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Trapping and mobilization of residual fluid during capillary desaturation in porous media
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We discuss the problem of trapping and mobilization of nonwetting fluids during immiscible two-phase
displacement processes in porous media. Capillary desaturation curves give residual saturations as a function of
capillary number. Interpreting capillary numbers as the ratio of viscous to capillary forces the breakpoint in
experimental curves contradicts the theoretically predicted force balance. We show that replotting the data
against a novel macroscopic capillary number resolves the problem for discontinuous mode displacement.
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PACS numbgs): 47.55.Mh, 81.05.Rm, 61.43.Gt, 83.10.Lk

[. INTRODUCTION Hence they are applied to laboratory samples with linear di-
mensions on the order of centimeters as well as to whole

A displacement of one fluid by another within a porousreservoirs measuring kilometers and more. Consider a sys-
medium poses challenging problems of microscale to mactem having lengthg, ,L,,L, in the three spatial directions.
roscale transitions which have received considerable atterFhe probe space is assumed to be filled with two immiscible
tion from physicists in recent yeaf4—20]. For reviews the fluids denoted generically as wat@ndex ) and oil (index
reader is referred t¢12,21. Apart from the omnipresent ~). The equations rea®8-40,37
guenched correlated disorder and structural heterogeneity, ;
fluid-fluid and fluid-solid interactions generate metastability 33,/4_V Kk, VP - 0
and hysteresis phenomena which have resisted quantitative ¢ | [VP,=p.90¢]
prediction and understanding. A central problem of great
practical importance is the prediction of residual nonwetting S, KK’
fluid saturation after flooding the pore space with immiscible —¢ =V M [V(P,+P¢)—p,90€] 2
wetting fluid[22—24. Obvious interest in this problem arises ‘
from enhanced oil recovef25,2§ or in situ remediation of  and they are supplemented with the constitutive relationships
soil contaminant$27,29.

@

Microscopically the laws of hydrodynamics governing the K (x,t) =K. (Sh(x,1)), )
pore scale processes are well known. The complexity of the
microscopic fluid movements and the lack of knowledge K (x,1) =K (Sh(x,1)), 4
about the microstructure and wetting properties, however,
renders a detailed microscopic treatment impossible. Instead P.(x,1)=P(S,(x,1)), (5

one has to resort to a more macroscopic treatment.
Desaturation experimenf29-36 show that the conven- where
tional macroscopic description is incompldi23,24. We
shall begin our discussion by reminding the readers of this
incompleteness. We then exhibit another prob[&T. This
arises from the fact that microscopic capillary numbers
seemingly cannot represent the force balance in a desaturihe variables in these equations are the pressure field of
tion experiment. water denoted a¥>,, and the water saturatios,. The
Given these problems our main objective is to show thakaturation is defined as the ratio of water volume to pore
the recent analysis df37] gives the correct force balance space volume. Pressures and saturations are averages over a
between macroscopic viscous and capillary forces for conmacroscopic region much larger than the probe size, but
tinuous mode desaturation experiments. For so-called disnuch smaller than the system size. Their arguments are
continuous mode displacement it leads to bounds on the sizbe macroscopic space and time variabbes)( The satura-
of residual blobs. tions obey S ;<S,<1-S,, where the two numbers
0=<S,, S,=<1 ar two parameters representing the irreduc-
ible water saturationS,;, and the residual oil saturation,
S,; . The residual oil saturation gives the amount of oil re-
Let us begin our discussion with the standard macroscopimaining in a porous medium after water injection. The nor-
equations of motion for two-phase immiscible displacementmalized saturatiors, varies between 0 and 1 &, varies
Macroscopic equations of motion describe multiphase flonbetweenS,; and S, . The permeability of the porous me-

%

on length scales large compared to a typical pore diametedium is given by the absolutgingle phase flojvpermeabil-

S-S,

= : (6)
1 - S//'i - Sﬂl’

Sn(x,1)

II. PROBLEMS OF TWO-PHASE FLOW EQUATIONS
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ity tensorK. The porosity¢ is the volume fraction of pore 040 — R
space. The two fluids are characterized by their viscosities —©: bead pack, continuous air
w,.,i, and their densitiep ., p,. The termspgOe represent R cancttons, continuous of
the gravitational body force where'=(0,0,—1) is a unit 0.30 |-——-— -
row vector pointing along the negatiweaxis andg is the * *
acceleration of gravity. The orthogonal matrix .

