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Macroscopic equations of motion for two-phase flow in porous media

R. Hilfer
ICA-1, Universität Stuttgart, Pfaffenwaldring 27, 70569 Stuttgart, Germany

and Institut für Physik, Universita¨t Mainz, 55099 Mainz, Germany
~Received 20 January 1998!

The usual macroscopic equations of motion for two-phase immiscible displacement in porous media are
known to be physically incomplete because they do not contain the surface tension and surface areas governing
capillary phenomena. Therefore, a more general system of macroscopic equations is derived here that incor-
porates the spatiotemporal variation of interfacial energies. These equations are based on the theory of mixtures
in macroscopic continuum mechanics. They include wetting phenomena through surface tensions instead of the
traditional use of capillary pressure functions. Relative permeabilities can be identified in this approach that
exhibit a complex dependence on the state variables. A capillary pressure function can be identified in equi-
librium that shows the qualitative saturation dependence known from experiment. In addition, the proposed
equations include a description of the spatiotemporal changes of residual saturations during immiscible dis-
placement.@S1063-651X~98!12507-2#

PACS number~s!: 47.55.Mh, 81.05.Rm, 61.43.Gt, 83.10.Lk
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I. INTRODUCTION

An aquifer or a petroleum reservoir may be seen as m
ture of porous rocks and soil with various gases and liqu
usually residing at depths that prohibit precise measurem
on the constituents@1,2#. Despite many years of research a
the fact that the microscopic laws of fluid dynamics are w
known, the prediction of macroscopic multiphase flow in p
rous media has not met with success~see@3–5# for recent
overviews!.

Microscopic and macroscopic descriptions of multipha
fluid flow in porous media differ considerably from eac
other and both have their own characteristic proble
@1,2,4#. A microscopic description fails because it is gen
ally impossible and not interesting to know the detailed m
crostructure and flow patterns on the pore scale. In cont
herewith the generally accepted macroscopic models are
complete. Owing to its widespread importance in appl
problems, the transition from the microscale to the macr
cale for two-phase flow in porous media has attracted c
siderable interest from physicists in recent years@6–22#.
Relatively little or no attention has been focused, howev
on the continuum limit of the proposed microscopic mode
Effective macroscopic equations of motion used by en
neers are based on generalizations of Darcy’s law, altho
every practitioner knows that they are incomplete@23,1#. Mi-
croscopic models by physicists often attempt to predict
relative permeabilities and the capillary pressure functi
for simple microstructures, although it is clear that they
highly nonunique.

Detailed and rigorous derivations of macroscopic eq
tions from microscopic ones is usually the last step in und
standing a physical phenomenon. Experimental observat
and tests of phenomenological macroscopic models usu
precede the microscopic understanding. It is therefore of
terest to improve the current macroscopic description tha
known to fail even for simple laboratory systems@24#.

Given the need for more predictive macroscopic theor
this paper proposes a different set of macroscopic equati
PRE 581063-651X/98/58~2!/2090~7!/$15.00
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Loosely speaking, the traditional theory includes only ma
and momentum balance but fails to incorporate the ene
balance. Obviously the interfacial energy depends on the
terfacial area and hence the set of macroscopic observa
describing the state of the mixture must be enlarged to
clude surface areas. Relative permeabilities and capil
pressures must then be identified within the proposed fra
work. I shall begin the discussion by presenting briefly t
traditional formulation and discussing its problems in Sec.
Afterward, the macroscopic balance laws for mass, mom
tum, and energy~Sec. III! will be combined with constraints
and constitutive relations to introduce macroscopic equati
of motion ~Sec. IV! that differ from the conventional equa
tions. My presentation will conclude with a discussion of t
consequences, the identification of relative permeabili
and capillary pressures, and a brief summary in Sec. VI.

