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High-precision synthetic computed tomography of reconstructed porous media
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Multiscale simulation of transport in disordered and porous media requires microstructures covering several
decades in length scale. X-ray and synchrotron computed tomography are presently unable to resolve more
than one decade of geometric detail. Recent advances in pore scale modeling [Biswal, Held, Khanna, Wang,
and Hilfer, Phys. Rev. E 80, 041301 (2009)] provide strongly correlated microstructures with several decades
in microstructural detail. A carefully calibrated microstructure model for Fontainebleau sandstone has been
discretized into a suite of three-dimensional microstructures with resolutions from roughly 128 μm down to
roughly 500 nm. At the highest resolution the three-dimensional image consists of 32 7683 = 35 184 372 088 832
discrete cubic volume elements with gray values between 0 and 216. To the best of our knowledge, this synthetic
image is the largest computed tomogram of a porous medium available at present.
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Accurate prediction and understanding of material parame-
ters for disordered systems such as rocks [1], soils [2], papers
[3], clays [4], ceramics [5], composites [6], microemulsions
[7], or complex fluids require geometrical microstructures
as a starting point as emphasized by Landauer [8] and
numerous authors [9–12]. Digital three-dimensional images of
unprecedented size and accuracy have been prepared for the
case of Fontainebleau sandstone, and are being made available
to the scientific community in this Brief Report.

Multiscale modeling of disordered media has recently
become a research focus in mathematics and physics of
complex materials and porous media [13–18]. Accurate pre-
diction of physical observables for multiscale heterogeneous
media is a perennial problem [8,9]. It requires knowledge
of the three-dimensional disordered microstructure [11]. Our
objective in this Brief Report is to provide to the scientific
public a sequence of fully three-dimensional digital images
with a realistic strongly correlated microstructure typical
for sandstone. Resolutions from a = 117.18 to 0.4576 μm
are available for download [19]. Experimental computed
microtomographic images of comparable size, resolution, or
data quality are, to the best of our knowledge, not available
at present. More importantly, experimental images of similar
size and quality are not expected to become available to the
scientific community in the near future.

Despite the impressive progress in fully three-dimensional
high-resolution x-ray and synchrotron computed tomography
of porous media in recent years [20,21], acquisition times for
1500 radiograms needed for a 1024 × 1024 × 1024 sample
of average quality at the ID19 beamline of the European
Synchrostron Radiation Facility are on the order of 30 min
[22]. Extrapolating to the number of 32 768 such blocks that
we provide in this Brief Report would thus require on the order
of 16 384 h or roughly 2 years of uninterrupted beamtime. It
is unlikely that this amount of beamtime will ever be spent.

The continuum multiscale modeling technology for carbon-
ates developed in Refs. [23–25] was applied to Fontainebleau
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sandstone in Ref. [26] to create a synthetic, nonexperimental
image at very high resolution. A laboratory-sized cubic sample
of side length 1.8 cm was generated containing roughly
1.02 × 106 polyhedral quartz grains. For simplicity there are
a total of 99 grain types, each defined by 18 intersecting
planes. The grains are rescaled, randomly oriented, and have
a prescribed overlap with each other (see Ref. [26] for more
modeling details). The model was geometrically calibrated
against a well-studied experimental microtomogram at 7.5-μm
resolution [27]. The geometric calibration was based on
matching porosity, specific surface, integrated mean curva-
ture, Gaussian curvature, correlation function, local porosity
distributions (with 240 and 480 μm measurement cell size),
and local percolation probabilities at the same measurement
cell sizes. Comparison of these quantities at a = 7.5 μm was
carried out in Ref. [26].

The continuum sample generated and characterized in
Ref. [26] is the starting point for the work reported here. To
eliminate boundary effects a centered cubic sample, denoted
by S, of side length 1.5 cm was cropped from the original
deposit. The pore space inside S is denoted by P , and the
matrix region is denoted M.

The sample region S was discretized into N cubic voxels
Vi(a) ⊂ S (i = 1, . . . ,N), whose side length a is a multiple
of the base resolution a0 = 1.5 cm/16 384 = 0.915 527 3 μm.
The discretization employs a cubic array of 63 = 216 col-
location points placed centrally and distributed uniformly
inside each voxel Vi(a). It yields an integer grayscale value
0 � gi(a) � 216 with 1 � i � N for each of the N voxels
(discrete volume elements). The gray value gi(a) ∈ N equals
the number of collocation points inside voxel Vi that fall into
the matrix region M [26]. The gray values approximate the
integral

ψi(a) = 1

a3

∫
Vi∩P

d3x ≈ 1 − gi(a)

216
, (1)

which is the porosity inside the voxel Vi at resolution a.
Thus, gi(a) = 0 approximates Vi ⊂ P , while gi(a) = 216
approximates Vi ⊂ M.

