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Reconstruction of random media using Monte Carlo methods
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A simulated annealing algorithm is applied to the reconstruction of two-dimensional porous media with
prescribed correlation functions. The experimental correlation function of an isotropic sample of Fontainebleau
sandstone and a synthetic correlation function with damped oscillations are used in the reconstructions. To
reduce the numerical effort we follow a proposal suggesting the evaluation of the correlation functions only
along certain directions. The results show that this simplification yields significantly different microstructures
as compared to a full evaluation of the correlation function. In particular, we find that the simplified recon-
struction method introduces an artificial anisotropy that is originally not preggb63-651X99)05504-X]

PACS numbgs): 61.43.Gt, 81.05.Rm, 61.43]

[. INTRODUCTION are in units of the lattice spacirgy The porosity¢ is given
as ¢=x=L,[1-x(X;)] where N=II"_,M; is the total
A better understanding of the transport properties of rannumber of lattice sites.
dom media, such as fluid flow in sandstones or electrical Simulated annealing is an iterative technique for combi-
conductivity of composites requires the microstructure as innatorial optimization problems. The iteration steps are de-
put [1-6]. Digitized, three-dimensional microstructures of noted by a subscrigt The optimum is found by lowering a
natural sandstones are difficult and expensive to oljfdin fictitious temperaturdl; that controls the acceptance or re-
Thus there is a need for simulation algorithms that are able tfection of configurations with “energy’(or cost function
provide representative microstructures from statistical probg, . The energy function used in our simulations is defined as
ability functions.
Recently various algorithms have been proposed for the J
reconstruction of random microstructuf@-11]. In this pa- Ei=>, WKQE [gX(F)—gkd)12, 2
per we investigate a simulated annealing method that en- k=1 Tely
forces agreement between the correlation functions of the d , , :
original and the reconstructed microstructfied. To save wher_e]DkCZ IS a subse’F O.f lattice p0|_n_ts arg#‘ IS the kth
computation time the authors £8] have evaluated the cor- function of a set pt] stgtlsucal probability funcnkons calcu-
relation functions only in certain directions assuming isot-1ated for the configuration of step For exampleg, may be
ropy of the medium. The objective of this paper is to study@ kjpomt correlation fupctlon. The real valued facteg is a
the effect of this simplification on the final, reconstructedWweight for thekth function. Hence, the energy can be under-
configurations. We test the effects on two exampl@sthe stood as a measure for the deviations of the probability func-
correlation function of a Fontainebleau sandstone @péin  tions gf from predefined reference functiogl,.
artificial correlation function with damped oscillations. The ~ The simulated annealing algorithm consists of the follow-
results show that at least for the oscillating correlation funcing steps. (1) Initialization: The 0's and 1's are randomly
tion this yields significantly different configurations. More distributed with given porosity. (2) Two lattice points of
importantly, the reconstructions are anisotropic as a result glifferent phase are chosen at random and exchanged. In this
the simplified evaluation of the correlation functions. way the porositys is conserved. (3) The “energy” E, of
the current configuration is calculated according to Eg.
(2). (4) The “temperature”T, is adjusted according to a
Il. THE RECONSTRUCTION METHOD fixed cooling schedule. (5) The new configuration created
by the exchange of the two points is accepted with probabil-

We follow the reconstruction algorithm proposed[8l. ity
E.—E.
1,ex;< — t—”) } 3)

The reconstruction is performed ondadimensional hyper-
cubic lattice 2% (d=2 for the results presented belpw
Whether a lattice point lies within pore space or matrix space p=min

is indicated by the characteristic function Ty

In case of rejection, the two points are restored and the old
. 0, for Xel, configuration is left unchanged.(6) Return to step 2.
X(X)= X(X1,X2,.. Xg) = 1, for xeM @ As can be seen from E@3), configurations with lower
energy are immediately accepted while the acceptance of a
configuration with higher energy is controlled by the tem-
with x;=0,1,...M;—1, whereP’ denotes the pore space and peratureT. In order to obtain a configuration with minimal
M the matrix space of a two-phase porous medium. Xhe energyE or, in other words, a configuration with minimal
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l o FIG. 2. Correlation functions for the reconstruction of Fig. 1.
FIG. 1. Simplified reconstruction of the damped oscillating cor-The solid line is the reference function of the reconstruction given

2 , . . .
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\\‘:/ffj\\{ . 7 (in units of lattice spacing)

&
relation function given in Eq6) by restricting the correlation func-  in Eq.(6). + and X are the values of the correlation function of Fig.
tion evaluation to the horizontal and vertical directions. 1 along the horizontal and vertical directions, respectively. The val-

ues of the correlation function in directid@,, are plotted withO.

deviations of the probability functiong® from their refer-  The dotted line is the estimate given in E8) for the correlation
ence function:g‘r‘ef, the temperaturé has to be lowered in a function along theé ,, direction.
suitable way.

