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Statistical prediction of corrosion front penetration
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A statistical method to predict the stochastic evolution of corrosion fronts has been developed. The method
is based on recording material loss and maximum front depth. In this paper we introduce the method and test
its applicability. In the absence of experimental data we use simulation data from a three-dimensional corrosion
model for this test. The corrosion model simulates localized breakdown of a protective oxide layer, hydrolysis
of corrosion product and repassivation of the exposed surface. In the long time limit of the model, pits tend to
coalesce. For different model parameters the model reproduces corrosion patterns observed in experiment. The
statistical prediction method is based in the theory of stochastic processes. It allows the estimation of condi-
tional probability densities for penetration depth, pitting factor, residual lifetimes, and corrosion rates which are
of technological interesfS1063-651X97)15805-9

PACS numbe(s): 05.40+j, 82.20.Wt, 81.05.Bx

I. INTRODUCTION Il. CORROSION EVENTS AND PENETRATION
PROBABILITIES

_The evolu'qon of corr05|on_fr(_)nts_|s acomplex problem of Consider a rectangular piece of material in a corrosive
widespread interest. One distinguishes two different mor-

holoai i i d localized on. Oft environment inside a box with lateral dimensiohg and
phologies, uniform corrosion and localized corrosion. enLy and height_,. We choose a Cartesian coordinate system

both morpholog|es appear smultaneously in the same SYSvhose origin is the left hand corner of the box, and where the
tem. Current interest includes observations of self-afflng(_y plane coincides with the surface of the material

2&3'?&552%'2; ;\?tdhI?1all(rz;:iigfe?osjggﬂzEg]ék?;e:\\gltlioa:wssmof The volume of material lost by corrosioN(t), is an in-
y 9 creasing function of time. The maximum pit depth is denoted

plt:rr1e?mag?tgﬁfghciiitfilfjigcgr?g (t)gctggg]llo ical question is toas X(t), and it is defined to be the global minimum in the
P 9 q corrosion front at timé. The total material loss is the inte-

ﬁ{:ggt g;i;gggrgf tr?; iz?]résrg#ﬁtlorgﬁ d'gmd::mggge?n;'rgor}} _rated volume of material that has been corroded up to time
: y The corrosion rate at timeis defined as

sion, statistical methods such as extreme value statistics aré

commonly used for such predictiof,5]. (t)
This paper presents a statistical method to predict the evo- y(t)= , 1)
lution of front depths, based on data from experiments or Lyt

simulations. The basic quantities recorded are the material . . : : :
lossv and maximum depth of frorX as functions of time. and it gives the velocity of the corrosion front. The ratio
The evolution process is assumed to be a stochastic process, X(t)L,L

and the recorded data are used to form probability distribu- M(t)= ——— 2
tions concerning penetration, lifetimes, corrosion rates, and V(D)

pitting factors. ) L _ . .

Several models have recently been developed for simuldS called the pitting factor at time The maximum pit depth
tion of pitting processegs,7]. Inspired by these models, we IS @ quant|tat|\(e measure Qf the localized pltt'mg corrosion
present a three-dimensior@D) model for pitting corrosion  Processes, while the corrosion ratt) characterizes mainly
that has been developed from a 2D mdd@! It includes the ~ the background or uniform corrosion processes.
buildup of an aggressive environment within the pit due to 1he corrosion process is viewed as a time sequence of
hydrolysis, and transport of aggressive ions as observed jrindom corrosion events. An individual corrosion event is

real systems. The patterns obtained by this model look qual@efined to occur at an instant if the time derivative
tatively similar to real corrosion patterns. dX(t)/dt of the maximum pit depth falls to zero or, in prac-

We begin our presentation in Sec. Il by explaining ourtice, below a small threshold value. This is shown schemati-
statistical prediction scheme. The scheme is based on tH&lly in Fig. 1. For times<t* earlier than a corrosion event,
concept of corrosion events and penetration probabilitiesh® SlopeAX(t)/At is larger than the threshold, while for
Next we describe the simulation model. It simulates a corroi>t* it falls below the threshold for at least an infinitesimal
sion process with passivation and depassivation. Finally wéme interval. In thejth corrosion event the random variables
apply the statistical prediction scheme to the simulation reX, V, andt all increase by random amounts,
sult. We emphasize that the prediction scheme can be ap- . .
plied in the same manner to experimental data. Xj=X(t] 1) = X(t), ()
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X(t)

FIG. 1. lllustration of individual corrosion
events obtained for a given maximum pit depth
X(t) as function of timet. The events are indi-
cated by a dotted line at the time of the event
.

* gk
ree..... t

vj=V(t]*+1)—V(tJ*), ) w(u)=fmw(7)e_UTdT 8
0

=t O
is the Laplace transform ab(7) where

where{t}'};_; . wm denotes the set of corrosion events. The w [

reaction increments are assumed to be statistically indepen- w(r)zf f w(X,v,7)dxdv. 9

dent, and to have the joint probability density function 00

w(x,v, 7). The joint probability density functiow gives the

probability to find the increment of maximum pit depth in

the infinitesimal interval x,x+dx], the material loss incre-

ment in the infinitesimal intervdlv,v +dv ], and the tempo-

ral increment in the intervdlr, 7+d7].