oF 0.20 ¢

cosay, 0 sinoy
O= 0 1 0 (7) 0.10 |
—sin ay 0 cosay

L . . 0.00 - =
describes an inclination of the system. Here a rotation around 107 10 107

the y axis with tilt or dip anglea, was assumed. The mac- Ca

roscopic capillary pres'sunéC is defined as the pressure dlf-_ FIG. 1. Experimentally measured capillary desaturation curves
ferer_me between the oil and the Water phase. The constltgtlv(gapi”ary number correlatiopgor bead pack§36] (solid lines with
relation for P, assumes that the capillary pressure functiongj cjes and squargsnd sandstonk82] (star symbolsas a function

P. depends only on the saturatipal]. In addition toP.,  of microscopic capillary number Gau_v/o,..The dashed line is
the dimensionless relative permeabilities are assumed to Rge desaturation curve for continuous mode displacement. The
functions of saturation onlyk! =k’ (S,), k'=k!(S,). They  dash-dotted line marks the plateau value for sandstone.
represent the reduction in permeability for one phase due to

the presence of the other phd$8,39. The three constitu- sidual saturation against the correct ratio of viscous to cap-
tive relationsk! (S,), k/(S,), andP(S,) are assumed to be illary forces should result in a breakpoint at-€a [37,39.
known from experiment. Equatior{&) and (2) are coupled We now proceed to show that a partial understanding of
nonlinear partial differential equations which must bethe macroscopic force balance can already be obtained from
complemented with large-scale boundary conditions. Fothe traditional equations of motion. The main result of this
laboratory experiments the boundary conditions are typicallyanalysis is a preliminary experimental validation of the di-
given by a surface source on one side of the sample, a sumensional considerations introduced[87].

face sink on the opposite face, and impermeable walls on the

other faces. For a geosystem the boundary conditions depend

upon the well configuration and the geological modeling of lll. DISCONTINUOUS VERSUS CONTINUOUS MODE

the reservoir environment. DISPLACEMENT

The problem with the macroscopic equations of motion Before embarking on a discussion of the force balance
(1) and(2) arises from the experimental observation that theguring capillary desaturation, it is crucial to emphasize an
parameterss, andS ; are not constant and known, but de- jmportant difference in the way capillary desaturation curves
pend strongly on the flow conditions in the experimg8—  gre measured.

36,26. Hence they may vary in space and time. More pre- (i) |n the first method of measuring, (Ca), the oil in a
cisely, the residual oil saturation depends strongly on theyly oil saturated sample is displaced with water at a very
microscopic capillary number Gau v/, wherev is a  |ow Ca. After the oil flow at the sample outlet stops and
typical flow velocity ando,,. is the surface tension between several pore volumes of water have been injected without
the two fluids. The capillary desaturation cur8g(Ca) is  producing more oil, the flow rate is increased. Again the oil
shown in Fig. 1 for unconsolidated glass beads and sandtow is monitored until no more oil appears at the outlet. In
stones[32,36. Such curves contract clearly the assumptionthis way the flow rate is increased iteratively ur} has
that the functions<’ (S,), k/(S,), andP(S,) depend only fallen to zero. After the first injection the oil configuration is
on saturation. Instead they show tHaf(S,), k;(S,), and  discontinuougor disconnectedand it remains disconnected
P.(S,) depend also on velocity42,43 and pressure. Hence throughout the rest of the experiment. This mobilization
they depend on the solution and cannot be considered to bmode will be called discontinuous.

constitutive relations characterizing the system. The depen- (ii) In the second method of measuring capillary desatu-
dence shows that the system of equations of motion is inration curves one again starts from a fully saturated sample,
complete. and performs a waterflood at a given value of Ca. After oil

The breakpoint in a capillary desaturation curve marks thélow ceases at the outlet, the residual saturation is deter-
point where the viscous forces, which attempt to mobilizemined. Then the sample is again saturated fully with oil, a
the oil, become stronger than the capillary forces, which trynew value of Ca is chosen, and the injection is repeated. In
to keep the oil in place. For this reason the capillary desatuthis experiment the injection starts always with a connected
ration curves are usually plotted against Ca, which representsil phase contrary to the previous experiment, where the oil
the microscopic force balance between viscous and capillanghase is discontinuous at higher Ca. This mobilization mode
forces. From Fig. 1 it is seen that the theoretical force balwill be called continuous.
ance corresponding to & on the abscissa and the experi- The capillary number required to reach a givep is
mental force balances represented by the various breakpoirksown to be much lower in the continuous mode than in the
at Ca<l1 differ by several orders of magnitude. Plotting re- discontinuous modé¢36,35. This is also seen in Fig. 1,
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which shows continuous mode data and discontinuous mode the pressure at an intermediate saturat®g(S,) is the
data for the unconsolidated glass beads. From the fact thatuilibrium capillary pressure function.

