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Macroscopic equations of motion for two-phase flow in porous media
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The usual macroscopic equations of motion for two-phase immiscible displacement in porous media are
known to be physically incomplete because they do not contain the surface tension and surface areas governing
capillary phenomena. Therefore, a more general system of macroscopic equations is derived here that incor-
porates the spatiotemporal variation of interfacial energies. These equations are based on the theory of mixtures
in macroscopic continuum mechanics. They include wetting phenomena through surface tensions instead of the
traditional use of capillary pressure functions. Relative permeabilities can be identified in this approach that
exhibit a complex dependence on the state variables. A capillary pressure function can be identified in equi-
librium that shows the qualitative saturation dependence known from experiment. In addition, the proposed
equations include a description of the spatiotemporal changes of residual saturations during immiscible dis-
placement[S1063-651X98)12507-2

PACS numbes): 47.55.Mh, 81.05.Rm, 61.43.Gt, 83.10.Lk

I. INTRODUCTION Loosely speaking, the traditional theory includes only mass
and momentum balance but fails to incorporate the energy
An aquifer or a petroleum reservoir may be seen as mixbalance. Obviously the interfacial energy depends on the in-
ture of porous rocks and soil with various gases and liquidsterfacial area and hence the set of macroscopic observables
usually residing at depths that prohibit precise measuremengiescribing the state of the mixture must be enlarged to in-
on the constituentgl,?]. Despite many years of research andclude surface areas. Relative permeabilities and capillary
the fact that the microscopic laws of fluid dynamics are wellPressures must then be identified within the proposed frame-
known, the prediction of macroscopic multiphase flow in po-Work. | shall begin the discussion by presenting briefly the
rous media has not met with successe[3-5] for recent traditional formulation and discussing its problems in Sec. II.
overviews. Afterward, the macroscopic balance laws for mass, momen-
Microscopic and macroscopic descriptions of multiphasdum, and energySec. Il) will be combined with constraints
fluid flow in porous media differ considerably from each and constitutive relations to introduce macroscopic equations
other and both have their own characteristic problem&f motion (Sec. IV that differ from the conventional equa-
[1,2,4. A microscopic description fails because it is gener-tions. My presentation will conclude with a discussion of the
ally impossible and not interesting to know the detailed mi-consequences, the identification_ of relative permeabilities
crostructure and flow patterns on the pore scale. In contrag@nd capillary pressures, and a brief summary in Sec. VI.
herewith the generally accepted macroscopic models are in-
complete. Owing to its widespread importance in applied

problems, the transition from the microscale to the macros- Il. PROBLEMS WITH EXISTING MACROSCOPIC
cale for two-phase flow in porous media has attracted con- EQUATIONS
siderable interest from physicists in recent yefis-22]. Consider simultaneous flow of two incompressible and

Relatively little or no attention has been focused, howeverimmiscible fluid phases denoted generically as wésetb-
on the continuum limit of the proposed microscopic modelsscript)y) and oil (subscript®) inside a porous medium. The

Effective macroscopic equqtions of motion used by €nglaccepted and widely used macroscopic equations of motion
neers are based on generalizations of Darcy’s law, althoughy 4 18 25 are based on mass conservation

every practitioner knows that they are incomple8,1]. Mi-
croscopic models by physicists often attempt to predict the

relative permeabilities and the capillary pressure functions ISy _

for simple microstructures, although it is clear that they are ¢ T —Vovy,

highly nonunique. (1)
Detailed and rigorous derivations of macroscopic equa-

tions from microscopic ones is usually the last step in under- 3So _

standing a physical phenomenon. Experimental observations ¢ ot =V-vp,

and tests of phenomenological macroscopic models usually
precede the microscopic understanding. It is therefore of in-
terest to improve the current macroscopic description that is Sy+Sp=1 2
X . 0
known to fail even for simple laboratory systefi#s].
Given the need for more predictive macroscopic theories,
this paper proposes a different set of macroscopic equationand the well known generalization of Darcy’s |d,25|
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_ KK}y with other fluid or solid phases. This experimental fact is
V= — {— (VPy— prVZ)}, well known from observations of single-phase flow in porous
i (3)  media[26,1].
KK The second basic problem with the macroscopic equations
Vo= — -0 (VPyo— p@gVZ)} of motion (1)—(8) arises from the experimental observation
Mo that the parameterS,, and S,); are neither constant nor