The transition probabilitiesv(x,v,7) are the main input
functions for our analysis. They can be determined throug X - .
observations in the field, through measurements in a Iabor%- Eolytlonf(G% ger:jerates predlctlo_ns f;)r therpatlotempo_raI
tory experiment, or through calculations in a simulation. In ehavior of the advancing corrosion front. For a corrosive
the present study we use computer simulations to determirfd 0¢€ss I which the _transmon probability - function
w(x,v,7) in order to illustrate our approach. Different cor- W(x,v,7) has large- behavior,
rosion processes are characterized and distinguished by dif- w(t)~t~ 1@ (10)
ferentw functions. '

_ The function of main interest is the joint probability den- |, .. 0<a<1, it can be showfil0—17 that the width¢, of
sity p(X,V,t) that a timet has elapsed and a volunveof 14 advancing corrosion front will grow as
material has been corroded when the maximum pit depth
reaches the valu¥ given that the corrosive process started £ (t)~t, (12)
att=0 from X=0 andV=0. This functionp(X,V,t) will
also be called the penetration probability function, and itand the expected maximum pit depth will increase like
forms the basis for the prediction of quantities of interest.

The general theory of stochastic processes allows us to (X(1))~t~ (12
express the penetration probabilitigeX, V,t) in terms of the
transition probabilitiesv(x,v,7) [9,10]. The basic relation- as a function of time. Note that a corrosion process charac-

For the derivation of Eq(6) the reader is referred to the
literature[10]. The penetration probabilitg(X,V,t) is com-
pletely determined through integrals of the transition prob-
ability w. Of course the integrals to be performed cannot
generally be calculated analytically, and it may be necessary
fio resort to numerical methods to evaluate them.

ship reads terized by a transition functioow obeying Eg. (10) is
strongly intermittent. This means that in such a process there
1 ctiw o o 1— w(u) are strong fluctuations in the corrosion rate as a function of
X,V t)= —f j f time. The temporal fluctuations have the irregular behavior
PXVO=ro08 ) L ) ) Wi wik ok, 0] P g

characteristic of fractals in time. Bursts of corrosion activity
s s are separated by quiescent intervals. These quiescent inter-
Xexplut—ik,V—ik,X)dkdk,du. ® vals have a fractal distribution of interval lengths with diver-
gent expectation. Thus an average corrosion rate cannot be
sensibly defined because it would depend on the length of
time over which one averages. Such a behavior is character-
e e istic of some corrosion processes, and E) is corrobo-
Wik ko U)= Jo LmJ:ocW(X’U'T) rated by experimental observatiph3,5).
_ ) We have applied our method to computer simulations
Xexp(ixky+ivk,—ur)dxdvdr  (7)  whereX(t) can be measured directly. In an experiment or
field application, measuring this information is also possible.
is the Fourier-Laplace transform ef(x,v,7), and Measuring the transition probability functiendirectly from

Here
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Zy,=-1, Zc=1, andZp=2 are associated with sites la-
< Constant ion concentration beledA, C, andP, respectively. The net force in the positive
x direction is

~—— Electrolyte

<~ Passive layer YA ZZ;
Fr=Al 2 -2 —|, (15

iEK;r r iEK; ri

Lz = Metl whereA is a constantZ; is the charge value, ang is the
Euclidean distance to sit8. Analogously the forces in the
y andz directions are obtained from charges in the volumes
Ky andK; .
To calculate the transition rates, we view the ion motion
Ly as an activated process. The net force gives rise to
unequal transition rategl4]. The transition ratek; for a
FIG. 2. Simulation lattice consisting of a metal substrate cov-move in thej direction is
ered with a passive oxide layer. Above the oxide there is an elec- BE|
trolyte region. In the top layer the ion concentration is kept con- kj =€, (16)

tant. C e o o . :
stan wherej=x~,y~,z~, B is a constant, and is the step dis-

tance. The constants were setA81=1 for the simulations
discussed here. The rates are calculated for all six possible
move directions, and the sum of the rates is

a computer simulation is particularly convenient for testing
the feasibility of our approach.

I1l. DESCRIPTION OF SIMULATION MODEL 6
Kan= 21 Kj . 17
=

The simulations are performed on a 3D cubic lattice of
size Ly=L,=256 and depthL,=101. Periodic boundary
conditions are applied in the andy lateral directiongsee  The target sitel(S) is selected among the six directions by
Fig. 2). Six different labels will be used to represent the sixdrawing a random numbeE in the interval[0k,,]. The
different states of a lattice site. At the start of a simulationdirectionj is chosen if
the lattice sites withz coordinates in the rangelz=89
represent the uncorroded metal labeléd)( The layer of
sites atz=90 is given a different label to represent a protec-
tive oxide layer Q). Sites in the range 30z=< 101 represent
the outer aqueous environment. These sites are labeled dife., if the reaction ratg; falls in the corresponding subinter-
ferently depending on whether they represent catiddy ( val. T(S) is then selected as the nearest neighboring site in
anions @) or inert fluid (water or solvent(U). In the cor-  the direction;j.
rosion process, product sites labeled) (are produced as The time is incremented by one unit everiy
described below. The catior, anionsA, productsP, and  =Np+N¢c+ Np moves, wherdN,(t), Ne(t), andNp(t) are
inert fluid U are mobile, whileM and O are not. At the the number ofA, C, and P sites, andNy(t) is the total
upper boundary witle=101 a constant concentration Af number of movable sites. In other words, the time step is
andC is maintained. Figure 2 shows the initial configuration
of the simulated system. Ate