II. PROBLEMS WITH EXISTING MACROSCOPIC
EQUATIONS

Consider simultaneous flow of two incompressible a
immiscible fluid phases denoted generically as water~sub-
scriptW! and oil ~subscriptO! inside a porous medium. Th
accepted and widely used macroscopic equations of mo
@1,4,18,25# are based on mass conservation

f
]SW
]t

52“• v̄W ,
~1!

f
]SO
]t

52“• v̄O ,

SW1SO51 ~2!

and the well known generalization of Darcy’s law@1,25#
2090 © 1998 The American Physical Society
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v̄W52FKkW
r

mW
~“PW2rWg“Z!G ,

~3!

v̄O52FKkO
r

mO
~“PO2rOg“Z!G ,

all of which are assumed to be valid on length scales la
compared to a typical pore diameter. The variables in th
equations are the macroscopic pressure fields of water
oil, denoted asPW andPO , the water and oil saturationsSW
andSO , and the macroscopic~Darcy! velocity fieldsv̄W and
v̄O . The saturation is defined as the ratio of water~oil! vol-
ume to pore space volume. Saturations are averages o
macroscopic region much larger than the pore size, but m
smaller than the system size. Their arguments are the m
roscopic space and time variables (x,t). The porosityf is
the ratio of pore volume to total volume of the medium. T
fluid viscosities and densities are denoted bym and r. The
acceleration of gravity isg and the functionZ(x) is the depth
function. In the equations aboveK stands for the absolut
~single-phase flow! permeability tensor,kW

r is the relative
permeability for water, andkO

r is the relative permeability for
oil. The equations above are closed by defining the capil
pressure as

Pc~x,t !5PO~x,t !2PW~x,t ! ~4!

and by postulating for it the constitutive relationship

Pc~x,t !5Pc„Sn~x,t !…, ~5!

where

Sn~x,t !5
SW~x,t !2SWi

12SWi2SOr
~6!

is a normalized saturation. The water saturation ob
SWi,SW,12SOr , where the two numbers 0<SWi , SOr
<1 are two parameters representing the irreducible w
saturationSWi and the residual oil saturationSOr . The re-
sidual oil saturation gives the amount of oil remaining in
porous medium after a water flood. The normalized satu
tion Sn varies between 0 and 1 asSW varies betweenSWi and
12SOr .

Next it is argued@26,1# that each fluid flows in flow chan
nels given by the solid matrix and the presence of the o
fluid. One postulates that to each saturation there co
sponds a unique configuration of flow channels. This pict
is then formalized into the constitutive assumption that
relative permeabilities

kW
r ~x,t !5kW

r
„Sn~x,t !…, ~7!

kO
r ~x,t !5kO

r
„Sn~x,t !… ~8!

are functions of saturation alone.
Although these equations are widely accepted and alm

universally applied in numerical reservoir simulation@27# or
aquifer modeling@28#, they must be considered physical
incomplete. Even if the picture of flow channels is accep
it is clear that the resulting permeability depends not only
saturation~i.e., volume fraction! but also on the surface are
e
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with other fluid or solid phases. This experimental fact
well known from observations of single-phase flow in poro
media@26,1#.

The second basic problem with the macroscopic equat
of motion ~1!–~8! arises from the experimental observatio
that the parametersSOr and SWi are neither constant no
known in advance for a given experiment. Instead they v
with space and time and depend on the flow conditions in
experiment@29–37#. More precisely, the residual oil satura
tion depends on the microscopic capillary numb
Ca5mWv/sOW , wherev is a typical flow velocity andsOW
is the surface tension between the two fluids. The dep
denceSOr(Ca) is called a capillary desaturation curve. T
measured values ofSOr are known to depend also on th
duration of the flood. Capillary desaturation experime
contradict clearly to the assumption that the functio
kW

r (SW), kO
r (SW), and Pc(SW) depend only on saturation

Instead they depend also on velocity@38,39# and pressure.
Hence they depend on the solution and cannot be consid
to be constitutive relations characterizing the system. The
fore, the system of equations of motion must be conside
to be incomplete.

III. MACROSCOPIC CONSERVATION LAWS

The basic idea of this paper is to include the energy b
ance involving the macroscopic interfacial energy into t
equations of motion. As the interfacial tensions do not a
pear explicitly in Eqs.~1!–~8! it is clear that this requires an
enlarged description of the macroscopic state. While pre
ously the macroscopic state of the fluids was described
saturations, pressures, and velocities it must now incl
macroscopic interfacial areas per unit volume. The neces
to include interfacial areas in a macroscopic description
also stressed by volume averaging approaches@40–42#. The
main difference between volume averaging techniques
the approach of the present paper is that the present appr
is based purely on macroscopic mixture theory and make
reference to the underlying microscopic equations.

