generates an infinite ensemble of
uncorrelated blocks. This feature allows the application
of standard limit theorems for uncorrelated or weakly
dependent variables.

Let X;y(j) denote the scalar observable X at lattice site
jG=1,...,M)inside block i (=1, ...,N). Then

M
Xiv= 2 Xiy(j) (3.3a)
j=1

are the block sums or block variables for block i and

N
Xy= 3 Xiy

i=1

(3.3b)

is the ensemble sum or ensemble variable for the total sys-
tem. The X;y(j) are random variables and so are X;y and
Xy. Let

Xy=(Xy—Cy)/Dy (3.4)

denote the normed and centered ensemble sum and let
Py(x)=Prob{Xy <x} be the probability distribution
function of X,. Assuming translation invariance the
block variables are uncorrelated and identically distribut-
ed. Therefore the limiting distribution of X is stable in
the critical ensemble limit [28,34,35]. More precisely, if

P(x)= lim Py(xDy+Cy) (3.5)
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denotes the limiting distribution function of the normed
ensemble sums (3.4) then the characteristic function
p(k)szwexp(ikx )JdP(x) of P(x) has the representa-
tion

Inp(k)=iCk —D|k|® , (3.6)

1—i§—|ll—sz(k,m)

where @, §, C,D are constants whose ranges are

O<w=<2, (3.7a)
—1<¢<1, (3.7b)
—w<C<ow, (3.7¢)
D=0, (3.7d)
and
tan mz—ﬂ- , for m#1 ,
wlk,m)= (3.8)

2nlk|, for m=1.
m

The constant @ is called the index of the stable distribu-
tion while the parameter { characterizes its symmetry or
skewness.

If the limit in (3.5) exists and D >0 then the norming
constants D, must have the form [28,35]

Dy=N!3A(N), (3.9)

where the function A(N) is slowly varying at infinity.
The case D >0 corresponds to the critical ensemble limit,
while for D=0 the limiting distribution P(x) is degen-
erate, i.e., concentrated at a single point, corresponding
to the noncritical ensemble limit.

The preceding limit theorem implies that in the limit
N — oo the distribution function of the block sums can be
approximated as

Cy

Py(x)=P ;0,6,C,D |, (3.10)

N

where the notation P(x;®,§,C, D) is introduced for stable
distributions of index @. The objective in the next section
will be to establish a large-N scaling result for Py(x). To
obtain it more information on the common distribution
of the individual block variables is required.

The limiting distributions P(x) of the individual block
variables Xy are independent of i because of translation
invariance and they belong to the domain of attraction of
a stable law. The class of possible block variable limits
can thus be characterized as follows [35]: In order
that the characteristic function p(k) of P(x) belongs to
the domain of attraction of a stable law whose charac-
teristic function has the logarithm —D|k|®[1—i&(k/
|k e(k,w)] with @, &, D, and o(k,®) as in (3.6)—(3.8), it
is necessary and sufficient that in the neighborhood of the
origin k=0

Inp(k)=iCk —D|k|®A(k) , (.11

1—i§|—:|—w(k,m)
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where C is a constant and A(k) is a slowly varying func-
tion for k —0.

Equations (3.9) or (3.11) show that each ensemble limit
N,M — o is labeled by a set of numbers @,&{,D with
ranges as in (3.7) and a slowly varying function A. While
D differentiates between critical and noncritical limits @,
£, and A differentiate between different critical ensemble
limits. This characterization is reminiscent of the ther-
modynamic classification scheme and suggests a closer
correspondence. To establish such a correspondence it is
necessary to relate the generalized orders A in the ther-
modynamical classification scheme to the numbers @, §
occurring in the characterization of ensemble limits.
This will be done in the next section.

B. Finite-ensemble scaling

The purpose of the present section is to investigate the
N dependence of the probability distribution for ensemble
sums Xy in the limit of large N. The scaling relations
emerging from this analysis will be called finite-ensemble
scaling because they are closely related to finite-size-
scaling relations by virtue of the similarity between the
critical ensemble limit defined above and the finite-size-
scaling limit [37]. The question is how to choose the
norming and centering constants Cy,Dy in (3.10) given
the characterization (3.11) for the individual block vari-
ables Xy .