A simple move of the simulation consists in choosing one Ng
site S occupied by a movable ioA, C, or P and trying to
move it onto a nearest neighbor target site using force biased If an ion within the layerz=100 steps onto the layer at
transition probabilities. Whether or not the attempted movez= 101, it is removed from the simulation. Simultaneously,
is successful depends on the occupation of the target sitesnew ions enter the lattice from the layerzt 101 at a rate

To choose a target site for a force biased move, neighbothat depends on the constant ion concentration and the force
ing sites are inspected within a regi&nof 5xX5x5 lattice ~ exerted from nearby ions.

I

-1
i

E ki<
=0

j
sgo i, (18)

(19

units defined as The A andC ions are initially positioned at random in the
region for 96<z=100. The protective oxide layer at90
K={|ro;—r;|<2j=xy,2}, (13)  covers the metal completely. The immobile si@sin the

oxide layer can react and form a mobile corrosion product
wherer; is the chosen sit& from which the move starts. P. This reactionO—P exposes bare metal sites that can

K can be considered as the union of six pyramidic shapetfter dissolve into the agueous phase. The exposed metal can
regions, react to form produci — P or oxideM — O. In this way the

numberN, of bare metal sites change continually during the
K=K UK; UK; . (14  simulation of the corrosion process.
A flow diagram of the main program loop in our simula-
The particles in each regiohﬁji are assumed to exert a net tion is shown in Fig. 3. The monomolecular dissolution
force in thej direction on the particle at sit8. Charges of M —P and passivation reactiold —O appear in A and B.



5436 TERJE JOHNSEN AND RUDOLF HILFER 55

Select movable site §
Select target site T(S)

Select boundary M site S

-— ——

Yes(S=P)

S=(A)or(P)
&

TSH=(0) FIG. 3. Flow diagram of the main loop of the
program executed in a time intervalt in the
simulation. The labelS means a selected site.
N(S) represent the set of six nearest neighboring
sites, andl (S) means the target site of a selected
move. The variabl& represents a uniformly dis-

tributed random number.

$->T(S)
T(S)->8

(0)->(P) (0)->(P)

The schematic representation of the adjacent sections A arthe charged nature of ions is modeled through a bias in the
B read as follows: First a metal site at the boundary of thaliffusion, and hydrodynamic flow is neglected.

agueous phase is drawn at random. A boundary site is a site A metal in contact with a corroding environment is often
not surrounded entirely by othé or O sites. The dissolu- covered by an oxide laydd5], which in our model is rep-

tion probability P4 Of the boundary site is given by resented byO. Various mechanical and chemical reactions
can destroy the integrity of the layer locally. In our model we
KgisNp consider chemical oxide destruction represented by the reac-
Paiss= KaisdNpAt = N (200 tion A+O—A+P. A common example from the literature

are CI” ions for a range of metals and alloys, i.e., Ni, Al,
and stainless ste¢l5,16. In the model, anions are given a
probability P, to convert an oxide site into a corrosion prod-
uct P. The cationsC are assumed unreactive.

As bare metal sites are exposed, metal dissolves with a
rate constankss according to the reaction

where Kyiss iS @ reaction rate constant. A random number
0<E=1 is drawn from a uniform distribution. IE <P s
and there exists a nearest neighbor labéledhe metal dis-
solves,M—P. If not proceed to section B. Section B is
analogous to section A, with the passivation probability

Ppassgiven as M=M"*+ne", (22)

KpasNb wheren=2 in our model. This charge released to the bulk
N (21) metal in a dissolution process must be consumed either by an
external connection or by cathodic reactions in a real metal
system. In the model the cathodic part of the corrosion pro-
cess is taken to be fast and not to limit the dissolution rate.
The actual cathodic reaction is not modeled.

In many corrosion processes the metal ions react with
ater to form metal hydroxides and hydronium iqd§,18
in the reaction

Ppass: kpasi\let: P

wherek,,siS a reaction rate constant.