To discuss mass, energy, and momentum balance law
a unified manner consider first a general conserved qua
C defined per unit mass. Lett denote the flux of this con-
served quantity across a surface of a material control reg
G(t) in R3. The general multiphase conservation law in t
theory of mixtures reads in differential form@43,44#

Da

Dt
~faraCa!1faraCa“•va2“•ta2faraga5ea .

~9!

Here the subscripta refers to the different phases of th
mixture,

Da/Dt5]/]t1va•“ ~10!

denotes the material derivative,va is the velocity,ra is the
mass density, andfa is the volume fraction of phasea. Of
course

(
a

fa51 ~11!
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2092 PRE 58R. HILFER
and introducing the volume fraction of the void space, i
the porosity,

f5 (
a~Þsolid!

fa , ~12!

allows one to define saturationsSa of the fluid phases
through

fa5fSa . ~13!

In Eq. ~9! ga denotes the external supply ofC. ea represents
the interphase transfer of the conserved quantityC into
phasea from all other phases, that is,

ea5(
b

eab , ~14!

whereeab is the transfer ofC from phaseb into phasea. Of
course global conservation ofC would require that the sum
mation of Eq.~9! gives zero,(aea50, but this will not be
required here. This general formalism can now be applie
mass, momentum, and energy conservation.

For mass conservationCa51, ta50, ga50, and
ea5Ma is the transfer of mass from all other phases in
phasea. Inserting into Eq.~9! yields

]

]t
~fara!1“•~farava!5Ma , ~15!

as usual.
For momentum conservationCa5va is the velocity,

ta5Sa is the stress tensor,ga5ba is the body force, and
ea5ma is the momentum transfer from all other phases i
phasea. Inserting into Eq.~9! and using mass balance no
yields

fara

Dava

Dt
2“•Sa2faraba5ma2vaMa , ~16!

where the divergence“•Sa of the stress tensor is a vecto
whosei th coordinate isS j](Sa) i j /]xj .

For energy conservation only the kinetic energy and
interfacial energies are considered, while thermal effects
be ignored. Hence, in this case

Ca5
1

2
va•va1

1

2 (
b

sabAab

fara1fbrb
, ~17!

wheresab is the surface tension between phasesa and b
andAab is the specific internal surface of theab interface.
The denominator in the interfacial energy terms~giving the
ab density! ensures the same normalization with respec
mass and volume as for the kinetic energy term. The facto1

2

in front of it attributes the interfacial energy between pha
a andb equally to the two phases. This assumption will
relaxed in a future work@45#. Proceeding with this assump
tion, the energy flux becomes

ta5Sa•va2qa , ~18!

whereSa•va is the work done by stress andqa is the flux of
surface energy. The external energy supply is similarly sp
.,

to

o

e
ill

o

s

t,

ga5ba•va1ha , ~19!

into the workba•va done by body forces and the extern
supplyha of interfacial energy. Finally, the energy exchan
from all phases into phasea is ea5Ea .

Inserting Eqs.~17!–~19! into the general balance law~9!
gives the energy balance for immiscible displacement as

1

2 S“•va1
Da

Dt D S fara(
b

sabAab

fara1fbrb
D 1“•qa

2Sa :“va2faraha5Ea2ma•va1Ma

va
2

2
,

~20!

where

Sa:“•va5(
i 51

d

(
j 51

d

~Sa! i j

]~va! j

]xi
. ~21!

Equations~17! and ~20! embody the idea to include interfa
cial areas and energies into the macroscopic energy bala
This is the first step beyond the traditional approach
scribed, e.g., in@1,26,43#.

