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Transport properties of a multiscale carbonate rock are predicted from pore scale models, reconstructed
using a continuum geometrical modeling technique. The method combines crystallite information from two-
dimensional high-resolution images with sedimentary correlations from a three-dimensional low-resolution
microcomputed tomography (u-CT) image to produce a rock sample with calibrated porosity, structural cor-
relation, and transport properties at arbitrary resolutions. Synthetic u-CT images of the reconstructed model
match well with experimental u-CT images at different resolutions, making it possible to predict physical

transport parameters at higher resolutions.
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I. INTRODUCTION

The prediction of macroscopic petrophysical transport pa-
rameters from the microstructure of porous media remains a
focus of research in physics and engineering [1-5]. Pore
scale research requires reasonably accurate three-
dimensional microscopic images of the rock as input [6,7].
Although u-CT images are normally used for this purpose,
this experimental technique is expensive and can be inad-
equate due to lack of sufficient resolution or sampling vol-
ume. To overcome these restrictions a number of computa-
tional modeling techniques have been proposed to
reconstruct the microscopic digital images of porous media
computationally [8—13]. Most of these methods try to di-
rectly incorporate statistical properties such as porosity and
correlation functions computed from thin-section images into
binary three-dimensional grid representations of the underly-
ing rock [14—17]. Methods using thresholded Gaussian fields
[8,18-20] and simulated annealing [9,21,22] have been par-
ticularly successful in this effort. Process-oriented methods
attempt to reproduce the relevant physicochemical diagenetic
processes [23-25].

A major shortcoming of these methods has been the em-
phasis on a representative grid at a specific resolution. Petro-
physical parameters in multiscale porous media such as car-
bonates and clay filled sandstones depend strongly on
resolution. In the multiscale carbonate rock analyzed and
modeled in this work, the smallest calcite-dolomite crystal-
lite sizes are between 1 to 10 um. One requires at least a
resolution of 10 nm (sidelength of the voxel) to resolve them
[26]. Thus, even a small cubic sample of sidelength 10* um
requires a minimum 10°X 10X 10° grid representation, i.e.,
10'® numbers. Typical experimental plugs have diameters in
the range of 1.5-3.5 cm and cannot be modeled with such a
modeling approach. There appears to be no hope that mere
increase in resolution in experimental w-CT imaging can
provide tomograms for multiscale carbonates. Recent efforts
on inferring subresolution microporosity from u-CT images
of carbonate rock, thereby predicting petrophysical transport
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properties at higher resolutions, point out current shortcom-
ings [27,28]. In this paper we overcome such limitation by
generating a computer model for carbonate rock based on a
continuum approach [13].

The carbonate rock modeled is a fully dolomitized
oolithic grainstone [29]. We reconstruct the pore scale repre-
sentation of a cubic section (sidelength approx. 4.22 mm) of
the rock. The model parameters are calibrated to match quan-
titatively the morphology, porosity, two-point correlation
function, etc. between the synthetic u-CT image from the
model and the experimental w-CT image at a specific reso-
lution. Having achieved this, physical transport parameters
are then computed at intermediate and higher resolutions
from synthetic u-CT images of the model.

The paper is organized as follows. The problem is formu-
lated in Sec. II. For completeness a brief description of the
model is presented in Sec. III. In Sec. IV the quantitative
image analysis used to determine the model parameters is
described. Section V describes the method of incorporating
structural correlation from a low-resolution u-CT image. The
computational implementation is described in Sec. VI. Quan-
titative microstructure comparisons at a specific resolution
are given in Sec. VIIL. The predicted transport properties of
the sample at higher resolutions are presented in Sec. IX.

II. FORMULATION OF THE PROBLEM

The aim of this work is to present a method to generate
large (laboratory scale) volumes of a multiscale rock micro-
structure from partial resolution information. The model is
then used to successfully predict physical transport param-
eters at higher resolutions where u-CT imaging is either not
available or not possible.

More specifically, based on the information gathered from
the thin-section image of the rock shown in Fig. 1, from the
two-dimensional high-resolution microscopic images shown
in Fig. 2 and from the three-dimensional poor resolution
u-CT image shown in Fig. 4, we aim to reconstruct an ac-
curate three-dimensional continuum representation of a suf-
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FIG. 1. (Color online) Left: image of a core plug (diameter=1.5 cm) showing the subsampling procedure for experimental microcom-
puter tomography. Right: a thin-section image from a section of the modeled carbonate rock. The resolution of this optical scan is 4.6 um
per pixel. The size of the image shown is 2.065 mm X 1.996 mm. Pore space is impregnated blue (medium gray). The label A indicates a
vuggy pore region. The labels B (oolithic rim), C (densely packed ooid core), D (loosely packed ooid core), and E (cement) indicate regions

with distinct crystallite properties.

ficiently large carbonate rock sample. The main steps are
summarized below.

First, the modeling procedure requires information on the
type of crystallites, their size, overlap, orientation, and den-
sity of packing. These model parameters can be extracted
from high-resolution two-dimensional images. For any spe-
cific rock such microscopic images can be easily obtained. In
the current work the regions with distinct crystallite proper-
ties are first determined from the thin-section image shown
in Fig. 1. The type, shape, size, overlap, and orientation of
the crystallites in each of these separate regions are deter-
mined from higher magnification scanning electron micro-
scope (SEM) images of the rock shown in Fig. 2.