The centering constants Cy in Eq. (3.10) can be elim-
inated from the problem by setting Cy = —C'D, where

C, for m#1 ,

= C+;27—§D D , for w=1, (3.12)
and with this choice (3.10) becomes
X _CN
PN(.X)%P ;m,{,‘,C,D
Dy
— x .
= m;,m,é‘,O,l . (3.13)

Although the general form of Dy is known from (3.9) it
remains to establish the relationship between the slowly
varying functions in (3.9) and (3.11). Once this relation is
established Eq. (3.13) represents a finite N scaling formula
for a system in which the individual block variable limits
are characterized by (3.11).

The limiting distribution functions of the individual
block variables X,y have characteristic functions as given
by (3.11). Introduce

R(k)=|k["(k®), (3.14)
where the slowly varying function (x) is defined through
A(k)=8(k®) (3.15)

and A(k) is the slowly varying function appearing in
(3.11). For sufficiently large N the norming constants D
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are chosen as

D§1=inf{k>0:R(k)=%] (3.16)
J

k

R _

N Dy

lim {p|— = lim exp{—NR |—

N—ow N N—>ow N 1
R —_

Dy

=exp[-—D|k|m

1+i§ﬁw(k,m)

It follows that D =NR(1/D) for sufficiently large N and
this determines Dy, in terms of A(k) and @ as
1/w

N , (3.18)

DR*(N1)

Dy

where 2*(x) is the conjugate slowly varying function to
R(x) defined in Eq. (3.15). The slowly varying function
A(N) appearing in (3.9) is thus given as

l—l/m

in terms of A(k) appearing in the limiting distributions
(3.11) for the individual blocks.

Finally Eq. (3.13) gives the finite-ensemble scaling for
the distribution of ensemble variables Xy in the large-N
limit

A(N)= |DL* (3.19)

xg*l/m(N—l)

i/ : (3.20)

PN(x):P ;mygyo)l

More interesting than the ensemble variables X, are the
ensemble averages defined as Xy =X, /(NM). The proba-
bility distribution function Py(X) for the ensemble aver-
ages X has the finite-ensemble-scaling form

= = |xe*l/aN)
Py(x)=P W;ﬁ),g,o,l . (3.21)

If N=(L /&y )% is expressed in terms of the system size L
they are seen to be closely related to finite-size-scaling
theory. Note that Egs. (3.20) and (3.21) are derived
without reference to a particular model or approximate
critical Hamiltonian such as the Landau-Ginzburg-
Wilson Hamiltonian. They are generally valid for all
translation-invariant critical systems, i.e., systems for
which the basic limit distribution (3.5) is not degenerate.

C. Identification of exponents
and statistical classification scheme

It is now possible to consider the correspondence be-
tween the statistical classification in terms of @, £, and A
and the thermodynamic classification in terms of A and

CLASSIFICATION THEORY FOR ANEQUILIBRIUM PHASE ...
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which is possible because R (k)—0 for k—0 and R(k) is
continuous in a neighborhood of zero. Then for small k
(35]

+i§|—:—|w(k,m)

(3.17)

A. To do this the index @ in (3.20) and (3.21) must be re-
lated to the critical exponents. This is immediately possi-
ble from (3.21) by considering for example the order pa-
rameter W. Setting X =V, taking the derivative with
respect to X in Eq. (3.21) and using N =(L /£y )? one finds
that the kth moment ( ¥*) of the order parameter scales
with system size as (¥X)~L*k®=1/8 " Comparing to
standard finite-size-scaling theory [36-40] relates @ to
the thermodynamic exponents as

—r+2B8

v+B
where 3 and y are the order parameter and susceptibility
exponents, and Ay was defined in (2.5). Similarly for the
energy density X = & one finds

(3.22)

1
7 :1+g'=;\.\p,

Bg=2—a=As , (3.23)

where A, is the thermal order of (2.5). This suggests that
the correspondence between the statistical and the ther-
modynamic classification of phase transitions is given
generally as @=A. Note that second-order (i.e., self-
conjugate) phase transition occupy again a special place
in the statistical classification scheme because of the
bound @ =2 in (3.7a). This fact will be related below to
violations of hyperscaling relations.