In sectilm C a site occupied by anioA, cation C, or
product P is selected at random. For the selected Sita
target siteT (S) is determined as described above. DependingN
upon the state oS and T(S) three different choices are
allowed in section D of Fig. 3. IfT(S)#0O or S=C, the
middle path is selected. If furthdf(S)=M or T(S)=0 no M2* +4H,0<M(OH),+2H;0™. (23
move takes place. T(S)#M or T(S)# O the particles at
sitesS andT(S) are interchanged. The two paths of the flow Product sites? in the model can be considered to represent
diagram in section D to the left and right are analogous irboth metal ions from reactio{22) and the further hydrolysis
structure, and are discussed together. If SiteA (right) or  products from Eq(23). The increasing acidity destabilizes
S=P (left) and T(S) =0, these paths are selected. A reac-the oxide site§19]. A probability P,,4to remove oxide sites
tion is initiated given the conditiorE <Ppq or E<Pj, by contact with product sites is therefore included. The
respectively, whereé® . and P, are probability constants. model does not include formation of salts which affect the
This transforms an oxide site into a product siie;»P. In dissolution rate. Instead, if the nearest neighbor shell of a
the end of section D the time and time intervalAt are  metal site does not contain solveut the dissolution process
updated before the loop returns to the start of section A. is postponed until a more dilute electrolyte results. The con-

Having described our simulation algorithm we now dis- centrated environment without solvent is also believed to
cuss the physical-chemical processes underlying the simirave a low pH due to hydrolysis reactions of metal ions, and
lated model. Mass transport in our model is purely diffusive.this reduces the formation of oxide sites. This is imple-
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TABLE I. Simulation parameters. could be included in a future improvement. This would allow
us to assign different reaction rates leading to preferred sites
Run No. Kaiss kpass Pprod Pa Co for plt initiation.
R, 10°2 5% 102 102 104 25% Changes in the electrochemical potential as a result of

localized corrosion processes are known to influence the re-
action rates locallyf22]. Difficulties arising from such ef-
fects are not included in this version of the model, but are

mented as the condition of requiring at least anesite at  left for future refined models.
nearest neighbor position for a passivation process to occur.
The detailed processes involved in oxide breakdown and for- V. APPLICATION OF THE PREDICTION SCHEME
mation are not represented in the model. TO THE SIMULATION DATA
In addition to the two processes of oxide destruction,
fresh oxide is created at bare metal sites with rate constant _ . o _
kpass The initial electrolyte represents a salt which is as- In this section we apply the prediction scheme described
sumed to have dissociated completely into ions, such a Sec. Il to predict the maximum pit depth, pitting factor,
Na' Cl~. Outside the simulated lattice at-101 a constant lifetime, and corrosion rate for the model described in Sec.
concentration bulk electrolyte is maintained. lons which endll. The predictions could in principle be calculated from
ter this region from the regiom<100 are removed by the €experimental data. To this end it is necessary to measure the
flow. All ions are subject to both diffusion and interactions. corroded volume from iron counts or weight loss measure-
In the model a simplified Coulomb interaction of ions within ments together with identifications of maximum pit depths as
a given volume of 5 55 lattice sites has been included as @ function of time.
described above. This perturbs the free diffusion and in- TO apply the method to our computer simulations we
creases the concentration of anions within a pit above théecord the integrated material loss and the elapsed time
bulk concentration. The effect is known experimentallyWhenever the maximum pit depth increases by one lattice
[20,21] to increase the corrosivity within the pit, and it re- unit. This increase oK(t}", ;) —X(tj)=1 represents a cor-
duces the probability of pit repassivation. rosion event in the simulation. Thus instead of measuring
The model requires the paramet&pgs, Koass Pprog, @and — X(t) and V(t) directly the inverse functions(X(t})) and
P, together with the bulk electrolyte concentrati@y as V(X(tj*)) were recorded. The differences v, andr were
input. In the simulations we used two different sets of pa-calculated according to Eq$3)—(5), and collected into a
rameter values which are listed in Table I. Cross sections dfistogram approximating the transition probability function
the resulting corrosion patterns are shown in Fig. 4. Thav(x,v,7). Based on this approximation the penetration prob-
images on the left show smoother fronts than the rough pitability p(X,V,t) could be calculated numerically.
to the right. The black sites mainly observed within the The penetration probabilitp(X,V,t) allows us to obtain
rougher pit are passive sites that form complex diffusionquantities of great interest. A typical question that can be
paths for the movable ions. The simulations were terminatednswered is the following: What is the probability of finding
at a maximum pit depth of 22 lattice units fBy (left) and  a maximum pit deptiX if it is known that the material was
20 lattice units forR, (right). immersed in a corrosive environment for a timeand that
The metal sites in the present model consisted of equakithin this period a total material lo34(t) has accumulated?
labeled sites with equal reaction rates. To include impuritiessuch a conditional probability densitp(X|V,t) for the
or alloys in the model additional sites with additional labelsmaximum pit depth given the material loss and the elapsed
time can be calculated from the penetration probability func-
tion p(X,V,t) as

R, 1072 1072 104 104 25%

A. General definitions

3 p(X,V,t)
POXIV.= 5 (24
where
p(V,t)= fw p(X,V,t)dX. (25

Similarly the probability density for a sample of thickness
X to have lifetimet is obtained ag(t|X) after integrating
out the material loss. This conditional lifetime probability