Second, reconstruction of a realistic rock microstructure
must incorporate sedimentary textural correlations visible in
the original rock at many scales. The question of how to
reproduce such multiscale correlations was addressed and
solved in Refs. [12,13]. It involves construction of a three-
dimensional primordial filter function G (details in Secs. III
and V). In this work G is constructed from a poor resolution
u-CT image. As shown in Fig. 4, this low-resolution image
hardly resolves the microporosity (intercrystalline pore space
below the resolution of the w-CT image) or any of the dolo-
mite crystallites. As a result, this image is not suitable for
estimating accurate physical and transport properties for this
rock. We show that such a u-CT image is yet suitable for
generating G, and combined with the information obtained
from two-dimensional images, is sufficient to construct a re-

alistic model. Most importantly, such low-resolution images
are of large size allowing us to generate laboratory scale
models. The continuum nature of the model provides a mi-
crostructure representation of the rock at arbitrary resolu-
tions, making it possible to predict petrophysical parameters
at higher resolutions.

III. MODEL

In this model [12,13], the rock occupying a bounded re-
gion SCR? is represented by crystallites placed in the con-
tinuum. The model belongs to a class of models in stochastic
geometry known as germ-grain models [30]. Based on the
depositional texture of the given rock, S is first divided into a
number of different regions, each corresponding to distinct
crystallite properties such as type, size, overlap, and orienta-
tion distribution. Crystallites for each of these regions are
deposited separately in a random sequence and then com-
bined. Each element

w;=(x;R;,a,,T)) (1)

of the sequence represents a crystallite of type 7; at spatial
position x; € S with inscribed sphere radius R; and orienta-
tion a,.

Multiscale porous media, such as many carbonates, do not
contain a purely random geometry. Often, primordial depo-
sitional textures, such as the structure of the original ooids or
bioclasts are visible in the final geometry [29,31]. For ex-
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FIG. 2. Scanning electron microscope images of the modeled carbonate rock at different magnifications (top left: 3.8 mm X 3.28 mm at
60X magnification and 1.06 um/pixel. Top right: 1.292 mmX1.117 mm at 200X magnification and 1.26 wm/pixel. Bottom left:
455 um X392 wm at 500X magnification and 126 nm/pixel. Bottom right: 151 um X 131 wm at 1500X magnification and 42 nm/pixel).
The crystallite types, sizes, and overlap are determined from these images.

ample, the thin-section image of the rock modeled in this
work (Fig. 1) shows the shape of the original ooids before
the dolomitization, although these ooids are now fully dolo-
mitized into many small dolomite crystallites as seen in the
magnified images (Fig. 2).

In modeling of such rocks, the attributes of the crystallites
defining the rock in the continuum need to be correlated with
the primordial depositional texture of the rock. This is done
by defining a grayscale primordial filter function G:S
—[0,1] that is carefully constructed from the images and
geological information available on the rock. G(x) is a given
function that determines whether a crystallite can be depos-

ited at x and of what size, orientation, type, etc. The crystal-
lite attributes are defined through G as

Ri=R(G(x)), a;=A(G(x)), T;=T(G(x)), (2)

where  R:[0,1]—[Ruyin>Ria]U{0},  A:[0,1]—E, and
T:[0,1]1—{1,2,...,g}. E={x € R3:|x|=1} is the unit sphere,
[RinsRmaxJCR!' and g is the number of separate regions
within the rock with distinct crystallite properties. If x; falls
in the pore space (including the vuggy pores), R(G(x;))=0,
and no crystallite deposition is allowed there.
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FIG. 3. (Color online) A schematic representation of the continuum modeling technique for an imaginary carbonate rock texture that
contains two separate regions with distinct crystallite properties. The overlapping spheres deposited separately for each region are shown in
(a) and (c). These are filtered through G in (b) and (d), respectively. The combined list is then decorated with dolomite crystallites in (e).

To ensure a fully supported matrix, each deposited crys-
tallite must have a finite overlap with at least one of the
existing deposits. However, the crystallites can have complex
geometry and computation of the overlap between them may
not be possible always. In the following model implementa-
tion, the overlap is computed indirectly by associating a
spherical radius R; to each chosen point x; and ensuring that
the degree of overlap with any adjacent sphere at x; as com-
puted by

R +R; - |x;— x|

0wy, 0) =
(@,0;) R;+R;— |R,— R

3)
is finite and smaller than \;=A(G(x,)). This new function
A:[0, 17— [Amins Amax] also correlates the degree of crystal-
lite overlap with the primordial depositional texture through
G.

The porosity of the crystallite packing in each region,
thereby the porosity of the final sample, is controlled by
depositing points in each region with a specific point density
pj,j=1,2,...,g.

To summarize, a separate list of points are deposited in S
for each region with distinct crystallite properties and then
combined to form the list of N objects that represents the
rock in the continuum. Each of these distinct regions corre-
sponds to a well defined grayscale interval in the primordial
filter function G. The deposited points are then decorated
with geometric objects defining the crystallite type T}, size
di(R;), and orientation a;.

The rock sample is fully represented by a list of N qua-
druples (x;,d;,a;,T;). In Eq. (3), R; is the radius of the sphere
associated with the point at x;. Therefore, the size of the

crystallite d;(R;) must appropriately scale with R; so as to
retain the matrix connectivity. Because the deposited spheres
are inscribed in the crystallites, this condition is implicitly
fulfilled in this model implementation.