The second step beyond the traditional theory consist
splitting each fluid phase into a connected~percolating! and a
disconnected~nonpercolating! subphase. The idea here
that such a division is necessary to handle the dynamic
residual phase saturations. During an immiscible displa
ment process a finite fraction of each fluid phase becom
trapped in the pores. Once trapped the droplets are immo
and fixed through large local capillary forces. Only at ve
high flow rates can such trapped droplets be mobiliz
Therefore, the second main idea of the present theory i
treat these droplets as an individual phase interacting w
the connected parent phase mainly via mass exchange.

Consider now the simplest case of two immiscible flui
~called oil and water as before! flowing inside a rigid porous
medium. Dividing each of the two fluid phases into two su
phases, one has a total of five phases. Each fluid superp
is divided into a percolating~connected! and a trapped~dis-
connected! subphase. Here percolating means that each p
in the subset occupied by the percolating subphase ca
connected to the exterior boundaries of the sample by a
within the subphase. The disconnected subphase is
complement within the chosen superphase. The conne
~percolating! subphase can also be defined as the region
side of which an external applied pressure gradient
propagate. Therefore, the phase indexa above can assum
five values summarized in Table I.

IV. CONSTITUTIVE RELATIONS AND CONSTRAINTS

This section complements the basic balance laws w
geometrical and physical constraints and with constitut
relations. The fluids are assumed to be incompressible

r1~x,t !5r2~x,t !5rW5const, ~22!

r3~x,t !5r4~x,t !5rO5const ~23!
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and their stress tensors are approximated as

Sa52faPa1 ~24!

for all aP$1,2,3,4%, where1 is the unit tensor. In Eq.~24! it
is assumed that all shear stresses in the fluid are neglig
and thatPa are the true pressures in the fluids. It will b
assumed that the only body force is gravity,ba5g“Z,
whereg is the acceleration of gravity andZ(x) is the depth
function. In addition, inertial effects will be neglecte
Dava /Dt50, for all phases. All of these assumptions a
also made in the derivation of the traditional equations
scribed in Sec. III@1,26,43#.

It will be assumed that there are no external sources
sinks of surface energy,ga50. Next it is assumed tha
qa50, i.e., there is no diffusive flux of surface energy duri
the time scale of observation. A crucial assumption is t
the exchange of interfacial energy between the phase
dominated by separation and coalescence of disconne
subphase droplets from/with their connected parent ph
i.e., through mass transfer, and that all other mechanisms
negligible. This amounts to settingE50.

The porous matrix as well as the disconnected~trapped!
subphases are immobile and hence

vR5v25v450. ~25!

The interfacial area between a disconnected subphase a
superphase vanishes and the same holds for the contac
tween the two disconnected subphases. Hence

A125A345A2450. ~26!

Of courseAaa50 and symmetryAab5Aba holds.
The disconnected fluid phases have macroscopic p

suresP2(x,t) and P4(x,t) obtained by averaging the pre
sure in the disconnected drops and droplets. The resu
functions P2(x,t) and P4(x,t), however, are generally no
continuous and hence not differentiable.

The wetting properties are assumed to be constant
they are specified by the requirements that the individ
interface areas with the rock are constant, i.e.,

A1R~x,t !5A1R5const, ~27!

A2R~x,t !5A2R5const, ~28!

A3R~x,t !5A3R5const, ~29!

A4R~x,t !5A4R5const. ~30!

TABLE I. Overview of the subphases and their indices for im
miscible displacement of two fluids inside a rigid porous mediu

Phase indexa Phase description

1 connected~percolating! water phase
2 disconnected~trapped! water phase
3 connected~percolating! oil phase
4 disconnected~trapped! oil phase
R rigid porous rock phase
le

-

or
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ted
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ng
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Of courseA5A1R1A2R1A3R1A4R is the total specific in-
ternal surface of the porous medium. The ratio

WW5
A1R1A2R

A
~31!

varies from 1 to 0 as the medium varies from water wet to
wet.