FIG. 4. Cross section in the-y plane(top) andx-z plane(bot- density_ gives the distripution of Iifetime($e., the timt_a be-
tom) for patterns produced by two different sets of paramefgrs  fore failure of a material with wall thicknesX. Residual
(Ieft) and R, (right). Light gray represents uncorroded metal sites, lifetimes can also be estimated given the remaining wall
and black sites are passive oxide sites. Passive or metal sites didlickness.
connected from the base of the metal in the process are not re- The time dependent probability density for the pitting fac-
moved. The left image shows a corroded volume with a more opetor p(I1|V,t), given the material loss wheié is defined in
smooth surface than the structure seen to the right. Eg. (2), and the distribution of corrosion ratggy|X,V), as
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—
T ko0 —o- X)10

FIG. 5. The increments(X), number of lat-

g 200000 { o 20000 tice sites removed, ani{X), elapsed time steps,
i'? 8 as a function of maximum pit deptk measured
= s in lattice units where run parametery and R,

S o000 | = 10000 are used for the left and right plots, respectively.

The data fort(X) were multiplied by factors of
100 (left) and 10(right) for better visualization.

=3

defined in Eq(1), have also been calculated. The penetratiorHere f is a parameter, and and = are the average incre-
probability distributions could in principle be estimated di- ments.
rectly from our computer simulations. However, to obtain
adequate statistics on the order of 10 000, such runs would
have to be performed. With present technology, such ex-
treme calculations are only possible for very small systems. Figure 6 shows the predicted conditional probability den-
For our systems of size 25&56x 100 lattice units, only a  sities for runsR; andR; g,;. These predictions were made
small number of runs are feasible. Our prediction methodrom the histograms, given the condition thatandt have
allows us to extrapolate the results to much larger systemsthe same values as were actually observed at the end of the
simulation runs, see legend of pi@), with f=1. The solid
curve results from the simulation ruR, and the dashed
B. Specific results curve is from runR; g,. The conditional probability density

Measurements of the incrementsndt during corrosion  for the maximum pit deptip(X|V,t), shown in(A) indicates
events as a function of maximum pit depthare plotted in @ maximum probability in the region of the termination depth
Fig. 5. The left plot was obtained by use of the parameter§f the runs, as expected. The extended run has a somewhat
R,, and the right plot byR,. The runR, stops at depth Wider distribution, which reflects the large fluctuations ob-
X=22. To assess the influence of transientsRheun was served in the later stage of t_he simulation as shown |n.the left
resumed, and extended to a depti 32. The extended run Plot of Fig. 5. Plot(B) in Fig. 6 shows that the predicted
is referenced aR, gy. pitting factor decreases as more and more pits coalesce in the

The volume increment (X) shows an increasing trend €Xtended run. The predicted lifetimes in pl@) follow the
for both simulations whereas the time incremetfté) tend ~ t€rmination times and corrosion rates (i), indicating an
to fluctuate without a systematic trend. The transient is mos{'creased predicted rate as the run is extended.
pronounced in the early stage of the left plot, whereas the
remaining part indicates a stationary behavior. The initial 2. Dependence on conditions and condition intervals
increase inv (X) can be understood from the approximatel - .
hemisphericgl z‘orm of the early pits. Between tF\)/\F/)o corrosio);i e dTﬁ oa(%lﬁée;?: d?cstgglsnzsespg:]éhiietﬁgedclgggﬂizg SW Zﬁ ds ttjhd(;
g‘;ﬁg;s Jzﬁ r\?vililg] ?L;Z?tsplfnln;rsetaez%? ?r?ctrzzsi\ﬁ;i%%fy Oterval that was specified for the conditions. The left side of

tional pits are initiated elsewhere at the top surface, increa Fig. 7 shows conditional probability distributiome(X|V.t)

: - . . i i Yor a maximum depth obtained from thy histogram by use
INg v €ven more. This transient behavior will be doml_nant a%f different conditional parameter intervals within the
long as the pits grow separately. At a later stage pits com- ef=[0.5,5. The solid unmarked curve with=5 wil
bine, as can be observed to the left in Fig. 4. At the end of2n9 e

run Ry g, all pits have combined, and the transient behaviorpredlct a lower value for the maximum depth, as expected

has turned into a continuous growth, characteristic of uni_from its low value ofVim andtyn. Whent is lowered, the

. interval decreases and a smaller fraction of the iterations are
form corrosion. ; X : .
. o . . successful. This results in poorer data quality of the predic-
From the functions) (X) andt(X) it is possible to esti- . : .
L o tions, and requires more computations for the same data
mate the transition probabilities/(x,v,7). The transition

. . . . quality. From the plot one sees that the maximum probable
E;%%i?g:;l f:?ggggi\l/i\fé/x,é)ér?sitlizsthegazzggqtgngslflr?r?é?efhe depth that is predicted approaches the termination depth

ments are drawn fromv(x nd mulated. T ti X=22 with decreasing.
ents are drawn from(x,v,7) and accumulated. To esti- =+, srate the effect of transients in the basic quantity
mate p(X|V,t) the accumulation of random increments is