A schematic representation of a model implementation for
a generic carbonate rock with two separate regions of distinct
crystallite properties is shown in Fig. 3. The depositions of
points with associated overlapping spheres with different
[Ronin> Rmax ] for each region are shown in Figs. 3(a) and 3(b).
In Figs. 3(c) and 3(d) these two lists are separately filtered
through the primordial filter function G. Only the points al-
lowed in the respective regions are retained and others re-
moved. The lists are then combined and decorated with do-
lomite type crystallites (thombohedra) as shown in Fig. 3(e).

IV. IMAGE ANALYSIS AND MODEL PARAMETERS

For each region of the modeled rock with distinct crystal-
lite properties, the model parameters needed for the recon-
struction are the following: the type of crystallite (7), the
minimum and maximum radii of the inscribed spheres
(Rumin»Rmax), the minimum and maximum allowed overlap
between the inscribed spheres (Apin>Amax)» and the number
density of the crystallites p. These parameters, the primordial
filter function G, and the functions defined in Eq. (2) are to
be determined from the available information on the rock
microstructure. It can be a combination of geological infor-
mation available on the rock, image analysis of two-
dimensional micrographs, thin-section analysis, SEM im-
ages, and three-dimensional u-CT images.

The number of separate regions with distinct crystallite
properties is determined from the high-resolution thin-
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TABLE I. Model parameters for separate regions with distinct crystallite properties used for the modeling

of the carbonate rock sample.

R min R max
Region Description (um) (pm) Nmax p
I Oolithic rim 6 10 0.3 1.5x1073
11 Ooid core (dense) 4 10 0.4 2.5%1073
I 0oid core (loose) 4 10 0.2 1.5x1073
v Cement 5 10 0.8 1.0x 1072

section microscopic image of the rock shown in Fig. 1. The
outlines of the fully dolomitized ellipsoidal ooids (grains) are
clearly visible. There are three kinds of pore space observed:
vugs (marked A in Fig. 1), macroporosity in the form of
intergrain pore space (between the grains), and microporosity
in the form of intragrain pore space (within the primordial
grains and between the crystallites). The four different re-
gions are the oolithic rims or the isopachous layer around
each grain (marked B in Fig. 1), grains with densely packed
crystallites in the core (marked C in Fig. 1), grains with
loosely packed crystallites in the core (marked D in Fig. 1),
intergrain euhedral dolomite crystallites and cement (marked
E in Fig. 1).

The crystallite types, sizes, and their overlap in each re-
gion are estimated from the SEM images of surface sections
available at different magnifications. These are shown in Fig.
2. The values of the model parameters R,;, and R, for each
region are measured manually from these images and pre-
sented in Table I. The crystallites in each region are equilat-
eral thombohedra (dolomite) and of the same shape. The
shapes of the crystallites in the cement region are not visible.
This region is also modeled with dolomites with high overlap
to achieve zero porosity. The geometric definition of the do-
lomite type crystals (rhombohedra) is presented in Eq. (4).
The minimum overlap A, is set to zero as many crystallites
appear to touch each other. The maximum overlap A\, and

FIG. 4. A 200X 200 cross section of the experimental u-CT
image at resolution 8.06 um. At this resolution only the ooid
shapes are resolved and no clear dolomite shape is visible. A 5243
section from the three-dimensional u-CT image at this resolution is
used for generating the filter function G(x).

the point density p are difficult to measure accurately from
these two-dimensional images. Initial estimates, as starting
values, are chosen from the visual inspection of these images
and then calibrated later to match the microstructure quanti-
tatively (described in the Sec. VI). The final model param-
eters after the calibration are summarized in Table I. Note
that the two-dimensional images shown in Figs. 1 and 2 are
sufficient to determine the model parameters for this rock.

V. GENERATION OF G(x)

One of the main components of the modeling procedure
outlined in Sec. III is the construction of a primordial filter
function G. Through this reference function the correlation
with the depositional texture of the original rock is built into
the model. The type of a crystallite, its size, orientation, and
overlap at any point are determined from G through the func-
tions in Eq. (2).

We have used the w-CT image at the resolution of
8.06 um for constructing G(x). The original grayscale u-CT
image, a section of which is shown in Fig. 4, is processed
and converted to a segmented images as shown in Fig. 5 and
described in the next paragraph. This segmented image rep-
resents G(x). Separate grayscale values in this image corre-

FIG. 5. Grayscale representation of G(x). White voxels repre-
sent the anhydride cement region and black voxels represent the
pore space. The oolithic rim region is marked by light gray, the
region with densely packed crystallites is marked by dark gray, and
the region with loosely packed crystallites is marked by medium

gray.
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spond to separate regions with distinct crystallite properties
(Table I).

To construct Fig. 5 from Fig. 4, a 524° grid of the u-CT
image at the resolution of 8.06 um is filtered using the Hy-
brid 3D Median Filter in the public domain image analysis
software IMAGEJ [32,33]. The filter is applied for reducing
the noise level. Being an 8-bit image, the 524% voxels have
grayscale values between 0-255. A threshold value of 154 is
chosen to identify the space where no crystallite will be de-
posited. This volume, with a volume fraction of 0.3581, in-
cludes the intergrain pore space and the vuggy pores. Al-
though no crystallites are deposited in this volume, it is not
entirely pore space. This is because some of the crystallites
placed outside this volume will protrude into this volume. A
new grayscale value of 0 is assigned to the voxels having
grayscale values below this threshold. These voxels are
shown in black in Fig. 5. A threshold value of 215 is chosen
to identify the voxels that represent the cement region. The
volume fraction of the cement region is 0.0167. A grayscale
value of 255 is assigned to the voxels having grayscale val-
ues above this threshold. These are shown in white in Fig. 5.