Finally, it remains to specify the momentum exchang
ma5(bmab and the mass exchangesMa5(bMab . In both
casesmaa50 and Maa50 will be used. The momentum
exchange is conventionally modeled@43# through Stokes
drag in the form

mab5Rab~vb2va!5
fa

Lab
~vb2va!, ~32!

where the mobilityLab5kab /mab is expressed as usual i
terms of the permeabilitykab and the viscositymab . The
mobilities Lab can now be modeled through

Lab5
kab

mab
5

fa
3

maAab
2 , ~33!

which is analogous to the Carman-Kozeny relation for ab
lute permeabilities. This assumption reflects the traditio
view that each fluid flows in its own channel. If there is n
common interface, then it is not possible to exchange m
mentum; hence

m125m345m2450 ~34!

completes the specification of the momentum exchange.
The rigid porous matrix has a volume fractio

12f5const that is assumed to be spatially and tempor
constant. The rigid matrix is dynamically inert@see Eq.~25!#
and hence only the balance laws for the fluid phases
appear below@46#.

Chemical reactions between oil, water, and rock are
cluded and hence

M135M145M235M245M1R5M2R5M3R5M4R50.
~35!

Mass transfer occurs within each fluid phase between its c
nected and the disconnected subphases. These nonvani
mass transfers are

MW5M1252M21, ~36!

MO5M3452M43. ~37!

In general, the mass transfer may be a function of the vel
ties, saturations, and interface areas of the other phase
precise form for the dependenceMW5MW(v1 ,A13,S1S3) is
not needed here. Any concrete assumption for such a de
dence would have to be checked by experiment.

V. RESULTS

Combining the balance laws with the constitutive equ
tions gives the macroscopic equations of motion of the t
pore fluids@47#. Mass conservation yields four equations

.
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rWf
]

]t
S11rWf“•~S1v1!5MW , ~38!

rWf
]

]t
S252MW , ~39!

rOf
]

]t
S31rOf“•~S3v3!5MO , ~40!

rOf
]

]t
S452MO , ~41!

while momentum conservation gives only two equations

“~f1P1!2f1rWg“Z5R13v32~R131R141R1R1MW!v1 ,

~42!

“~f3P3!2f3rOg“Z5R31v12~R311R321R3R1MO!v3

~43!

becauseP2 and P4 are not differentiable. Energy conserv
tion gives again four equations

1

2 S“•v11
D1

Dt D S f1rWsWOA13

rWf11rOf3
1

f1rWsWOA14

rWf11rOf4

1
f1rWsWRA1R

rWf11rR~12f! D
52f1P1“•v12R13v1•v31~R131R141R1R!v1

2

1MW
v1

2

2
, ~44!

]

]t S f2rWsWOA23

rWf21rOf3
1

f2rWsWRA2R
rWf21rR~12f! D50, ~45!

1

2 S“•v31
D3

Dt D S f3rOsWOA13

rWf11rOf3
1

f3rOsWOA23

rWf21rOf3

1
f3rOsORA3R

rOf31rR~12f! D
52f3P3“•v32R31v1•v31~R311R321R3R!v3

2

1MO
v3

2

2
, ~46!

]

]t S f4rOsWOA14

rWf11rOf4
1

f4rOsORA4R
rOf41rR~12f! D50. ~47!

The unknown fields in these equations are the four sat
tionsSa (a51,2,3,4) of the fluids related tofa by Eq.~13!,
the two pressuresP1 andP3 , the six components of the tw
velocities v1 and v3 of the connected fluids, and the thre
surface areasA13, A14, and A23. Note that all Aa,R ,
a51,2,3,4, are constant by virtue of Eqs.~27!–~30!. This is
a total of 15 unknowns for which the conditio
S11S21S31S451 @see Eq.~11!#, together with Eqs.~38!–
~47!, forms a set of 15 equations.
a-

A detailed analysis of these equations will be presen
elsewhere@45#. Here only the simplest comparison with th
traditional equations~1!–~8! will be discussed. In particula
the question arises whether the present equations allow
to determine relative permeabilities and capillary press
functions.

The capillary pressure, defined in Eq.~4!, is an equilib-
rium property. In the traditional equations it is related to t
saturation profile in complete gravitational equilibrium@26#,
i.e., whenva50 and when all terms involving time deriva
tives are set to zero. Proceeding in this way, one finds
the resulting equations can be solved in the direction perp
dicular to gravity to give

Pc~x,`!5P32P15
c3

fS3~x,`!
2

c1

fS1~x,`!
, ~48!

where c3 and c1 are integration constants. UsingSW5S1
1S2 and
12SW5S31S4 shows that in the directions perpendicular
gravity

Pc~x,`!5P32P15
c3

f~12S42SW!
2

c1

f~SW2S2!
.