; . . . _p(X|V,t), we have plotted to the right in Fig. 7 the maxi-
SOPE'\'}U?qum'I th:dat%cumulatrﬁdlv:)lgrrt}cranfalilr?t 'n:ﬁ t?ﬁt”:\tlerl mum pit depth probability functions for tHe; (solid curve
[ta tm:)j \r/nv%%r?a € accumulate € Into the interval o g R; ext (dashed curvehistograms given the conditions

min s tmaxd»

VR, ., andtg _ atthe termination stage of the extended run
Vima=V+Tfv, Vpn=V—Tfu, with f=2. The two curves differ as a result of the transient
behavior of the volume increments. TRg histogram curve
L o (26) oversamples increments from the transient region relative to
thact+f7, thin=t—f7. the extended run. Increments from the transient region are

1. Distributions for run R; and Ry gy
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20 T T

0.15 T
—— v=45x10°
A) 450 B)
---- V=1.3x10
t=6264 151
0.10 =
= >
> =10 .
< = FIG. 6. Conditional penetra-
e tion probabilities(A), pitting fac-
0m T 05 | | tor probabilites (B), lifetime
. probabilities (C), and corrosion
. rate probabilities(D) have been
0.00 . LTSN 00 < + . calculated for simulation rumR;
) 20 30 40 50 " _ . .
Maximum Pit Depth (lattice units) Pitting Factor (X=22) drawn with a solid curve,
00008 0.015 . and the extended runRygy
‘ D) (X=32) drawn with a dashed
curve. The final mass loss and fi-
nal elapsed time used for estimat-
0.0004 oo ing the conditional probabilities
< ; for the two runs are listed in the
= = legend of the plot labelet®)
0.0002 b 0.005 |
0.0000 5000 ;:)500 15000 00005 X 200, o = 400
Lifetime (time step) Corrosion Rate (lattice site/time step)

small and will therefore lead to a faster penetration for theHence short runs with large transients lead to a more conser-
R, histogram. vative prediction.

Figure 8 showsX,ax vVersus the conditional parametér In Fig. 9 the most probable pit depiy,,, has been plot-
whereX . is the X value corresponding to the maximum of ted for different combinations of conditional parametefrs
P(X|V,t). The most probable pit depti ., was plotted andt. One of the conditions were held constant while the

for different conditionsV for the R, andRy g, run. A rela-  other was allowed to change. The constant conditional pa-
tively small number of iterationd\=10.000, were used |n rameter was set t¥=6Vy_andt=6tg_for the calculations

these  calculations.  The Cond'“of‘s were  set 10, he |eft and right side plots respecnvely For each combi-
V=Vg tnfv andt=tg +nfr, wheren is a positive inte- o0 v/ 1) N=120.000 iterations were performed to cal-
ger,f=1, andVg, andtR represents the termination values cyate the histogram. For combinations of,{) that were

of the Ry S|mulat|on. A plot ofXmax Versus the conditional unlikely to be observed, the procedure terminated with zero
parametet would show similar behavior. This indicates that or very few iterations fulfilling the conditions. The number
predictions of maximum pit depths based on iron counts aref iterations was here too small, leading to difficulties when

higher for short runs R;) than for longer runs Ry gy). identifying X,.x. Wide spreading o, was observed in
0.15 T T 0.10
§=5.0 ---- Rign
---=- {=2.0 JR— R,'
.--41:41)22 008 y v=1.3x10°
/RN 1=6264
0.10 | KN
= ’,f,/ \\‘ ‘ = 0.06
Z / i ‘\‘ 4 Z
o- ,,/ [+ \“Q“ Q 0.04 L
0.05 - i A §
o0z | 1
00040 20 X 3'0_ 005 20 30 20 . SO0 60
Maximum Pit Depth (lattice units) Maximum Pit Depth (lattice units)

FIG. 7. Left: Conditional penetration probability given conditions from the end of simuléﬁpn{VRl,tRl) with variations of the

conditional parameter interval specified byas listed in the legend. Right: Comparison of the predictions made from the two histograms
R; andR; g4, given the conditions at the termination stage of Ring,, as listed in the legend.
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100 . ' , small values, will predict a too large maximum probable
depth if the conditions are set above the end values of the
histogram accumulated runs. This gives a conservative pre-
diction. Too low a predicted maximum depth will result if
the conditions are set below the end values. This is due to
- oversampling and undersampling of the transient increments.

If the transient period of the increments is small compared
to the whole data set, its effect on the probability predictions
— R, is less significant than in our case, where it extends over a
T P ] longer period. Often the whole set of increments can be
treated as one randomly fluctuating set.