The remaining voxels represent the three remaining re-
gions: oolithic rim, densely packed ooid core, and loosely
packed ooid cores. The 524° grayscale grid is then smoothed
recursively (in IMAGEJ) until a smooth grayscale image is
obtained for the matrix region without altering the voxels
having the grayscale value of 0 or 255. The grayscale inter-
vals for different regions are then determined by careful
comparison with the thin-section image shown in Fig. 1.
These are 1-157 for the isopachous rim (volume fraction
0.3063), 158-213 for the densely packed ooid cores (volume
fraction 0.2499), and 214-254 for loosely packed ooid cores
(volume fraction 0.0689). In the final segmented image
shown in Fig. 5 these regions are marked by grayscale values
of 200 (light gray), 75 (dark gray), and 125 (medium gray),
respectively.

VI. MODEL IMPLEMENTATION

The model implementation follows the procedure outlined
in Ref. [13]. The reconstructed cubic carbonate rock volume
has a sidelength of €=4.2234 mm. To eliminate boundary
effects, we chose a cubic sample S of sidelength ¢
=4.1267 mm from the center of this volume for final analy-
sis. This corresponds to a 512% voxel representation at
8.06 um resolution. A model is generated with the model
parameters assessed from the image analysis (Sec. IV), then
discretized at resolution 8.06 um (Sec. VII) and its micro-
structure is compared with the original experimental u-CT
image at resolution 8.06 wm (Sec. VIIT). The model param-
eters p and A\, are then calibrated so that the discretization
of the model at resolution 8.06 um matches closely with the
original u-CT image at this resolution. The model param-
eters summarized in Table I are the final calibrated param-
eters. The analysis presented in Sec. VIII and the physical
parameters computed in Sec. IX are based on the model gen-
erated with these final calibrated model parameters.

The continuum list representing S contains millions of
crystallites. The deposition rule requires a computational
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scheme for random deposition of overlapping polydisperse
spheres in S. These are deposited separately for each region
and combined to form the final list. In region j, randomly
chosen points x; are added to the list if both G(x;)

€[Glin. Gl and Eq. (3) are satisfied simultaneously.
[Glin» Ghuid 18 the grayscale interval in G that corresponds to

the region j. For computational efficiency we divide SC R?
into smaller overlapping cubic cells U, ie., S
=U,; UU,U Us.... Points are deposited randomly in each cell
U; and added to the final list. This scheme provides fast
convergence in the deposition as Eq. (3) is verified only for a
small set of existing points in U; and the neighboring cells.
To prevent correlation from the cubic cell division entering
into the deposition scheme, the size of the cells and overlap
between neighboring cells are kept large, and the cells are
filled in a random sequence.

Each point in the list is then decorated by dolomites.
These are equilateral rhombohedra and each rhombohedron
G, (before rotation) centered at x; is defined by the intersec-
tion of three pairs of parallel planes. Each pair is separated
by a distance d; and tilted by an angle of « degrees about the
coordinate axes to which they are parallel initially. The equa-
tions of these three pairs of planes are

d:

nj.xi5’=0, j=1,2,3, (4)
where n;=(cos @,0,-sin @), n,=(-sin @,cos «,0), and n;
=(0,—sin a,cos ). For this carbonate rock the dolomite
rhombohedra in all regions appear similar in shape. We have
assumed a=-15 deg to define the rhombohedra.

The orientations of the crystallites are represented through
generalized quaternions. For a dolomite G, with the origin of
the coordinate system at X;, the orientation a; is defined by a
sequence of three rotations of 6, 6,, and 65 about the coor-
dinate axes e;=(1,0,0), e,=(0,1,0), and e;=(0,0,1), re-
spectively, thus

a;,= A(G(x) = 932,21, (5)

where the unit quaternion Q,; represents a rotation of 6;
about the vector e;. The orientations of crystallites appear
random in each region. From the image analysis the rotation
angle ¢; is chosen randomly from [-60,60] degrees. The
rotation angles of the dolomites are estimated from the visual
inspection of 2D images. The rotations are assumed isotropic
and the same range is assumed in the z direction. The esti-
mated parameters are accepted because it resulted in a quali-
tative match of the morphology at high resolutions. Roughly
5.15X 107 rhombohedral crystallites represent the modeled
rock sample.

For the discretization of the model described in the next
section we need to determine if a point in the continuum falls
inside any of the dolomite crystallites. A given point p falls
into G; if

(nj~p;+%)<nj-p;—%)<0, j=1,2,3, (6)

where pi:q;l(p—xi)(ql-_l)* and (.)" is the quaternion conju-
gation.
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FIG. 6. 512X 512 cross section of the experimental u-CT image
(a) of the carbonate rock at the resolution 8.06 um is compared
with a matching cross section from the synthetic «-CT image (b) of
the model at this resolution.

VILI. SYNTHETIC COMPUTER TOMOGRAPHY

The continuum representation allows discretization of the
sample at arbitrary resolutions. The sample S is subdivided
into a grid of cubic voxels, each of sidelength a. In each
voxel n® collocation points (nXnXn cubic sublattice) are
positioned centrally. Each voxel is then labeled by a gray-
scale value 0 <m =n?, where m is the number of collocation
points that fall inside the deposited crystallites. Thus, a voxel
with label (i) m=n? represents matrix because all the »n* col-
location points fall inside the matrix, (ii) m=0 represents
pore because all the n® collocation points fall outside the
matrix, and (iii) 0<<m<n> represents a voxel containing
both pore and matrix because only a fraction of the n* col-
location points fall inside the matrix.