all of which are assumed to be valid on length scales lar Iénown in advance for a given experiment. Instead they vary
9 Yith space and time and depend on the flow conditions in the

compared to a typical pore digmeter. The _variables in thesg perimen{29—-37. More precisely, the residual oil satura-
equations are the macroscopic pressure fields of water and. depends oﬁ the microsc'opic capillary number
oil, denoted as’,, andPo, the water and .O'I s_atura_tlorﬁ/\, Ca= uwv!loeyy, Whereo is a typical flow velocity andryy,
andS, and the macroscopi®arcy) velocity fieldsvy, and is the surface tension between the two fluids. The depen-

Vo. The saturation is defined as the. ratio of watl) vol- denceSy,(Ca) is called a capillary desaturation curve. The
ume to pore space volume. Saturations are averages over Ea

macroscopic region much larger than the pore size, but muc easured values db,, are known to depend also on the

smaller thre)m thg svstem sizeg Their ar ur%ents aré the ma uration of the flood. Capillary desaturation experiments

roscopic space an)(lj time vari.ablesto ?’he porositye is Gontradict clearly to the assumption that the functions
. ' r ;

the ratio of pore volume to total volume of the medium. The:(rg(tg’a”g’tﬁg)(lsg‘gbei%d;;gsgg ?/(ealpz)ec?thO;SIﬂyaonr:j Spart;g:‘;'?en'

glélcdel\grs ;t?;“gfs g?g\(/jitg?g 223%?%2?382?5 ﬁ”tg g ld-ggfh Hence they depend on the solution and cannot be considered

function. In the equations abové stands for the absolute to be constitutive relations characterizing the system. There-

(single-phase flow permeability tensorkl, is the relative fore, the system of equations of motion must be considered

. r . i to be incomplete.
permeability for water, anld, is the relative permeability for
oil. The equations above are closed by defining the capillary

pressure as . MACROSCOPIC CONSERVATION LAWS

The basic idea of this paper is to include the energy bal-

Pe(X,t)=Pox.t) = Pyix.t) “) ance involving the macroscopic interfacial energy into the
and by postulating for it the constitutive relationship equations of motion. As the interfacial tensions do not ap-
pear explicitly in Eqs(1)—(8) it is clear that this requires an
P (x,t)=P(Sy(x,1)), (5) enlarged description of the macroscopic state. While previ-
ously the macroscopic state of the fluids was described by
where saturations, pressures, and velocities it must now include
(x)— macroscopic interfacial areas per unit volume. The necessity
S, (x,t)= SMX = S (6)  to include interfacial areas in a macroscopic description is
1-Spwi—Sor also stressed by volume averaging approa¢i8s4J. The

: lized . Th , b main difference between volume averaging techniques and
Is a normalized saturation. The water saturation obey$,e gnnroach of the present paper is that the present approach

Swi<Sy<1-Se, where the two numbers<9S,;i, Sor s hased purely on macroscopic mixture theory and makes no
<1 are two parameters representing the irreducible wat€loterence to the underlying microscopic equations.

saturationS,,; and the residual oil saturatio®,, . The re- To discuss mass, energy, and momentum balance laws in

sidual oil saturation gives the amount of oil remaining in a5 nified manner consider first a general conserved quantity
porous medium after a water flood. The normalized saturag defined per unit mass. Let denote the flux of this con-

tion S, varies between 0 and 1 &, varies betwee,; and  geryed quantity across a surface of a material control region