the equations of motion are only valid in the subinterval With these definitions the dimensionless macroscopic
S, <S,<1-S, it follows that they cannot be applied to capillary numbers for oil and water, defined as
discontinuous mobilization mode experiments. They should,

however, be valid for the continuous mode to the extent that Ca :M,/«Q (19
the equations themselves are correct. Therefore we discuss & Ppkl!’
next the macroscopic force balance predicted by these equa-
tions from the continuous mobilization mode. — — u,
Ca=Ca, ) (20)

IV. MACROSCOPIC FORCE BALANCE
give an expression of the balance between macroscopic vis-

It was shown ir{37] that the balance of macroscopic Vis- 4,5 and capillary forces. The macroscopic gravity numbers
cous and capillary forces is not represented appropriately by

the microscopic capillary number Ca, and that a new macro-

L - &,Q
scopic capillary numbe€a should be used instead. Here we Gr, = > (21)
generalize those results to anisotropic and inclined porous P9kl
media and apply them to replot ti&, data obtained for the
continuous mode displacement. To this end we rewrite EQs. Gr=0r M. P (22)
(1) and(2) in dimensionless form. Introducing the matrix © T, P,
L, 0 O express the viscous to gravity force balance. Finally the
T I ® gravillary numbers
= y
0 0 L — p.4l
: Gl,=%%, 23
and defining andL through °
| = (detl )@, 9) a,,:a,/,;’f' , (24)

L=IL, (10 express the ratio between gravitational and capillary forces.

The well known bond number, measuring the magnitude of

one defines dimensionless quantities S
buoyancy forces, is given as

Xx=Lx=ILX, (11 Bozam_aﬂ (25
V=L"'V=(IL)"'V. (12)  in terms of the gravillary numbers.
With these definitions the dimensionless equations of mo-

Definek andK through tion may be rewritten as

kxx I(xy kxz (;SM A N o a — 1.
K=| ke kyy Kz, 13 F vkl vRoeLah o (29
kxz yz 2z
IS o (AKTERIG(B 4P G 14
k=(detK)(1’3) (14) - _a’tF :V.{Akn[caif V(P//'+ Pc)_Grﬂ g]}, (27)
K =KK. (15)  Where the dimensionless matrix
The time scale is normalized as Pk 1Pkey %Ky
LL Lot L2k LyLyk LyLok
t=—g" (16) 2%k, 1%k, 1%
A=L"1KL 1= 2 X = (28)
: : - o LyLyk 12 LyLk
using the volumetric flow rat®. Time is measured in units y
of injected pore volumes. The pressure is normalized using |2k |2k 12k
th . ilibri ill 443 Xz yz 7z
e macroscopic equilibrium capillary pressure{44,37] Lk DLk (2
P=PoP, (17 contains generalized “aspect ratios.” The vector
where
AT - T LX . LZ
g'=(LOe)'= —I—Slnay,O,—l—COSay (29

Po=Pc[(S,

Zl

-S,+1)/2] (18
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TABLE I. The sample and flow parameters used in the calculations. The permeabilities for the glass bead packs were obtained using the
relation between their radius and permeabilities publish¢@3hon p. 47. The capillary pressure was estimated using the Leyedtatttion
correlation(30). For sandstone thefunction from Ref.[51] was used and for bead packs the one from R&] was used. Th¢ function
was evaluated close t&(;— S, +1)/2 according to Eq(18).

Permeability Porosity Surface tension Cap. pressure
Sample k (10712 m?) ¢ o, (N/m) Py, (P3
sandstone 798Ref. [32]) 0.14 (Ref.[32]) 0.28 (Ref. [32)]) 3.37x 102 (Ref[32)) 1.7x10* (Ref.[51])
70 um bead packRef. [36]) 10 (Ref. [25]) 0.36 (Refs.[25,53) 2.8x 1073 (Ref.[36]) 2.4x 107 (Ref.[50])
115 um bead pacKRef.[36]) 30 (Ref. [25]) 0.36 (Refs.[25,53) 1.18x 1072 (Ref. [36]) 5.8x 1% (Ref. [50])

represents the effect of dip angle and geometric shape of th@odeS,, data for unconsolidated glass beads from Fig. 6 in
system on the gravitational driving force. 36. To calculateCa we have used the values given in Table
.