Anequilibrium phase transitions with order A <1 cor-
respond to stable limit distributions with index w<1.
Thus anequilibrium transitions are not only predicted by
equilibrium thermodynamics but also by equilibrium sta-
tistical mechanics. The fact that anequilibrium transi-
tions restrict the range of equilibrium temperatures as in
(2.17) is mirrored by the fact that expectation values of
averages diverge in the critical ensemble limit for an-
equilibrium critical points with @ < 1. This implies that
the traditional formulation of statistical mechanics be-
comes inapplicable at anequilibrium critical points just as
traditional thermodynamics becomes inapplicable.

While the general correspondence between A <1 and
@ <1 is reassuring it is not sufficient to establish the ex-
istence of anequilibrium phase transitions in statistical
mechanics. To demonstrate their existence requires a
possibly exact calculation of the partition sum for a con-
crete statistical-mechanical model. It is possible to
demonstrate the existence of anequilibrium transitions in
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this way. A concrete example occurs in what is perhaps
the simplest model in the theory of critical phenomena,
namely, the one-dimensional Gaussian model [42]. This
finding is important because the Gaussian model is of
central importance in the modern theory of critical
phenomena as the starting point for systematic pertur-
bative calculations [6]. The model Hamiltonian is
FH=—(J/2)TVY;¥; where the sum runs over all nearest-
neighbour pairs of lattice sites 7, j and the continuous spin
variables ¥; have a Gaussian single spin measure propor-
tional to exp[ —oW?]. The limiting free-energy density
for the one-dimensional Gaussian model is well known
and it reads

£ _1 1

1
— =1 ——1 2 + 2__gp2\1/2 .
%y 5 In7—=-1n 2[0 (c"—K*)'/*] |, (3.24)

where K=J/(kzT) and ky denotes Boltzmann’s con-
stant. The exact free-energy density (3.24) for the one-
dimensional Gaussian model exhibits an anequilibrium
transition of order Agz=1 at the critical temperature
Toin=J/(kgo).

D. General mechanism for the violation of hyperscaling

The identification A=o cannot hold for all values of
A >0 because @ =2 is required by (3.7). The new restric-
tion @ =2 is now seen to be related to the violation of
hyperscaling and the breakdown of finite-size scaling for
thermal fluctuations in dimensions d >4. Consider the
class of statistical-mechanical models obeying the Le-
bowitz inequality for the four-point functions and in-
frared bounds for the two-point functions [33]. For such
models the susceptibility exponent ¥ obeys ¥ =1 and the
correlation-function exponent 7 obeys 7= 0. Then using
@ =2, the Fisher inequality ¥ =(2—m7)v, the hyperscal-
ing relation dv=2—a, and relation (3.23) the following
chain of inequalities is obtained:

d=dy=Q—n)dv=02—7)2—a)

=Q2—nw<202—n)<4. (3.25)

For general models hyperscaling may fail at m=2 be-
cause there are distributions with nonalgebraic tails
within the domain of attraction of the normal law. Note
that in this way the inequality @ <2 provides a general
mechanism for the breakdown of hyperscaling indepen-
dent of identifying dangerous irrelevant variables in a
particular model. Analogous breakdown phenomena are
expected to occur for critical fluctuations in observables
other than the energy density.