1-Sor o . . G(t) in R3. The general multiphase conservation law in the
Next it is argued 26,1] that each fluid flows in flow chan- theory of mixtures reads in differential forf43,44
nels given by the solid matrix and the presence of the other

fluid. One postulates that to each saturation there corre- pe«
sponds a unique configuration of flow channels. This picture Dt (PP Vo) T+ DoV V- V,—V-7,—dp9.=€,-
is then formalized into the constitutive assumption that the

relative permeabilities ©
KL (1) =KD (Sh(X,1)), @ Here the subscriptr refers to the different phases of the
mixture,
Ko(x 1) =ko(S(x1) ® D*/Dt=d/at+v,-V (10

are functions of saturation alone. . o ) ) .
Although these equations are widely accepted and almog&lenotes the material derivative, is the velocity,p,, is the

universally applied in numerical reservoir simulati@v] or ~ Mass density, ang,, is the volume fraction of phase. Of

aquifer modeling[28], they must be considered physically ¢OUrse

incomplete. Even if the picture of flow channels is accepted

it is clear that the resulting permeability depends not only on 2 b,=1 (12)

saturation(i.e., volume fractiopbut also on the surface area x
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and introducing the volume fraction of the void space, i.e.,

9.= ba' Va+ ha ’
the porosity,

(19
into the workb,-v, done by body forces and the external
supplyh,, of interfacial energy. Finally, the energy exchange
from all phases into phaseis e,=E,.

Inserting Eqs(17)—(19) into the general balance la(®)
gives the energy balance for immiscible displacement as

= 2 ¢, (12)
a(#solid)

allows one to define saturationS, of the fluid phases

through

1 @ T, 5A

o= PS, - (13 2V 4+ — _Tapllap .

2| Vet B\ epeZ G ragns) TV e
In Eq. (9) g, denotes the external supply ¥t e, represents
the interphase transfer of the conserved quariityinto _ V2
phasea from all other phases, that is, 24 Ve Papala=Eam Mo Vot M, =,

(20)
ea: % eaﬁ ’ (14)
where

wheree,; is the transfer off from phaseg into phasexr. Of 4 d
course global conservation 8f would require that the sum- B A(Va)j
mation of Eq.(9) gives zero,2 ,e,=0, but this will not be 24V Va_gl ]Zl (2 aij X (21)

required here. This general formalism can now be applied to

mass, momentum, and energy conservation. Equations(17) and (20) embody the idea to include interfa-

For mass conservationV,=1, 7,=0, g,=0, and cjal areas and energies into the macroscopic energy balance.
e, =M, is the transfer of mass from all other phases intoThjs is the first step beyond the traditional approach de-
phasea. Inserting into Eq(9) yields scribed, e.g., i11,26,43.

The second step beyond the traditional theory consists in
splitting each fluid phase into a connecteércolating and a
disconnectednonpercolatiny subphase. The idea here is
that such a division is necessary to handle the dynamics of
residual phase saturations. During an immiscible displace-
; a ment process a finite fraction of each fluid phase becomes
7.=2, is the stress tensog,=b, is the body force, and 350 in the pores. Once trapped the droplets are immobile
€, =M, is the momentum transfer from all other phases intoynq fixed through large local capillary forces. Only at very
phasea. Inserting into Eq(9) and using mass balance now high fiow rates can such trapped droplets be mobilized.
yields Therefore, the second main idea of the present theory is to

Dy treat these droplets as an individual phase interacting with
‘-V.3,— ¢.pb,=m,—Vv,M (16)  the connected parent phase mainly via mass exchange.

Consider now the simplest case of two immiscible fluids
(called oil and water as befgrélowing inside a rigid porous
medium. Dividing each of the two fluid phases into two sub-
é)hases, one has a total of five phases. Each fluid superphase
s divided into a percolatingconnectegiand a trappeddis-
connecteglsubphase. Here percolating means that each point

d
E(d’apa)_l—v'(d)apava):Ma! (15)

as usual.
For momentum conservatiol’ ,=v, is the velocity,

DPaPu

Dt @
where the divergenc¥ -3, of the stress tensor is a vector
whoseith coordinate is;d(X,); /dX; .