Plotting the data againga, we obtain Fig. 2. It is seen
that the continuous mode displacements give a breakpoint

We are now in a position to plot the capillary desaturationfor Ca=~1 while the discontinuous mode displacements have
curves against the macroscopic capillary numBar which  their breakpoint at a higher value. This is consistent with the
represents the balance between macroscopic viscous aiftta that the traditional equations of motigh) and (2)
capillary forces. To do so we have searched the literature fogghould be applicable to the continuous mode but not to the
capillary desaturation measurements and we found Refgliscontinuous case.
[22,25,29-31,45-48,35Unfortunately none of the publica-  The result obtained here is consistent with the theoretical
tions contains all the necessary flow and medium parameteggedictions from[37]. To fully validate our use oCa as a
to calculateCa. Measuring all the flow parameters for a dis- correlating group for plotting continuous mod#, data,
placement process is costly and time consuming, and hend®wever, it would be desirable to vaa by varying the
they are rarely availablésee alsd49]). While permeability, — system sizd. If the S, curves obtained for different media
porosity, and the fluid parameters such as viscosities angind length scaleksalso show their breakpoint &a~1, this
surface tensions are usually available capillary pressure dataould give further evidence for the applicability of the tra-
relative permeabilities and residual saturations are not rouditional equations of motion. We consider it possible, how-
tinely measured. Hence we extract the required parametets/er, that deviations appear indicating a breakdown of the
from different publications assuming that they have beerequations also for continuous mode displaceni2gf24.
measured correctly and are reproducible anywhere and at all As stated above, the equations of motion are not appli-
times. In spite of all the uncertainties, it is well known that caple to discontinuous mode displacements because of the
the capillary pressure curves of unconsolidated sands witbonstraintS,;<S,<1—S, . Nevertheless we can use the
various grain sizes can be collapsed using the Levgrsit-  group Ca to estimate an upper bound for the size of residual
relation [50,41,51. The Leveretf- correlation states essen- plobs. As the flow rate is increased, the residual blobs, whose

V. APPLICATION TO EXPERIMENT

tially that size is so large that the viscous drag forces on them exceed
the capillary retention forces, will break up and coalesce with
Pu(S,)=0,,Jlki(S,). (30 040

——- : bead pack, discontinuous oil
O—=: bead pack, continuous air
3F—*1: bead pack, continuous oil

Often the formula contains in addition an average contact # sandstone, continuous oi
angle at a three-phase contact. We do not include the wetting 0.30 === .
angle as it is generally unknown, and including it would not *
change our results significantly. Similar to the capillary pres- *ox
sure data, the&S, data for unconsolidated sands seem to be ¢ 020 | £
well established34,3q in spite of larger fluctuations of the ~ L_as ______ A
results. Because mo&t, andS, data are available forun- | T} T ~ * x
consolidated sand and standard sandstones such as Berea or ~ 0.10 | \ .
Fontainebleau, we limit our analysis to these two cases. \\ X
The experimental,, data analyzed here are taken from \
Ref. [32] for sandstones and from R€f36] for unconsoli- 0.00 L Y = ' e = .
10" 10" 100 10° 10° 10" 100 10

dated glass beads. In Fig. 1 we show the capillary desatura-
tion curve for oil-water displacement in a typical sandstone
(sample No. 799 fronmi32]) using star symbols. These data  FIG. 2. Same as Fig. 1 but plotted against the macroscopic
were obtained in the continuous mode of displacement. Theapillary numberCa= u,Q/(P,kl) from Eq. (19). Note that the
values of the surface tension and fluid viscosities for thisoreakpoint for continuous mode displacement occurs arddad
experiment are given in Table I. We also show continuous<1.
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other blobs which may again break up and coalesce furtheFhis result is of importance for microscopic modgi®] of

downstrean34,33. The condition that the viscous forces
dominate the capillary forceSa=1 predicts that after a flood

with Ca the porous medium contains only blobs of linear size

smaller than

©,Q

[ piob= Pk (31)

breakup and coalescence during immiscible displacement.
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