IV. TEMPERATURE RENORMALIZATION

The presence of anequilibrium transitions in a
statistical-mechanical system & implies strong fluctua-
tions near the transition point. In fact at the transition
point the fluctuations become so strong that a canonical
or thermodynamical description of the system becomes
impossible because the ensemble-averaged energy or en-
tropy diverges in the infinite system. The underlying mi-
croscopic dynamics, however, remains well defined in
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terms of a classical or quantum-mechanical microscopic
Hamiltonian. The total energy of the system remains
defined and conserved and the system can be described
microcanonically. If the system & undergoes anequilibri-
um transitions at TS, and TS, then heating or cooling
across TS, or TS, cannot occur quasistatically and the
system must fall out of equilibrium when attempting it.
Consider now the usual setup for the canonical ensem-
ble in which & is weakly coupled to a reservoir . What
happens if the reservoir itself undergoes anequilibrium
transitions at 7%, and T%_? Clearly, the combined sys-
tem R U has a Hamiltonian description and can always
be treated in the microcanonical ensemble. But what
happens to a canonical description? One expects that the
canonical description should remain applicable as long as
T%. is very small and TX _ very large, i.e., for
T8, /T <<1<<T% /T, while the temperature depen-
dence of the results should become modified otherwise.
The temperature dependence of the results of canonical
calculations enters through the Lagrange parameter 3(T)
for the average energy. The Lagrange parameter 3 ap-
pearing in the canonical and the grand canonical ensem-
bles is a universal (i.e., © independent) function of abso-
lute temperature 7" and at the same time a property of the
reservoir R. In fact if the reservoir R consists of a large
number of weakly interacting subsystems (e.g., particles)
then B! is proportional to the limiting energy per sub-
system of R [30]. Because S is related to the energy den-
sity of the reservoir unusual temperature dependence
must be expected whenever the reservoir substance itself
shows anequilibrium transitions. If the reservoir is de-
scribed quantum mechanically then T§ defined by Eq.
(2.20) will be the lowest temperature of the reservoir cor-
responding to the ground state of the reservoir Hamil-
tonian. For classical reservoirs T, will be the lowest
temperature. If the reservoir has no anequilibrium tran-
sitions, i.e., if T =0 and T%,, = o then the temperature
dependence must have the usual universal form,

_ 1
kT

B(T) 4.1

If, however, T% >0 and T%,, < o the form (4.1) cannot
be correct. The energy per subsystem of the reservoir is
proportional to 8! and it diverges as T approaches

T% .. Thus for finite T%,, < o one must have
BT )=0 (4.2)

and this contradicts (4.1) because 1/(kpT% . )>0. Simi-

max
larly
B~ UT¥)=0 4.3)

also violates (4.1) because T§ > T, >0. To satisfy the

min
relations (4.2) and (4.3) the temperature T and the param-
eter 8 must in general become renormalized into
T=T—-T} ,
‘B=B—B(THa) »

whenever the reservoir undergoes anequilibrium transi-
tions. This suggests that canonical averages (Q) of an

(4.4
(4.5)
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observable @ will in general depend on temperature
through (4.4) and (4.5). For classical reservoirs T in
(4.4) has to be replaced by T, . Equations (4.4) and (4.5)
are general predictions for the temperature dependence
of canonical averages in systems with anequilibrium tran-
sitions resulting from the requirement of consistency for
the interpretation of 3. These general results are corro-
borated by the explicit solution (3.24) for the Gaussian
model.

The main result expressed in (4.4) and (4.5) is the fact
that the temperature dependence of canonical averages
depends on the nature of the reservoir with which the
system is equilibrated whenever the reservoir undergoes
phase transitions of order less than 1. Note that in every
theoretical evaluation of a canonical partition sum it is
implicitly assumed that the system can be equilibrated
with a reservoir R such as an ideal gas with T3 =0 and
T® .= not undergoing anequilibrium transitions.
This implicit assumption need not be fulfilled in experi-
ment. In fact experimentally the reservoir is very often of
the same material as the system itself because the system
under study is part of a much larger (ideally infinite) sam-
ple. In that case T§ =T and T2,, =T¢,, and the tem-
perature renormalization (4.4) must be expected to be-
come relevant as T approaches T'S.

V. ANEQUILIBRIUM DYNAMICS

The divergence of expectation values for block energies
makes it clear that the concept of stationarity for macro-
scopic block variables requires modification whenever the
system is at an anequilibrium transition. In the ensemble
limit each block becomes an infinite system. The present
section discusses general aspects of the macroscopic dy-
namics.