The algorithm is applicable to various functiog’s Most The above algorithm is now used to reconstruct two-
authors propose the two point correlation functi0,11.  dimensional, isotropic media with correlation function
Assuming homogeneity and ergodicity, the two-point corre-

r
gref(r)=exp( ~3

lation function can be defined for our case as
(X(R)x(X+F))—(1—¢)?
d— ? ' 4) with r in units of the lattice spacing and=1. The same
function was used by the authors [@] to exemplify their
where the average--) indicates a spatial average over all algorithm. In the evaluation of the correlation functions pe-
lattice siteX. If g;_4(F) is known a single update step of the riodic boundary conditions are assumed. We use an exponen-
annealing process requires the recalculation of the correldial decrease of the temperature
tions of the two pixels that are exchanged in step 2 with all
other pixels. The numerical effort to obtagy(r) is therefore T— t
proportional toN where N is the total number of lattice s BEETSE T, 3
points. In the reconstruction of three-dimensional porous me-
dia with N~10P---10’ this leads to unacceptably long calcu- The remaining parameters are the lattice sMg=M,
lation times and therefore one has to find ways to speed up400 and the porosity=0.5. They are the same as[i#i.
this calculation. The following reconstructions have all been initialized with
One possibility for reducing the numerical effort is to the same random seed. The algorithm terminated when the
truncateg at a valuer for which g(f)~0 for r=|f|=r.  configuration did not change for 20000 subsequent update
holds. Below we seg()=0 for |F|=r. wherer. is a pa- sSteps.
rameter in the reconstruction. For isotropic media, where
g(f)=g(r) with |F|=r, it was suggested i8] to calculate IIl. RESULTS
g(r) only in certain directions by setting=ré&, whereé, is ] ) ) _
an arbitrary unit vector. In the two-dimensional reconstruc- [N the first reconstruction, the correlation function was
tions presented belo, will be set to the radial unit vector calculated only in the horlzonta_ll and veﬁrtlcaladlrecnona, ie.,
in a polar coordinate systeréi,= &= &, cose,+8,sing Eqsﬁ. (2) and (5) were used W'FhJ:%- rzlzreo, and
whereg, andé, are the unit vectors of the Cartesian coordi- ~€x2. Both correlation functionsy”,g” had the same
nate system ang, is the angle betwee@, andé,, . Hence, ~Weight w,=w,=0.5 and the same reference functighy

g{r)

S

cog wr) (6)

g(r)=

- 7

instead of Eq(4) we use =gZ%; given in Eq.(6) was used. The correlation function
was truncated at,=100. Figure 1 shows the final configu-
oo X X(X+1€))— (1— ¢)? ration of the reconstruction. A similar pattern was found in

gir)= b— ¢? (5) [8]. The pattern consists of stripes in directionégf, and in

directioné__,,. The distance between the stripes is deter-
with r=0,1,...r. in the simplified reconstruction scheme. mined by the cosine term. On a larger length scale, the pat-
Since Eq.(5) is a set of] one-dimensional correlation func- tern organizes into several regions in which all lines are par-
tions the numerical effort is reduced by a factor of roughlyallel. The typical size of these regions is given by roughly 20
Jr./N as compared to Ed4). in view of Eq. (6) and Fig. 2. Clearly, the pattern is not
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FIG. 3. Simplified reconstruction of the damped oscillating cor-
relation function of Eq.6) by restricting the correlation function
evaluation to the foué,, €., €.4, andé__, directions.

isotropic as it should be. The stripes are preferentially di-
rected along the directior&,;, and€_ ;. Also, one expects
that the oscillation frequency of the correlation function in
directioné.. .4 is notw=1 butw=v2.