For energy conservation only the kinetic energy and th
interfacial energies are considered, while thermal effects wil

be ignored. Hence, in this case

1 1 o, 5A
o1 apPap
\Pa_z Ve Va+ 2 E

B ¢apa+ ¢,6’pﬁ, (17)

where oz is the surface tension between phaaeand 3
andA,; is the specific internal surface of theg interface.
The denominator in the interfacial energy terfgsving the

af density ensures the same normalization with respect t
mass and volume as for the kinetic energy term. The fagtor

in the subset occupied by the percolating subphase can be
connected to the exterior boundaries of the sample by a path
within the subphase. The disconnected subphase is the
complement within the chosen superphase. The connected
(percolating subphase can also be defined as the region in-
side of which an external applied pressure gradient can
propagate. Therefore, the phase indexbove can assume
cIive values summarized in Table I.

in front of it attributes the interfacial energy between phases IV. CONSTITUTIVE RELATIONS AND CONSTRAINTS

a and B equally to the two phases. This assumption will be
relaxed in a future work45]. Proceeding with this assump-

tion, the energy flux becomes
Tazza'va_qav (18)

whereX, ,- v, is the work done by stress ang is the flux of

surface energy. The external energy supply is similarly split,

This section complements the basic balance laws with
geometrical and physical constraints and with constitutive
relations. The fluids are assumed to be incompressible

p1(X,t) = pa(X,t) = pyy=const, (22)

p3(X,t) = p4a(X,t) = pp=const (23
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TABLE I. Overview of the subphases and their indices for im- Of courseA=A;r+ A,r+ Asr+ A4 is the total specific in-
miscible displacement of two fluids inside a rigid porous medium. ternal surface of the porous medium. The ratio

Phase indexx Phase description AirtAz
. W= A (32
1 connectedpercolating water phase
2 d'sconneCtemappeq WaFer phase varies from 1 to O as the medium varies from water wet to oil
3 connectedpercolating oil phase wet
4 disconnectedtrapped oil phase Finally, it remains to specify the momentum exchanges
R rigid porous rock phase m, == M,z and the mass exchange, =3 sM 5. In both

casesm,,=0 andM,,=0 will be used. The momentum
exchange is conventionally model¢d3] through Stokes

and their stress tensors are approximated as drag in the form

Ea: - ¢apa1 (24) (ZS
. . . maﬁ: Raﬁ(vﬁ_va): A (Vﬁ_va)v (32)
for all e {1,2,3,4, wherel is the unit tensor. In Eq24) it apB

is assumed that all shear stresses in the fluid are negligiblvt\a/here the mobilitvA .=k ./ is expressed as usual in
and thatP, are the true pressures in the fluids. It will be Yhap=Kap! tap P

. . terms of the permeabilitk,; and the viscosityu,;. The
assumed that the only body force is gravity,=gVZ, @B ap
whereg is the acceleration of gravity arix) is the depth mobilities A.,; can now be modeled through

function. In addition, inertial effects will be neglected, K ¢3
D“v,/Dt=0, for all phases. All of these assumptions are Aaﬁ=iﬁ= —5, (33
also made in the derivation of the traditional equations de- Map  HaPap

scribed in Sec. 11[1,26,43. which is analogous to the Carman-Kozeny relation for abso-
It will be assumed that there are no external sources of 9 y

sinks of surface ener —0. Next it is assumed that lute permeabilities. This assumption reflects the traditional

—0.ie. thereis no d%?f?f;ive.ﬂux of surface enerav durin view that each fluid flows in its own channel. If there is no
9o =Y, 1.€., , ; gy duning -, mon interface, then it is not possible to exchange mo-
the time scale of observation. A crucial assumption is tha .

) . entum; hence

the exchange of interfacial energy between the phases Is
dominated by separation and coalescence of disconnected M= Mas=Myy=0 (34)
subphase droplets from/with their connected parent phase,
i.e., through mass transfer, and that all other mechanisms ampletes the specification of the momentum exchange.

negligible. This amounts to settirig=0. The rigid porous matrix has a volume fraction
The porous matrix as well as the disconnectedpped  1— ¢=const that is assumed to be spatially and temporally
subphases are immobile and hence constant. The rigid matrix is dynamically inggee Eq(25)]
and hence only the balance laws for the fluid phases will
Vr=V,=V,=0. (25  appear below46].

