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Reconstruction of random media using Monte Carlo methods
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A simulated annealing algorithm is applied to the reconstruction of two-dimensional porous media with
prescribed correlation functions. The experimental correlation function of an isotropic sample of Fontainebleau
sandstone and a synthetic correlation function with damped oscillations are used in the reconstructions. To
reduce the numerical effort we follow a proposal suggesting the evaluation of the correlation functions only
along certain directions. The results show that this simplification yields significantly different microstructures
as compared to a full evaluation of the correlation function. In particular, we find that the simplified recon-
struction method introduces an artificial anisotropy that is originally not present.@S1063-651X~99!05504-X#

PACS number~s!: 61.43.Gt, 81.05.Rm, 61.43.2j
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I. INTRODUCTION

A better understanding of the transport properties of r
dom media, such as fluid flow in sandstones or electr
conductivity of composites requires the microstructure as
put @1–6#. Digitized, three-dimensional microstructures
natural sandstones are difficult and expensive to obtain@7#.
Thus there is a need for simulation algorithms that are abl
provide representative microstructures from statistical pr
ability functions.

Recently various algorithms have been proposed for
reconstruction of random microstructures@8–11#. In this pa-
per we investigate a simulated annealing method that
forces agreement between the correlation functions of
original and the reconstructed microstructure@8#. To save
computation time the authors of@8# have evaluated the cor
relation functions only in certain directions assuming is
ropy of the medium. The objective of this paper is to stu
the effect of this simplification on the final, reconstruct
configurations. We test the effects on two examples:~i! the
correlation function of a Fontainebleau sandstone and~ii ! an
artificial correlation function with damped oscillations. Th
results show that at least for the oscillating correlation fu
tion this yields significantly different configurations. Mor
importantly, the reconstructions are anisotropic as a resu
the simplified evaluation of the correlation functions.

II. THE RECONSTRUCTION METHOD

We follow the reconstruction algorithm proposed in@8#.
The reconstruction is performed on ad-dimensional hyper-
cubic lattice Zd (d52 for the results presented below!.
Whether a lattice point lies within pore space or matrix sp
is indicated by the characteristic function

x~xW !5x~x1 ,x2 ,...,xd!5 H0, for xWPP,
1, for xWPM ~1!

with xi50,1,...,Mi21, whereP denotes the pore space an
M the matrix space of a two-phase porous medium. Thexi
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are in units of the lattice spacinga. The porosityf is given
as f5 1

N ( j 51
N @12x(xW j )# where N5P i 51

d M i is the total
number of lattice sites.

Simulated annealing is an iterative technique for com
natorial optimization problems. The iteration steps are
noted by a subscriptt. The optimum is found by lowering a
fictitious temperatureTt that controls the acceptance or r
jection of configurations with ‘‘energy’’~or cost function!
Et . The energy function used in our simulations is defined

Et5 (
k51

J

wk (
rWPDk

@gt
k~rW !2gref

k ~rW !#2, ~2!

whereDk,Zd is a subset of lattice points andgt
k is thekth

function of a set ofJ statistical probability functions calcu
lated for the configuration of stept. For examplegt

k may be
a k-point correlation function. The real valued factorwk is a
weight for thekth function. Hence, the energy can be und
stood as a measure for the deviations of the probability fu
tions gt

k from predefined reference functionsgref
k .

The simulated annealing algorithm consists of the follo
ing steps. ~1! Initialization: The 0’s and 1’s are randoml
distributed with given porosityf. ~2! Two lattice points of
different phase are chosen at random and exchanged. In
way the porosityf is conserved. ~3! The ‘‘energy’’ Et of
the current configuration is calculated according to E
~2!. ~4! The ‘‘temperature’’Tt is adjusted according to a
fixed cooling schedule. ~5! The new configuration create
by the exchange of the two points is accepted with proba
ity

p5minF1,expS 2
Et2Et21

Tt
D G . ~3!

In case of rejection, the two points are restored and the
configuration is left unchanged.~6! Return to step 2.

As can be seen from Eq.~3!, configurations with lower
energy are immediately accepted while the acceptance
configuration with higher energy is controlled by the tem
peratureT. In order to obtain a configuration with minima
energyE or, in other words, a configuration with minima
5596 ©1999 The American Physical Society
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deviations of the probability functionsgk from their refer-
ence functionsgref

k , the temperatureT has to be lowered in a
suitable way.