This produces a grayscale image where the voxel label is
the grayscale value of the voxel in the resulting image. This
grayscale grid represents a synthetic u-CT image of the com-
puter model of the rock. The grayscale representation is
analogous to the experimental u-CT image that reflects the
matrix density at each voxel. This synthetic u-CT image can
be used for comparison with experimental u-CT images, mi-
crostructure analysis, parameter estimation, flow simulation,
etc.

VIII. MICROSTRUCTURE ANALYSIS

The sample S is discretized at various resolutions. The
discretization at resolution 8.06 um is made to compare
with the u-CT image at the same resolution. The morphol-
ogy of the model matches accurately with the original rock
as seen from the comparison of the images in Fig. 6. Dis-

PHYSICAL REVIEW E 80, 041301 (2009)

cretizations at lower and higher resolutions are also carried
out for predicting porosity and permeability at intermediate
and higher resolutions. This analysis is presented in Sec. IX.

These grayscale images are thresholded by the Otsu
method [34] in IMAGEJ to obtain digitized representations.
The u-CT images are also digitized by the same method.
There is no specific reason to chose this particular segmen-
tation method, other than to choose a priori a segmentation
method for converting the u-CT images to binary image and
the same method should be used for thresholding the syn-
thetic u-CT images.

The model implementation is done with G derived from
the u-CT image at the resolution 8.06 um. A rigorous com-
parison of the microstructure between the digitized represen-
tation of the model and the experimental u-CT image is first
carried out at this resolution. This section is devoted to these
quantitative microstructure measurements and comparison.

In the following, SC R? represents a discretized and seg-
mented (=thresholded) sample (binary voxels placed in a
simple cubic lattice) whose sidelength is M in units of the
lattice constant a, the resolution of the discretization process.
The two-component porous sample S=P UM is the union of
two closed subsets PCR3 and MCR?3, where P denotes the
pore space and M denotes the matrix space. The characteris-
tic (or indicator) function yp(x) of the set I’ is defined as

®) 1 forxeP o
X)=

v 0 for x ¢ P,

where x is the position vector of the voxel on the digitized
grid.

A. Minkowski functionals

To ascertain the quality of the reconstructed model a
quantitative comparison of the morphology is carried out
based on the four Minkowski functionals [35,36]. Definitions
of these widely used morphological measures from math-
ematical morphology are summarized in the Appendix. The
method of computation from digitized images is described in
Ref. [37]. The computed Minkowski functionals from the
5123 section of the u-CT image at resolution 8.06 um are
compared with the measurements from the corresponding
5123 discretization of the model at the same resolution in
Table II. As discussed earlier, p and A, are specifically
calibrated to achieve as close a match as possible between
the original rock and the modeled rock at this resolution. We
claim that this will result in a realistic representation of the
rock also at intermediate and higher resolutions.

TABLE II. Minkowski functionals computed from the digitized representations of the sample and the

model at 8.06 um resolution.

Porosity ~ Specific surface  Mean curvature  Total curvature
Sample resolution b=os b,(P) &(P) bo(IP)
(a=8.06 um) Size M3 (voxels) (%) (mm™) (mm™2) (mm™3)
u-CT 5123 29.4884 22.7875 354.054 31359.9
Model 5123 28.9685 20.2673 297.341 31542.7
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FIG. 7. Comparison of two-point correlation functions between
the model and u-CT image at 8.06 um resolution. C(r) is the av-
erage over all three directions.

B. Two-point correlation function

Further quantitative characterization and comparison of
the microstructure is carried out through the two-point cor-
relation function computed from the discretization of the
model and the original u-CT images at 8.06 um. Assuming
homogeneity, the directional two-point correlation functions
Ci(r) are defined as

C(r) = (xr(x) — Sllxp(x + re;) — ¢1)
’ v - ¢P) :

where ¢ is the porosity of the sample and i=1,2,3. Their
average is C(r)==7_,C,(r). The computed two-point correla-
tion functions on the digitized representations of the model
and u-CT images at 8.06 um resolution are plotted in Fig.
7. At this resolution, the model measurements agree reason-
ably well with that from the u-CT image in all three direc-
tions. The slope of the tangent drawn at C(0) provides a
rough estimate of the specific surface area of the solid/void
and is related to the permeability of the sample [2]. This
suggests that along with the quantitative agreement in the
porosities and in the morphologies (Table II), the transport
properties computed from the model at this resolution are
also expected to show reasonable agreement with those ob-
tained from the experimental u-CT image.

(8)

C. LPT measurements

A more detailed quantitative microstructure comparison is
carried out using local porosity theory (LPT) [38,39]. The
usefulness of this method has been established earlier in
comparing u-CT images of different sandstones [40] and
comparing three-dimensional models of sandstones with the
original [41]. In this method one measures geometric observ-
ables such as porosity or connectivity within a compact sub-
set of the porous medium and collects these measurements
into various histograms. For convenience of the reader we
briefly repeat the basic definitions of the quantities used in
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LPT to characterize the porosity and connectivity fluctua-
tions at different length scales in three-dimensional digitized
models [2,42].