If the process generates increments that have a transient
character which influence the predictions in a significant
manner, special attention must be paid to handle this in a
proper way. One way to incorporate these initial increments

FIG. 8. The most probable depthX,, found at would be to identify a typical depthq,swhere the transient
max p(X|V,t)] is plotted given different combinations of condi- region ends. Increments that belong to different maximum
tional material los$/ and timet. The solid curve represent results pit depthsX;<Xns are then collected into separate histo-
from the R, simulation histogram and the dashed curve is from thegramsw;(x,v, 7). Increments found &> X;,,,scontribute to
extended run. The conditiong andt were increased by adding the ordinary histograrw(x,v, 7). When calculating the con-
integer number ob and r, starting at the conditions given at the ditional probabilities numerically, one value is drawn ini-
termination of simulation rumR,. The conditional parameter inter- tially from each histogram in the depth intervdl=1 to
vals were set by the parameter 1. Xyans: This is followed by randomly selecting increments

. . from w(x,v, 7) until the condition is met. A large number of
the outer part of the varying condition parameter range, aferations by use of this procedure produces the probability
observed most clearly in the right plot. This is ascribed to theyjstributions given the condition. In addition to the maxi-
effect of a scarcely populated histogram. The spread ifyym probable depth, the width of the distributions are im-

Xmax @long the axis of the free parameter4sl0 in both  portant, indicating the uncertainty of the prediction.
plots for theR; g, run and somewhat smaller for the shorter

run. The actual increase in the left pl@onstantV) and the
more steady behavior in the right pl@onstant) probably
relates to the specific positions in the parameter space and Figure 10 shows the predicted conditional probability
the form of the histogram used. Parameters in other regiondensities for the two different sets of parametRfsand R,
would result in a different appearance. of Table I. The predictions were made from the histograms
The range of where parameter settings resulted in fulfill-given the condition tha¥ andt have the values observed at
ment in the numerical procedure shows that the two histothe end of the simulation runs as listed in the legend of plot
grams are different. What is observed is that, given one conA). The interval was set té=1. The solid curve results
dition, two limiting values of the other condition can be from the simulation rurkR, and the dashed curve from run
estimated from the plot. In principle, maps of the limiting R,. The maximum pit depth probabilities of the two simula-
conditional parameters could be estimated from a series dfons show almost similar behavior as expected from their
similar calculations, given an iteration numbsr termination depths oK=22 and 20. All other predictions
In general, we can conclude that an accumulated histohowever are different. The large difference in the pitting fac-
gram with an initial transient in the increments consisting oftor reflects a morphology of thR; pattern that is close to
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3. Distributions for different simulation parameters

200 K . : — 160

v=2.7x10° R 1=26700
150 - R,
°Riea

140 R ee T2
. oo o

130

X (lattice units)
g
A
N,
o
2
X, (lattice units)

ol 120 | o,

1 1 1 0 hd L I i
40000 50000 0 2000000 4000000 6000000 8000000

20000 30000
t (time steps) V (lattice sites)

0 10000

FIG. 9. This plot shows the most probable deth,,found at makp(X|V,t)], given different combinations of conditional material loss
V and timet by use of theR; andR, g,; run histogramsV andt are held constant in the left and right plots, respectively, whereas the other
parameter is allowed to change. The dotted line indicates where the constant value was set for the other plot.



55 STATISTICAL PREDICTION OF CORROSION FRON. . . 5441

0.8

0.20 .
—— v=a5xi0®
A) 1=4450 B)
---- v=8.8x10"
0.15 Al t=8860 ] 06
= S
= om0l X 04
3 0.10 =]
a a
0.05 | 02| K
. s . 0.0 o2 : bR
0% .20 30, . 0 5 10 15 25
Maximum Pit Depth (lattice units) Pitting Factor
0.20 T
; D)
015 | 1
0.00040 | g f:
- > |n
a3 é 010 |1}
a \ -1 i
0.00020 | N g o
\ 005 )
000000 o ) . 10006 - 00, X 100 R 200
Lifetime (time steps) Corrosion Rate (lattice sites/time steps)

FIG. 10. The solid curve shows riRy, and the dashed curve represents a simulation run with pararfgterie conditional parameters
V andt that were used are listed in the legend of ils). These values correspond to the final stage of the simulafidng-his plot shows
the probability of reaching a given maximum depth with conditional information from materiaMaasd timet. (B) Conditional pitting
factor probability given the final material loSC) This plot shows the probability for a material of given wall thickné2 for R; and 20
for R,) to last for a certain time(D) Conditional corrosion rate probability given the wall thickness of Rgeand R, simulations.

uniform corrosion, whereas the large valueRyfindicates a  rial lossV and maximum depth of fronK as a function of
heavily pitted morphology. This agrees with the morphologytime t. The statistical method was applied to our developed
shown in Fig. 4. Note, however, that the pitting factor alone3D model of corrosion. The model includes local breakdown
can be misleading if it is used to predict internal pit morphol-of a protective layer in a simulated aggressive environment
ogy. If the morphology consists of only one pit, a higher forming localized attacképits) with an aggressive local en-
pitting factor could indicate a rougher pit or a deeper pitvironment due to hydrolysis of corrosion products and anion
relative to a smooth hemispherical formed pit at the samg&oncentration buildup that resist repassivation. Several of
maximum depth. Both shapes would lead to a higher pittinghese pits grow and eventually combine to form a more com-
factor. plex corrosion front that is qualitatively similar to many real
Lifetime predictions indicate approximately twice as long corrosion patterns. This long time limit represents a front
lifetime for R, versus theR, run. The difference of termina- that can be characterized as uniform corrosion or a mixture
tion depth X= 22 for R; andX= 20 for R,, does not account Of uniform and pitting corrosion. From the accumulated tran-
for the large lifetime difference. The longer lifetime B sition probabilitiesw(x,v,7) obtained from the simulation
can be understood from the simulation parametBgshas ~ model, conditional probability distributions were estimated