The algorithm is applicable to various functionsgk. Most
authors propose the two point correlation function@8,10,11#.
Assuming homogeneity and ergodicity, the two-point cor
lation function can be defined for our case as

g~rW !5
^x~xW !x~xW1rW !&2~12f!2

f2f2 . ~4!

where the averagê̄ & indicates a spatial average over a
lattice sitesxW . If gt21(rW) is known a single update step of th
annealing process requires the recalculation of the corr
tions of the two pixels that are exchanged in step 2 with
other pixels. The numerical effort to obtaingt(rW) is therefore
proportional toN where N is the total number of lattice
points. In the reconstruction of three-dimensional porous m
dia with N'106

¯107 this leads to unacceptably long calc
lation times and therefore one has to find ways to speed
this calculation.

One possibility for reducing the numerical effort is
truncateg at a valuer c for which g(rW)'0 for r 5urWu>r c
holds. Below we setg(rW)50 for urWu>r c where r c is a pa-
rameter in the reconstruction. For isotropic media, wh
g(rW)5g(r ) with urWu5r , it was suggested in@8# to calculate
g(r ) only in certain directions by settingrW5reW k whereeW k is
an arbitrary unit vector. In the two-dimensional reconstru
tions presented beloweW k will be set to the radial unit vecto
in a polar coordinate systemeW k5eWwk5eW x coswk1eWy sinwk
whereeW x andeW y are the unit vectors of the Cartesian coor
nate system andwk is the angle betweeneW x andeWwk . Hence,
instead of Eq.~4! we use

gk~r !5
^x~xW !x~xW1reW k!&2~12f!2

f2f2 ~5!

with r 50,1,...,r c in the simplified reconstruction schem
Since Eq.~5! is a set ofJ one-dimensional correlation func
tions the numerical effort is reduced by a factor of rough
Jrc /N as compared to Eq.~4!.

FIG. 1. Simplified reconstruction of the damped oscillating c
relation function given in Eq.~6! by restricting the correlation func
tion evaluation to the horizontal and vertical directions.
-
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The above algorithm is now used to reconstruct tw
dimensional, isotropic media with correlation function

gref~r !5expS 2
r

8D cos~vr ! ~6!

with r in units of the lattice spacing andv51. The same
function was used by the authors of@8# to exemplify their
algorithm. In the evaluation of the correlation functions p
riodic boundary conditions are assumed. We use an expo
tial decrease of the temperature

Tt5expS 2
t

163105D . ~7!

The remaining parameters are the lattice sizeM15M2
5400 and the porosityf50.5. They are the same as in@8#.
The following reconstructions have all been initialized wi
the same random seed. The algorithm terminated when
configuration did not change for 20 000 subsequent upd
steps.

III. RESULTS

In the first reconstruction, the correlation function w
calculated only in the horizontal and vertical direction, i.
Eqs. ~2! and ~5! were used withJ52, rW15reW0 , and rW2
5reWp/2 . Both correlation functionsg1,g2 had the same
weight w15w250.5 and the same reference functiongref

1

5gref
2 given in Eq. ~6! was used. The correlation functio

was truncated atr c5100. Figure 1 shows the final configu
ration of the reconstruction. A similar pattern was found
@8#. The pattern consists of stripes in direction ofeWp/4 and in
direction eW 2p/4 . The distance between the stripes is det
mined by the cosine term. On a larger length scale, the
tern organizes into several regions in which all lines are p
allel. The typical size of these regions is given by roughly
in view of Eq. ~6! and Fig. 2. Clearly, the pattern is no

-
FIG. 2. Correlation functions for the reconstruction of Fig.

The solid line is the reference function of the reconstruction giv
in Eq. ~6!. 1 and3 are the values of the correlation function of Fi
1 along the horizontal and vertical directions, respectively. The v
ues of the correlation function in directioneWp/4 are plotted withs.
The dotted line is the estimate given in Eq.~8! for the correlation
function along theeWp/4 direction.
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5598 PRE 59C. MANWART AND R. HILFER
isotropic as it should be. The stripes are preferentially
rected along the directionseWp/4 andeW 2p/4 . Also, one expects
that the oscillation frequencyv of the correlation function in
directioneW 6p/4 is not v51 but v5&.