Within a cubic measurement cell K(r,L) of sidelength L
centered at the lattice vector r, the local porosity is defined
as

VIP N K(r,L)]
M= ik

where V[K(r,L)] denotes the volume of a subset K CR3.
The local porosity distribution u(¢,L) is given by

)

w0 =23 A6~ Gle.D)] (10)

where m is the number of placements of the measurement
cell K(r,L) and &8 ¢—(r,L)] is the Dirac delta function.
For adequate statistics K(r, L) are placed on all lattice sites r
which are at least a distance L/2 from the boundary of S.

A measurement cell K(r,L) is percolating in the x (y,z)
direction if there exists a connected path lying inside the
pore space within the measurement cell between two points
on the opposite boundary faces of K(r,L) perpendicular to
the x (y,z) axis. The connectivity function is defined as

1 :if K(r,L) percolates in ¢ direction

0 :otherwise.

Ac(r’L) ={
(11)

The function A(r,L) is computed using the Hoshen-
Kopelman algorithm [43]. The local percolation probability
N(¢,L) is defined through

EAC(I‘,L) 5¢¢(r,L)

AAPL) = —————. 12
b= (12)

It gives the fraction of measurement cells of sidelength L
with local porosity ¢ that are percolating in ¢ direction. Here
Spp(r,r) 18 the I.(ronegker. delta. The.total fr.action of perco-
lating cells of size L is given by the integration over all local
porosities,

1
pe(L) =f w(. LN (p,L)db. (13)
0

The local percolation property is closely correlated with
transport properties such as permeability or conductivity as
was first pointed out in Ref. [41] and later verified in Ref.
[26] for sandstones. LPT has also been used in Ref. [10] to
analyze the percolation properties of low-porosity Fontaineb-
leau sandstone.

LPT measurements are carried out on the three-
dimensional (512%) thresholded digitized image of the model
and the u-CT image at resolution 8.06 um. In Fig. 8,
u(é,L) and \5(¢p, L) are compared for three different values
of L. At each of these measurement cell sizes the local po-
rosity distribution and the local percolation probability (in all
three directions) from the experimental image match with
that from the model. Equally good agreement is observed

041301-8



TOWARDS PRECISE PREDICTION OF TRANSPORT ...

10 T T T T
L=322.4pm S
75t ; H u-CT
= N Model
s 5 o
= ,' L=225.68um
25 PR
: \ L=128.96um
0
1 .
0.75
- —p-CT
3 o0s L=64.480um g
< \ g - | Model
0.25
o . .
0.6 0.8 1.0

0

FIG. 8. Comparison of local porosity distribution and local per-
colation probabilities of the model and the u-CT image at
8.06 pm.

between p.(L) plotted in Fig. 9. This suggests that at the
resolution 8.06 um, the pore scale microstructure of the
modeled rock matches (quantitatively) very well with that of
the experimental u-CT image.

IX. PREDICTIONS AT HIGHER RESOLUTIONS

The quantitative comparison of the microstructure at the
resolution 8.06 wm presented above establishes that the
model discretization represents the original rock with signifi-
cant accuracy at this level of resolution. The model, however,
can now be discretized at any arbitrary resolution. The
sample S is discretized at 16, 8, 4, 2, and 1 um for predict-
ing porosity and permeability at higher resolutions and to
extrapolate to infinite resolution.

X-ray tomography of subsection plugs of diameters 3 and
1.5 mm was also carried out (ESRF, Grenoble, France) at
higher resolutions, namely, 1.4 and 0.7 wm. The subsam-

1 T T T
0.8f 1
0.61 1
jary
Zo
04 1
0.2r 1
0 . . .
0 100 200 300 400

L (um)

FIG. 9. Comparison of the fraction of percolating cells at differ-
ent length scales for the model and the u-CT image at 8.06 um.
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@ | (b)

FIG. 10. Experimental u-CT images of the carbonate rock (im-
ages on the left column) are compared with sections of the model
discretization (synthetic u-CT images from the model) at respective
resolutions. Left (from top to bottom): 512X 512 pixels experimen-
tal u-CT images at resolution 1.4 um and 0.7 wm, respectively.
Right: 512X 512 pixels subsections of corresponding model dis-
cretization showing the gradual resolution of the dolomites with
higher resolution.

pling procedure is shown in Fig. 1. These higher resolution
m-CT images are from subregions different from the volume
of the rock. The model is also discretized at resolutions 1.4
and 0.7 um. In Fig. 10, cross sections from these synthetic
w-CT images from the model are compared with the experi-
mental u-CT images at the respective resolutions. An im-
pressive visual match of the morphology is observed at these
higher resolutions.

All measurements presented in this section are carried out
on digitized representations of the experimental u-CT im-
ages from the rock and the synthetic u-CT images from the
model. As mentioned before, the digitization is carried out by
thresholding the discretizations (grayscale images) using the
Otsu method [34].

The Minkowski functionals computed on all these
samples are summarized in Tables II and III. For the higher
resolution (1.4 and 0.7 um) discretizations of the model, the
Minkowski functionals are computed on two nonoverlapping
subsamples (1000° voxels) selected randomly from the full
sample discretization. Although the synthetic u-CT images
and the experimental u-CT images correspond to different
regions of the rock, the Minkowski functionals computed
from the experimental u-CT images and the model discreti-
zations show reasonable agreement at the respective resolu-
tions.

The computed porosities at increasing resolutions are
plotted in Fig. 11. Although from different regions of the
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TABLE III. Minkowski functionals computed from the binary images obtained by thresholding the ex-
perimental u-CT images of the rock and the synthetic u-CT images from the model at different resolutions.
For the model discretizations at resolutions 1.4 and 0.7 wm, Minkowski functionals are computed from a
pair each of nonoverlapping subsamples (1000° voxels) selected randomly.