The connection between the static properties discussed
in the preceding sections and the macroscopic time evolu-
tion is provided by the ergodic hypothesis. The ergodic
hypothesis allows one to view a sequence of block vari-
ables X;y as a sequence of snapshots Xy(f;)=X;y
representing a possible stroboscopically recorded time
evolution of a single block. This temporal embedding of
an arbitrary sequence of block variables defines the se-
quence ¢; of time points as a strictly increasing stochastic
sequence with stationary and positive random increments
7;=t;_;—t; >0. The time instants z; > 0 are positive ran-
dom variables and, assuming {;=0, one has
ty=7+ -+ +7y5. The critical ensemble limit corre-
sponds now to the long-time limit of a large system. In
this limit the distribution function Py(?) of the variables
ty converges to that of a one-sided stable law with index
@, and symmetry parameter §,. In general the index ,
will be a new exponent which is different from the static
exponents and also depends on the macroscopic observ-
able X of interest.

An important observation for the temporal process
defined through a sequence X;y of block variables is that
the limiting law must be one sided, i.e., the limiting dis-
tribution function P(¢) is nonzero only for ¢>0. This
places the restrictions {,=1 and 0 <@, <1 on the param-
eters of the possible limiting distributions. A second im-
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portant observation is that each distribution Py (¢) defines
a stable convolution semigroup (D, ) [28] with a con-
tinuous N-dependent parameter Dy given in (3.18). The
convolution operators defined as

BDN (= [T flt—1)dPy(t") (5.1)
with Dy = [N/DS*(N'I)]I/‘D’, D >0 have the semigroup
property [28]

B(Dy)B(Dy)=B(Dy+Dy) ,

and this semigroup has a generator ¥ defined by
%IZIimDN_)MDﬁl[?B(DN)—S], where  denotes the
identity operator [28]. For sufficiently large N, Py(¢) can
be replaced by a one-sided stable distribution. The ergod-
ic hypothesis allows to identify the generator of the semi-
group (5.2) with the generator for the time transforma-
tion of the macroscopic observable X (¢). The generators
QImt of one-sided stable semigroups with index @, are well

(5.2)

known [28] to be proportional to the fractional time
derivatives d"' /dt ™. The case @, =1 is of special impor-
tance because in this case the distribution Py(?) is degen-
erate, the semigroup is a semigroup of translations and
the corresponding generator is the usual derivative d /dt.
The preceding observations imply that the definition of
stationarity for the time dependence of a macroscopic
block variable X (¢) must be generalized into

d™

dr™
which reduces to the traditional definition (d /dt )X (¢)=0
only for the special limiting case @, =1. It is important
to note that (5.3) holds only for macroscopic block vari-
ables but not for microscopic site variables. The main re-
sult is that fractional linear differential operators appear
naturally as the generators of time transformations for
the observables of infinite systems by virtue of the ensem-
ble limit combined with the ergodic hypothesis. The
solution to (5.3) will in general be time dependent accord-
ing to

X()=0 (5.3)

1

X()=Cyt™ (5.4)

where Cj, is a constant. Only for @, =1 does (5.4) reduce
to constant X(z). In general stationarity is already
reached when X (#) decays algebraically. The main conse-
quence of the generalized concept of stationarity ex-
pressed in (5.3) is that algebraic time decays of macro-
scopic observables may in fact be stationary.

A further consequence of fractional time derivatives as
generators of the time evolution for macroscopic observ-
ables is that the equations of motion for a macroscopic
observable X (¢) become generalized into

d”
dr™

where .L denotes a generalized Liouville operator of the
system which may be explicitly time dependent. For
@, =1 and L()X=(i /#)[F£(t),X ] reduces to the equa-
tions of motion in the Heisenberg representation for a

X()=iL()X(1), (5.5)
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system with a time-dependent Hamiltonian #£(z).
Equation (5.5) has an interesting formal solution. La-
place transformation yields the expression