Figure 2 shows the correlation functions for the config
ration of Fig. 1 in the directions of the unit vectorseW0 , eWp/2
andeWp/4 . The first and second have been used for the rec
struction and hence show good agreement with the refere
function while the latter deviates drastically. The correlati
in directioneWp/4 is better described by the function

f ~r !5
1

2 FexpS 2
r

8D cos~&r !1expS 2
r

8D G . ~8!

shown as the dotted line. This may be interpreted as
arithmetic mean of the correlation function for regions~de-
scribed above! with stripes perpendicular to the directio
eWp/4 given by the first term in Eq.~8! and the correlation
function for regions with stripes parallel to the directioneWp/4
given by the second term. Of course, the same correla
function is found in directioneW 2p/4 .

FIG. 3. Simplified reconstruction of the damped oscillating c
relation function of Eq.~6! by restricting the correlation function
evaluation to the foureW0 , eWp/2 , eWp/4 , andeW 2p/4 directions.

FIG. 4. Correlation functions for the reconstruction of Fig.
The reference function is plotted as solid line. Note the mismatc
the first minimum and maximum.
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One step towards an isotropic reconstruction may be
useJ54, and to force agreement of the correlations not o
in two but in four directionseW0 , eWp/2 , eWp/4 , andeW 2p/4 . The
resulting configuration is shown in Fig. 3. The pattern
significantly different from the pattern of Fig. 1. There a
not only stripes parallel to the diagonal directions but mo
rounded formations and concentric circles at some poi
The correlation functions for Fig. 3 are plotted in Fig.
Surprisingly we find that it is not possible to obtain agre
ment with the reference correlation function. The resulti
correlation functions in the horizontal, vertical, and diagon
directions all deviate strongly from the reference functi
especially at the first minimum. Additional simulations wi
different cooling schedules, damping factors and freque
of the correlation function did not give better agreement. W
have also varied the system sizes from 2003200 up to
100031000. The results were identical.

Figure 5 shows the two-dimensional reconstructions o
Fontainebleau sandstone with porosityf50.135. The corre-

-

in

FIG. 5. ~a! Two-dimensional simplified reconstruction of th
correlation function of a Fontainebleau sandstone by restricting
correlation function evaluation to the horizontal and vertical dire
tions. ~b! Reconstruction with the same reference correlation fu
tion as in ~a! but complete evaluation of the correlation functio
i.e., without directional restrictions.
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lation function was truncated atr c550. The reconstruction
of Fig. 5~a! used the correlation function only in verticaleW0
and horizontaleWp/2 direction as suggested in@8#. The recon-
struction shown in Fig. 5~b!, however, calculates the fu
two-dimensional correlation function according to Eq.~4!
where the two-dimensional correlation function was radia
binned in the calculations to obtain a one-dimensional fu
tion that can be compared to the one-dimensional, isotro
correlation function of the original sandstone. We emphas
that in this calculation the two-dimensional correlation fun
tion was evaluated without restrictions or simplification

FIG. 6. Correlation function for the reconstructions of Fig.
The reference function is plotted as solid line. The correlation fu
tions calculated in horizontal, vertical and diagonal direction re
to the configuration of Fig. 5~a!. The complete correlation function
is calculated from the configuration of Fig. 5~b!.
.
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Therefore, the calculation needed about 50 times longer t
the simplified reconstruction. Again, there are differenc
visible although they are smaller than those in the rec
structions using Eq.~6!. The shape of the pores in the fu
reconstruction@Fig. 5~b!# appear to be smoother and there
not as much ‘‘dust’’ visible as in the simplified~restricted!
reconstruction shown in Fig. 5~a!. The correlation functions
plotted in Fig. 6 reveal also that the reconstructed mic
structure in Fig. 5~a! is strongly anisotropic while the micro
structure in Fig. 5~b! is isotropic as it should be.

In summary we note that the statistical reconstruction
porous media with predefined two-point correlation functi
often requires some reduction of numerical effort. Especia
the reconstruction of three-dimensional porous media in r
sonable time does not seem possible without such simp
cations in the calculation of the correlation function. O
course this problem is exacerbated if one wishes to incl
three-point or even higher-order correlation functions. W
applied a simplification proposed and used in@8#, which
samples the correlation function only in certain direction
The effect of this simplification on the final configuration
may in some cases be negligible but in general configu
tions strong anisotropy and patterns which are significan
different from those of a proper isotropic reconstruction m
appear as a result.
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