~49!

If it is assumed thatS2 andS4 are spatially constant through
out the sample then it is tempting to identify them withSWi
andSOr because this would imply the assumption~5! of the
traditional formulation. Moreover, the capillary pressu
would indeed have the familiarS-shaped form as a function
of saturation. It should be noticed, however, that Eq.~49!
holds only without flow, while assumption~5! is assumed to
hold always. Therefore, in the present formulation the ca
lary pressure depends strongly on the flow regime. This p
diction agrees with what is known from theory and expe
ment @38,39#. Notice also that in Eq.~49! the quantitiesS2
and S4 are state variables and hence the capillary press
includes the spatiotemporal variability of the residual satu
tions.

The generalization of Darcy’s law follows from the equ
tions of momentum balance~42! and ~43! by solving these
equations forv1 and v3 . This yields a generalized form o
Darcy’s law for two phase flow in the form

v15kWW
r k

mW
@“~f1P1!2f1rWg#

1kWO
r k

mO
@“~f3P3!2f3rOg#, ~50!

v35kOW
r k

mW
@“~f1P1!2f1rWg#

1kOO
r k

mO
@“~f3P3!2f3rOg#, ~51!
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where the relative permabilitieskab
r are defined by these

equations. Thekab
r are related to the resitivitiesRab , which

in turn are given by Eqs.~32! and ~33!.
This result differs from the traditional generalization

Darcy’s law given in Eqs.~3! in three respects. First, Eqs
~50! and ~51! includes off-diagonal coupling termskWO

r and
ti

ro
tio
Af
ive
T
ol

t

c-

,

-

.

tt.
kOW
r that are missing in Eqs.~3!. Second, Eqs.~50! and~51!

include a driving forcefPa“Sa resulting from the term
“(faPa). The driving force is proportional to saturatio
gradients. Third, and perhaps most importantly, the rela
permeabilities defined through Eqs.~50! and~51! depend not
only on saturation as assumed in Eqs.~7! and ~8! but on
kab
r 5kab

r ~R13,R31,R14,R23,R1R ,R3R ,MW ,MO!, ~52!

kab
r 5kab

r ~S1 ,S2 ,S3 ,S4 ,A13,A14,A32,]S2 /]t,]S4 /]t,A1R ,A3R! ~53!
he

in-
be-

at,
or-

on
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ur-
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rs-
by virtue of Eqs.~42!, ~43! and ~32!, ~33!, ~39! and ~41!,
respectively. This expresses a dependence on satura
changes of saturation, disconnected~residual! saturations, in-
terfacial area, and wetting properties~A1R and A3R!. Thus
the present theory gives a much more detailed picture
relative permeabilities than the traditional assumptions~7!
and ~8!.

VI. CONCLUSION

In conclusion, the present paper has discussed the p
lems associated with the macroscopic equations of mo
for two-phase immiscible displacement in porous media.
ter discussion of the traditional formulation an alternat
theory has been developed based on mixture theory.
present equations differ from the traditional ones in the f
lowing main aspects.

~i! The set of macroscopic state variables is enlarged
include specific surface area of the fluid phases.

~ii ! The set of macroscopic balance laws is enlarged
include interfacial energy balance.
on,

of

b-
n
-

he
-

to

o

~iii ! The theory allows a macroscopic quantification of t
wetting properties through the surface areas.

~iv! The dynamics of the disconnected fluid phases is
cluded. This allows one to describe the spatiotemporal
havior of residual saturations.

~v! The theory predicts a dynamic capillary pressure th
at least in complete gravitational equilibrium, shows the c
rect qualitative behavior as a function of saturation.

~vi! The relative permeabilities are found to depend
macroscopic state variables other than saturation. In part
lar they depend on wetting properties and the internal s
faces areas.

All of these results are consistent with experiment. Mo
analysis of the equations is necessary to compare their s
tions with experiment.
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