Porosity ~ Specific surface  Mean curvature  Total curvature
Sample resolution b= b,(P) ¢(P) bo(P)
a (um) Size M> (voxels) (%) (mm™) (mm™2) (mm™)
Model
16.0 256 28.8412 15.5884 106.124 -6911.31
8.0 5123 29.0001 20.2203 303.091 33354.3
4.0 10243 29.4577 29.5054 1619.21 506456
2.0 20483 30.0681
1.0 40963 30.6351
1.4 (1) 1000? 32.169 483124 6529.29 2.5X10°
14 (2) 10003 29.412 48.2883 7095.59 2.59 X 10°
0.7 (1) 10003 28.533 57.1416 10913.7 3.28 X 10°
0.7 (2) 10003 27.475 53.7597 10105.9 3.03 X 10°
u-CT
8.06 10003 30.5199 19.3285 131.688 -10358.8
1.4 10003 31.2905 63.4964 5109.51 271020
0.7 (1) 10003 32.3128 86.5955 8585.44 3.65 X 10°
0.7 (2) 10003 32.9546 90.5366 12214.6 4.87 % 10°

rock, the porosities of the experimental w-CT images at
higher resolutions are close to the value predicted by the
model. For the model at resolutions of 16, 8,4, 2, and 1 wm,
the porosities are computed from the full sample discretiza-
tions. At 1.4 and 0.7 um resolutions, the porosities are mea-

46— . . :
- @ Model
21 | " \odel (20485 |
asf ¥ LCT (10000 -
T uCT (512°)

Porosity
®
{)

3o} X :
. T
= i '
ool . . .
01 2 4 8 16
a (micron)

FIG. 11. (Color online) Porosities computed from synthetic
u-CT images of the model and from experimental u-CT images at
different resolutions. For the model, at resolutions 1.4 and 0.7 um,
the porosities are computed from a 20483 voxel subsample. Porosity
denoted by u-CT (512%) at the resolution 8.06 um is computed
from the 5123 subregion of the experimental u-CT image from the
rock that is used for constructing G. The error bars reflect the sub-
sample variations in porosities computed by dividing each volume
into eight nonoverlapping subvolumes.

sured from subsamples of size 2048 voxels each. To assess
the variations in the porosities in different regions, each of
these volumes is divided into eight nonoverlapping sub-
samples and porosities are computed on each of them sepa-
rately. The error bars shown at each resolution in Fig. 11
correspond to the variation in the computed porosities in
these subsamples. For the real rock, the porosities are mea-
sured on u-CT subsamples with 10003 voxels. The error bars
show again the subsample variation in the porosities for
these volumes. They are computed by subdividing these vol-
umes into eight nonoverlapping subsamples. A close match
of the porosity computed on the 5123 voxel u-CT subsample
is achieved because the modeled region coincides with the
region of the rock in the u-CT image. The large variation in
porosities in the subsamples is because the sizes of the ex-
perimental wu-CT images at higher resolutions (1.4 and
0.7 wum) are below REV scale (representative elementary
volume scale at which the microstructure becomes homoge-
neous). Better resolution of the microporosity and internal
surface is the primary reason behind the increase in porosity
at higher resolutions. The original 3.81 cm diameter core
plug was analyzed experimentally and had a He porosity of
30.1%. Incidentally, the extrapolated porosity for the fully
resolved model (Fig. 11) is close to the experimental value
for the full core plug.

The absolute permeability on these volumes is computed
by solving the linear Stokes equation under incompressible
flow condition using the public domain software ‘“perm-
solver” [44]. The full model discretization at resolution
16 um (256°) is divided into eight subsamples of size 1283
each. At resolution 8 um (512°) it is divided into eight sub-
samples of size 2567 each, at resolution 4 um (1024%) it is
divided into 64 subsamples of size 2567 each, and at reso-
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FIG. 12. (Color online) Absolute permeabilities computed from
synthetic u-CT images of the model and experimental u-CT images
from the rock at different resolutions. At resolutions 1.4 and
0.7 um, the porosities are computed for 1000° voxel subsample
discretizations from the model. The u-CT (5123) is the section of
the rock at resolution 8.06 wm that is used for constructing G. The
error bars reflect subsample variations.

lution 2 um (2048%) it is divided into 512 subsamples of
size 256* each. At higher resolutions of 1.4 and 0.7 um, a
pair of nonoverlapping subsamples of size 1000’ at each res-
olution is chosen randomly and further subdivided into 64
subsamples of size 2503 each. The original u-CT images of
size 10007 at resolutions 8.06, 1.4, and 0.7 pum are also di-
vided into 64 subsamples of size 250° each. The absolute
permeabilities are measured on all of these subsamples. The
average values along with subsample variation (error bars)
for the model and the original rock at different resolutions
are plotted in Fig. 12. The predictions from the model at
intermediate and higher resolutions are remarkable as judged
from the comparison with the computed permeabilities on
the available u-CT images. The large error bars at the higher
resolutions of 1.4 and 0.7 um arise because the subsample
volumes are rather small and not representative. The perme-
ability of the original core plug was experimentally mea-
sured as 1295 mD. The good agreement of the numerical
result extrapolated to full resolution (Fig. 12) is likely coin-
cidental because the model corresponds to a small subsection
of the full core plug.