@, —1

X(w)=u"" ("' —il)"'X, , (5.6)

where X,=X(t=0), u denotes the Laplacian spectral
variable, and £ has been assumed to be time indepen-
dent. Mellin transformation ED?{f}(s)If[‘ff(t)ts_ldt

gives the formal result
1 F(s/m,)I‘(l—(s/m,))(
Y T(1—s)
where the relation T(1—s)M{f}(s)=M{L{f}(w)}(1
—s) between Mellin and Laplace transforms has been

used. Comparing the inverse Mellin transform with the
definition of the H function given in the Appendix yields

s/

iL™h (5.7)

IXO s

1 X,. (5.8)
0,— [(0,1)
(0]

t

This result may be rewritten more conveniently by ex-
ploiting the fact that the H function H {'} is closely relat-
ed to the class of Mittag-Leffler functions. In this way
the series representation

© tkmt

,ZO T(ko,+1)

X(t)= (iL)k | x, (5.9)

for the result (5.8) is obtained. The result (5.9) describes
the generalized solution for nonstationary macroscopic
observables whose macroscopic time evolution is
governed by .£L and for @, =1 this is seen to reduce to the
familiar result X(z)=e“X,. Evidently the solution (5.9)
represents very slow nonexponential dynamics approach-
ing algebraic time decay in the long-time limit.

VI. CONCLUSION

The present paper has discussed the existence and
properties of phase transitions of order less than unity

(a],Al) (aP)AP) 1

ji=1

R. HILFER 48

which were termed anequilibrium transitions. The fol-
lowing results of direct physical relevance were obtained:
(i) Anequilibrium transitions are allowed by the laws of
thermodynamics and they occur in models of statistical
mechanics. (ii) The existence of anequilibrium transitions
implies the existence of “nonequilibrium temperatures”
at which the system cannot be described by equilibrium
statistical physics. This result points towards a possible
incompleteness in the foundations of statistical physics.
(iii) The paper has presented a general derivation of
finite-size scaling without use of renormalization-group
theory. (iv) A mechanism for the breakdown of hyper-
scaling was found which does not invoke dangerous ir-
relevant variables. (v) Anequilibrium transitions exhibit
an entropy catastrophy and are asymmetric. They re-
quire a renormalization of temperature if the reservoir in
the canonical ensemble is made of the same substance as
the system itself. The general classification theory pre-
dicts modified generators for the time evolution of macro-
scopic observables in systems with @, < 1. The latter sys-
tems exhibit algebraically decaying stationary states and
nonexponential relaxation given by H functions. Given
these results it seems not too far fetched to suggest that

-anequilibrium transitions are promising candidates for

the elusive glass transition although much more experi-
mental and theoretical work is required to establish this
point.
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APPENDIX: DEFINITION OF H FUNCTIONS

The H function is defined as [43]

I1 TB;—B;s) [T T(1—a;+ 4;s)

=1 _
I z %ds ,

m,n
HP,Q z

(By,B;) (Bo»Bo) |~ 2mi J

j=m+1

where € is a contour from ¢ —iw to c+ic separating
the poles of I'(B;—B;s), j=1,...,m from those of
I'(1—a;+ 4;s), j=1,...,n. Empty products are inter-
preted as unity. The integers m,n,P,Q satisfy 0=m =< Q
and 0=n =P. The coefficients 4; and B; are positive
real numbers and the complex parameters a;, B; are such

Q P
II T-B;+B;s) I Tla;—A4;s)

j=n+1

f

that no poles in the integrand coincide. If

n P m Q
0< ¥ 4,— 3 4,+3 B,— 3 B;=Q
ji=1 j=n+1 j=1 j=m+1

then integral converges absolutely and defines the H func-
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tion in the sector |arg(z)| < 1Qm. The H function is also
well defined when either

o) P
8= ¥ B;— 3 4;>0 and 0<|z|<
=1 =1

or
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P _4 2 p
8=0 and 0<[z[<R=]] 4; 7 [I B, .
j=1 j=1
The H function is a generalization of Meijer’s G function
and contains many of the known special functions. In
particular Mittag-Leffler and generalized Mittag-Leffler
functions are special cases of the H function.
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