twice as high a passivation rate as compareRgpand will ~ for the penetration depth, pitting factor, lifetime, and corro-
therefore more easily form protection against further dissoSIon rate. . o _
lution. At the same time, corrosion products in tRe run We observed that a conservative prediction resulted in the

were assumed to be 100 times more aggressive toward pg@se when the histogram is influenced by transients. This
sive sites than in thR, run. The surface oR, pits therefore ~ conservative estimate converges to the stationary situation
has a h|gher coverage of passive sites, |eading to S|0wélyhen the accumulation time was increased. When there is no
growth speed. The predicted corrosion rate Ryris small ~ transient in the increments, the accumulation range should

compared toR;. This was expected from the high pitting Not cause large changes to the predictions. An alternative
factor and long lifetime prediction dR,. method of collecting increments from transient and nontran-

sient regions into different histograms was suggested.
Conditional parameter settings and their interval specified

by f influenced the prediction of penetration depth. Different
A statistical method has been developed to predict thdimits of where penetration depths could be estimated given a

evolution of front depths based on information of the mate-numberN of iterations can be found from calculations using

V. CONCLUSION
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varying conditional parameters. Such calculations identifytions presented here for simulation data can be applied in the
regions in {/,t) space that are most likely to be observed.same manner to increments measured in an experiment.
We found by one example that tiiy run and the extended

simulation resulted in different prediction regions as a result ACKNOWLEDGMENTS

of the transient. _ We thank Mike W. Joosten, Conoco Inc., for his discus-

The difference between the pitted morphology of R sjons and his enthusiastic interested support. T.J. acknowl-
and the more uniform corrosion pattern of ri&y can be edges the helpful discussions with Paul Meakin and Torstein
clearly distinguished from the conditional probability densi- jtssang in the model development. We are grateful to
ties of the pitting factor. This shows that our method is use-Conoco Inc., Fracton A/S, Norsk Hydro, and the Norwegian
ful to determine the morphology of the corrosion pattern.Research CouncilNFR) for financial support and grant of
Finally, we emphasize again that the same statistical predicomputing time(NFR).

[1] M. W. Joosteret al, Fractal Behavior of CQPits, Corrosion/  [12] R. Hilfer, Fractals3, 211(1995.

92, NACE Report No. 11, 1992. [13] R. Hausler and P. Burke, Report No. 26, NACE, 1988pub-
[2] M. W. Joostenet al, In Situ Observation of Localized GO lished.
Corrosion, Corrosion/94NACE Report No. 3, 1994. [14] J. O. Bockris and A. K. N. Reddodern Electrochemistry 1
[3] R. Pierpolineet al, in Advances in Localized Corrosiped- (Plenum, New York, 1970
ited by H. S. Isaacs, U. Bertocci, J. Kruger, and S. Smialowskg1s] 7. Szklarska-Smialowska,Pitting Corrosion of Metals
(NACE, Houston, 198} pp. 123-126. (NACE, Houston, TX, 1986
[4] H. F. FIn'ey,COI’I’OSI.OI'I NACE Report No. 83, 1967. [16] T. P. Hoar and W. R. Jacob, Natuzas, 1299(196D
[5] P. Laycock, R. Cottis, and P. Scarf, J. Electrochem. $82.  [17] m. pourbaix, inLocalized Corrosionedited by R. W. Staehle,
64 (1990. B. F. Brown, J. Kruger, and A. AgrawdNACE, Houston,

[6] T. Nagatani, Phys. Rev. Le@8, 1616(1992.

1974, pp. 12-33.
[7] P. Meakin, T. Jesang, and J. Feder, Phys. Rev4& 2906 4, pp

[18] K. P. Wong and R. C. Alkire, J. Electrochem. S487, 3010

(1993. (1990
[8] T. Johnsen, A. &sang, T. Jssang, and P. Meakifunpub- ' . . e
lished [19] M. Pourbaix,Atlas of Electrochemical Equilibria in Aqueous

[9] R. Iranpour and P. ChacoBasic Stochastic Processes, The Solutions(Pergamon, Oxford, 1966

Mark Kac LecturesMcMillan, New York, 1988. [20] T. Suzuki, M. Yamabe, and Y. Kitamura, Corrosi@®, 18

[10] E. W. Montroll and B. J. West, irfFluctuation Phenomena (1973.
edited by E. W. Montroll and J. L. LebowittNorth-Holland, [21] J. Mankowski and Z. Szklarska-Smialowska, Corrosion Sci.

Amsterdam, 1979 p. 61. 15, 493(1975. . .
[11] R. Hilfer and L. Anton, Phys. Rev. B1, R 848(1995. [22] H. S. Isaacs and M. W. Kendig, CorrosiG6, 269 (1980.