) ) ) ~ Chemical reactions between oil, water, and rock are ex-
The interfacial area between a disconnected subphase and {ig;ded and hence

superphase vanishes and the same holds for the contact be-
tween the two disconnected subphases. Hence M13=M14=Moz=Moy=Miz=Mor=M3r=M,z=0.
(35
A12=A3=A=0. (26) _ _ .
Mass transfer occurs within each fluid phase between its con-

Of courseA,,=0 and symmetnA,,;=Ag, holds. nected and the disconnected subphases. These nonvanishing

The disconnected fluid phases have macroscopic pregiass transfers are
suresP,(x,t) and P,(x,t) obtained by averaging the pres-
sure in the disconnected drops and droplets. The resulting M=M= =My, (36)
functions P,(x,t) and P,(x,t), however, are generally not
continuous and hence not differentiable.

The wetting properties are assumed to be constant a
they are specified by the requirements that the individu
interface areas with the rock are constant, i.e.,

Mo=Mgzs=—Mys. (37

fh general, the mass transfer may be a function of the veloci-
ies, saturations, and interface areas of the other phases. A
precise form for the dependenbi,,= M (v1,A13,5:S3) is

not needed here. Any concrete assumption for such a depen-

Arr(X,t) =As = const, (27) dence would have to be checked by experiment.
AZR(X,t)=A2R=COI’ISt, (28) V. RESULTS
Asr(X,t)=Agr=const, (29 Combining the balance laws with the constitutive equa-

tions gives the macroscopic equations of motion of the two
Asr(X,t)=A,z=const. (30 pore fluids[47]. Mass conservation yields four equations
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PW¢ 31“‘ pwdV - (Sv1) =My, (39
J

PWd’ESZ:_MWa (39

Po¢ 53+P0¢V (Sgv3) =M, (40
0

pod T S;=—Mp, (41)

while momentum conservation gives only two equations

V($1P1) = 1pnQVZ=Ry3v3— (Riz+ Rist Rig + My)vy,
(42

V(¢3P3) = d3p0dVZ=R31vi — (R31+ Rgp+ Ragp+ M) Vs
(43

becauseP, and P, are not differentiable. Energy conserva-
tion gives again four equations

1 (V-v N D_1> ( D1oWoWoA1s  D1PWTWOA14
2 LDt pyditpods  pwditpoda
b1pwowrALIR
pwd1tpr(l— o)
=—¢1P1V Vi —RyaV - V3+ (Ryz+ Ryg+ Rip)Vi
2
+Myy ?1 (44)

Do wrAR
pwd2t+pr(l—¢)

i <¢2PW(TWOA23
pwP2tpods

) =0, (45

E ( Vovad — P3poTwoP1z  d3poowoP23
2 " Dt)\ pyd1t+pods  pwhatpods
b3000 0RA3R
pobstpr(l—d¢)
= — ¢3P3V - V3— RgpV; - Va+ (Rag+ Rap+ Rag) V3
V3
+Mp (46)
2
9 [ PapoTwoPs bapoTorAsr ) —0. (47
pwdhr1tpods poPatpr(l—a) '

The unknown fields in these equations are the four satura-

tionsS, (a=1,2,3,4) of the fluids related o, by Eq.(13),
the two pressureB,; andP3, the six components of the two

velocitiesv,; and vy of the connected fluids, and the three

surface areasA;3, Aj4, and Ayz. Note that allA, r,
a=1,2,3,4, are constant by virtue of Eq27)—(30). This is

a total of 15 unknowns for which the condition
S;+S,+S;+S,=1 [see Eq(11)], together with Eqs(38)—
(47), forms a set of 15 equations.
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A detailed analysis of these equations will be presented
elsewherd45]. Here only the simplest comparison with the
traditional equation$l)—(8) will be discussed. In particular
the question arises whether the present equations allow one
to determine relative permeabilities and capillary pressure
functions.