The changes in the petrophysical properties observed at
higher resolutions are mainly due to the improved resolution
of the microporosity. The thresholding procedure is also
more accurate at higher resolutions. The property predictions
can be more accurate if the model parameters are calibrated
by matching the model discretization with the u-CT images
at more than one resolution. This, however, ideally requires
that the higher resolution u-CT images are from the same
region and of the same volume of the modeled rock. In the
proposed modeling method, the model parameters A, and p
can be calibrated to increase or decrease the microporosity at
higher resolutions without changing the macroporosity at
lower resolutions.

PHYSICAL REVIEW E 80, 041301 (2009)

X. SUMMARY AND DISCUSSION

We present an application of the continuum geometrical
modeling technique proposed in Ref. [13] to predict transport
properties of strongly correlated natural porous media. The
approach comprises several modeling steps. Beginning with
a subresolution u-CT image of a carbonate rock and high-
resolution two-dimensional images from the same rock, we
reconstruct a pore scale representation of a large cubic vol-
ume of the rock at arbitrary resolution. The model param-
eters are then calibrated to quantitatively match the morphol-
ogy of the low-resolution experimental u-CT image with
that of the synthetic u-CT image from the model at the same
resolution. The following geometric quantities are matched:
the four Minkowski functionals, two-point correlation func-
tion, local porosity distributions, and local percolation prob-
abilities. All the quantitative microstructure statistics are
computed on binary representations of the u-CT images ob-
tained through an independent thresholding method. Al-
though the quantitative morphology matching is done at a
specific low resolution, the resulting model provides accurate
predictions at higher resolutions for the carbonate rock mod-
eled in this work.

We conclude that this modeling method is suitable to pro-
vide three-dimensional pore scale microstructures of labora-
tory scale carbonate rocks at arbitrary resolutions. Models of
a full core plug, such as the one shown in the Fig. 1, can be
generated with modest computational resources. We have
generated a smaller size sample mainly because discretiza-
tions from such a sample size are feasible to analyze within
the computational resources available to us currently. We
showed that combining information from low-resolution
m-CT images and high-resolution two-dimensional images,
fairly realistic models of multiscale porous media can be
generated. Synthetic u-CT images from the computational
discretization of the model match well with the experimental
wm-CT images at arbitrary resolutions. The method allows for
a calibrated match of the microstructure and petrophysical
transport properties at specific resolutions. It then provides
reasonably accurate prediction of transport parameters at in-
termediate and higher resolutions where the microstructure is
unknown. We hope that this method will find application in
the investigation of three-dimensional pore scale microstruc-
tures in diverse scientific fields and will also lead to more
accurate prediction of transport properties in multiscale po-
rous media.
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APPENDIX: MINKOWSKI FUNCTIONALS

A geometric observable f is a mapping (functional) that
assigns to each admissible pore space I’ a real number f(I”)

041301-11



BISWAL et al.

=f(PNS) that can be calculated from P without solving a
physical boundary value problem. The set R of admissible [P
is defined as the set of all finite unions of compact convex
sets [30,45]. The set of all compact and convex subsets of R?
is denoted as /C. Examples of geometric observables are the
volume of P or the surface area of the internal JP=dM
=PNM. Let

ViK)= [ xp(r)d’r (A1)
]Rd

denote the d-dimensional Lebesgue volume of the compact
convex set K. The volume is hence a functional V,;:C—R
on K. An example of a compact convex set is the unit ball
Bl={x € R’:|x|=1}=B%0,1) centered at the origin 0 whose
volume is

7Td/2

_ dy _
Ka=Va(B) = 1+ d2)]

(A2)
Other functionals on /C can be constructed from the volume
by virtue of the following fact. For every compact convex
K e K and every =0 there are numbers V,(K), j=0,....d
depending only on K such that

d
Vd(K + SBd) = 2 Vj(]K)Sd_jKd_j

J=0

(A3)

is a polynomial in . This result is known as Steiners formula
[30,45]. The numbers V(K), j=0,...,d define functionals
on K similar to the volume V,4(K). The quantities

Kin—i(K)
/)
i

are called quermassintegrals [46]. From Eq. (A3) one sees
that

Wi(K) = (A4)
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llml[Vd(K + SBd) - Vd(K)] = KlVd_l(K) s

e—0&

(A5)

and from Eq. (A2) that x;=2. Hence, V,_;(K) may be
viewed as half the surface area. The functional V,(K) is re-
lated to the mean width w(KK) defined as the mean value of
the distance between a pair of parallel support planes of K.
The relation is

dk
mmpzd

w(K), (A6)

Kg-1

which reduces to V,(K)=w(IK)/2 for d=3. Finally the func-
tional V,(K) is evaluated from Eq. (A3) by dividing with &¢
and taking the limit & —oo. It follows that Vy(K)=1 for all
K e K\{@}. One extends V|, to all of K by defining V(D)
=0. The geometric observable V is called Euler characteris-
tic.

For a three-dimensional porous sample with P e R the
extended functionals V; lead to the geometric observables
known as Minkowski functionals. The first is the porosity of
a porous sample S defined as

vi(PNS)

¢(P N 8)=gy(PNS) = V.6)

(A7)

and the second is its specific internal surface area which may
be defined in view of Eq. (A5) as

2V,(P N S)

(P NS)= )

(A8)

The two remaining observables, the mean -curvature
& (PNS)=V,(PNS)/V4(S) and the total curvature
do(PNS)=V,(IPNS)/V5(S), have received less attention in
the porous media literature.
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