Figure 2 shows the correlation functions for the configu-
ration of Fig. 1 in the directions of the unit vectogg, €.,
andé_,,. The first and second have been used for the recon-
struction and hence show good agreement with the reference
function while the latter deviates drastically. The correlation
in direction€_,, is better described by the function

r r
ex;{ — §) coé\\/ir)+exp{ -3

shown "%‘5 the dotted line. Th'.s may b_e |nterpret_ed as the FIG. 5. (a) Two-dimensional simplified reconstruction of the
arlt_hmetlc mean .Of the_ correlation fl_Jnctlon for reglt_mhe-_ correlation function of a Fontainebleau sandstone by restricting the
§°“be_d above W'th, stripes perpendlcular to the d'rec,:t'on correlation function evaluation to the horizontal and vertical direc-
€4 given by the first term in Eq(8) and the correlation isns (b) Reconstruction with the same reference correlation func-

function for regions with stripes parallel to the directi®f}s tion as in(a) but complete evaluation of the correlation function,
given by the second term. Of course, the same correlatione. without directional restrictions.

function is found in directioré_ .

)

1
f(r): E
(b)

One step towards an isotropic reconstruction may be to
useJ=4, and to force agreement of the correlations not only

1 reference in two but in four directiong, €., €,4, andé__;,. The
08 5:/02 ; resulting configuration is shown in Fig. 3. The pattern is
061 G~ significantly different from the pattern of Fig. 1. There are
04 | e not only stripes parallel to the diagonal directions but more
o2 | rounded formations and concentric circles at some points.
= ' The correlation functions for Fig. 3 are plotted in Fig. 4.
= 0r ' Surprisingly we find that it is not possible to obtain agree-
0.2 |a ment with the reference correlation function. The resulting
04l correlation functions in the horizontal, vertical, and diagonal
directions all deviate strongly from the reference function
06| especially at the first minimum. Additional simulations with
0.8 : ' ' ' different cooling schedules, damping factors and frequency
0 10 20 30 40 50

of the correlation function did not give better agreement. We
have also varied the system sizes from 2@D0 up to
FIG. 4. Correlation functions for the reconstruction of Fig. 3. 1000<1000. The results were identical.

The reference function is plotted as solid line. Note the mismatch in Figure 5 shows the two-dimensional reconstructions of a
the first minimum and maximum. Fontainebleau sandstone with porosgty 0.135. The corre-

7 (in units of lattice spacing)
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Therefore, the calculation needed about 50 times longer than
the simplified reconstruction. Again, there are differences
visible although they are smaller than those in the recon-
structions using Eq(6). The shape of the pores in the full
reconstructiofFig. 5(b)] appear to be smoother and there is
not as much “dust” visible as in the simplifie@estricted
reconstruction shown in Fig.(®. The correlation functions
plotted in Fig. 6 reveal also that the reconstructed micro-
structure in Fig. &) is strongly anisotropic while the micro-
structure in Fig. ) is isotropic as it should be.

In summary we note that the statistical reconstruction of
porous media with predefined two-point correlation function
often requires some reduction of numerical effort. Especially
the reconstruction of three-dimensional porous media in rea-
sonable time does not seem possible without such simplifi-
cations in the calculation of the correlation function. Of

FIG. 6. Correlation function for the reconstructions of Fig. 5. course this problem is exacerbated if one wishes to include
The reference function is plotted as solid line. The correlation functhree-point or even higher-order correlation functions. We
tions calculated in horizontal, vertical and diagonal direction referappned a simplification proposed and used[81, which

to the configuration of Fig. (®). The complete correlation function
is calculated from the configuration of Fig(bb.

lation function was truncated at=50. The reconstruction
of Fig. 5(a) used the correlation function only in verticgJ
and horizontaE,, direction as suggested [B8]. The recon-
struction shown in Fig. @), however, calculates the full
two-dimensional correlation function according to Hd)

where the two-dimensional correlation function was radially
binned in the calculations to obtain a one-dimensional func-

samples the correlation function only in certain directions.
The effect of this simplification on the final configurations
may in some cases be negligible but in general configura-
tions strong anisotropy and patterns which are significantly
different from those of a proper isotropic reconstruction may
appear as a result.
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