The capillary pressure, defined in E@), is an equilib-
rium property. In the traditional equations it is related to the
saturation profile in complete gravitational equilibriy26],

i.e., whenv,=0 and when all terms involving time deriva-
tives are set to zero. Proceeding in this way, one finds that
the resulting equations can be solved in the direction perpen-
dicular to gravity to give

C3

$Ss(x,)

C1

Pa=Pa= $S1(x.)

Pe(x,»)= (48)

where c; and ¢, are integration constants. Usirg,=S;
+S, and
1-S,,=S3;+S, shows that in the directions perpendicular to
gravity

C3
S4—

C1

H(Sy—S;)
(49

Po(X,2)=P3—P;=

$(1-5,—Sy)

If it is assumed tha%, andS, are spatially constant through-
out the sample then it is tempting to identify them waj,
andS,,, because this would imply the assumpti@ of the
traditional formulation. Moreover, the capillary pressure
would indeed have the familié8-shaped form as a function
of saturation. It should be noticed, however, that Ef)
holds only without flow, while assumptiai®) is assumed to
hold always. Therefore, in the present formulation the capil-
lary pressure depends strongly on the flow regime. This pre-
diction agrees with what is known from theory and experi-
ment[38,39. Notice also that in Eq(49) the quantitiesS,

and S, are state variables and hence the capillary pressure
includes the spatiotemporal variability of the residual satura-
tions.

The generalization of Darcy’s law follows from the equa-
tions of momentum balanc@l2) and (43) by solving these
equations forv; andvs. This yields a generalized form of
Darcy’s law for two phase flow in the form

k
V1=K oy [V(¢1P1)— d1pn0]

k
+Kho o [V(#3P3)— d3pedl, (50
V3= kow [V(¢1 1)~ d1pn9]
ok
+Koo o [V(é3P3)— d3pedl, (51)
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where the relative permabilitiek‘;,g are defined by these ki, that are missing in Eq$3). Second, Eqg50) and(51)

equations. Thé,; are related to the resitivitig®, 5, which include a driving force¢P, VS, resulting from the term

in turn are given by Eq932) and(33). V(¢,P,). The driving force is proportional to saturation
This result differs from the traditional generalization of gradients. Third, and perhaps most importantly, the relative

Darcy’s law given in Eqgs(3) in three respects. First, Eqs. permeabilities defined through Eq50) and(51) depend not

(50) and(51) includes off-diagonal coupling terms,,, and  only on saturation as assumed in E¢®.and(8) but on

Keg= K 5(R13,Ra1,R14,Ro3,Riz s Rar .My, M), (52

Kap=Kap(S1,52,53,54,A13,A14,A32,0S,9t,0S4 19t A\ Asr) (53

by virtue of Egs.(42), (43) and (32), (33), (39 and (41), (iii) The theory allows a macroscopic quantification of the
respectively. This expresses a dependence on saturatiometting properties through the surface areas.

changes of saturation, disconnectesksidual saturations, in- (iv) The dynamics of the disconnected fluid phases is in-
terfacial area, and wetting propertiés;r and Azz). Thus cluded. This allows one to describe the spatiotemporal be-
the present theory gives a much more detailed picture olfiavior of residual saturations.

relative permeabilities than the traditional assumpti¢nis (v) The theory predicts a dynamic capillary pressure that,

and (8). at least in complete gravitational equilibrium, shows the cor-
rect qualitative behavior as a function of saturation.

VI. CONCLUSION (vi) The relative permeabilities are found to depend on

macroscopic state variables other than saturation. In particu-

In conclusion, the present paper has discussed the proly, they depend on wetting properties and the internal sur-
lems associated with the macroscopic equations of motiofgces areas.
for two-phase immiscible displacement in porous media. Af- || of these results are consistent with experiment. More

ter discussion of the traditional formulation an alternativeanalysis of the equations is necessary to compare their solu-
theory has been developed based on mixture theory. Thggns with experiment.

present equations differ from the traditional ones in the fol-
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