At the lowest resolution a = 128a0 = 117.18 μm the sam-
ple consists of N = 128 × 128 × 128 = 2 097 152 discrete
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TABLE I. Overview of data sets available from Ref. [19] for
download. a is the resolution in units of a0 = 0.915 527 34 μm. L

is the side length of the cubic sample in units of aa0. The total
number of voxels is N , and K is the number of cubic blocks used to
represent the sample. One has K > 1 whenever L > 1024. TCPU gives
an estimate of the total CPU time in hours that was used to generate
the discretizations. Calculations were typically performed in parallel
on 512 Xeon processors requiring a total wall time of approximately
Twall = TCPU/512 in hours due to an essentially linear speedup. The
total wall time was ∼800 h or 34 days.

a 128a0 64a0 32a0 16a0 8a0 4a0 2a0 a0 a0/2

L 128 256 512 1024 2048 4096 8192 16384 32768
N 221 224 227 230 233 236 239 242 245

K 1 1 1 1 8 64 512 4096 32768
TCPU 1.6 3.2 6.5 11 88 704 5632 45056 360448

volume elements (voxels), and it can easily be stored in
a single file. At higher resolution this becomes technically
inconvenient, and we have limited the file size to blocks with
1024 × 1024 × 1024 = 1 073 741 824 voxels corresponding
to roughly 1 Gbyte. The highest resolution at which the
sample is still stored in a single file is a = 16a0 = 14.65 μm.
For resolutions a � 8a0 = 7.3244 μm the data are stored in
several blocks. This results in a maximum of 32 768 blocks for
the highest resolution of a = a0/2 = 0.4576 μm. The number
of voxels is N = 245 = 35 184 372 088 832 at this resolution.
Table I gives a summary of the available resolutions a, sample
side length L (in units of a), number of voxels N , number of
10243 blocks K , and an estimate of the CPU time and wall
time expended for the computation.

All computations were performed on the HLRS’s bwGRID
cluster at the Universität Stuttgart consisting of 498 compute
nodes, each holding two Intel Xeon CPU’s capable of
11.32 × 109 FLOPs (floating point operations per second).
The peak performance (Linpack) is 38 × 1012 FLOPs [28].
For the calculations performed in this work 256 nodes
(=512 CPU’s) were used in parallel. The discretization algo-
rithm was parallelized, but not optimized. Every discretized
volume element (voxel) requires 1 byte of storage. The
storage requirements without compression amount to roughly
40 Tbytes.

The results can be used to calculate resolution-dependent
geometric and physical properties. Because the underlying
continuum microstructure is available with floating point
precision, the resolution can be changed over many decades.
Resolution-dependent geometrical or physical properties can
be compared with, or extrapolated to, the continuum result.
This is illustrated with the porosity φ (volume fraction of pore
space) and specific internal surface S (surface area per unit
volume).

The exact values of φ and S are not known for the continuum
model. Depending on the geometrical or physical quantity
of interest computations on the continuum model as well as
computations on discretizations with more than 10243 discrete
volume elements are (as a rule) challenging at present.

The discretized samples approximate the exact geometry
of the continuum model. Let δij = 1 for i = j and δij = 0 for
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FIG. 1. Porosity φ(gth,a) as function of segmentation threshold
gth for resolutions a = 8a0,4a0,2a0,a0,a0/2.

i �= j . Then

M(g,a) =
N∑

i=1

δggi (a) (2)

is the number of voxels with gray value g at resolution a, and

φ(gth,a) = 1

N

gth∑
g=0

M(g,a) (3)

is an estimate for the porosity based on a segmentation of its
discretization at resolution a with segmentation threshold gth.
The porosity φ = lima→0 φ(gth,a) of the continuum model at
infinite resolution is expected to obey

φ(0,a) � φ � φ(215,a) (4)

for all gth and all a. The validity of these bounds depends
on the continuum microstructure. They are expected to hold
approximately for the sandstone microstructure. Gray values
g = 0 and g = 216 do not guarantee that the pore boundary
does not intersect the voxel region, although it will be true for
the majority of voxels in the limit a → 0.

Figure 1 shows the porosity φ(gth,a) as a function
of the segmentation threshold gth for resolutions a =
8a0,4a0,2a0,a0,a0/2.

Figure 2 shows the porosity bounds φ(0,a) and φ(215,a)
for resolutions a = 8a0,4a0,2a0,a0,a0/2. It also shows eight
extrapolations defined as the linear functions

φi(a; c) = ϕi(c) + ki(c)a, (5)

where i ∈ {0,215} and the slopes ki(c) and intercepts ϕi(c) are
determined such that

φi(a; c) = φ(i,a) (6)

for a = c and a = c/2. Table II lists the slopes and intercepts
of all eight extrapolations. In between the upper and lower
bounds, Fig. 2 also shows (with symbols × connected by a
solid line) the porosity obtained by maximizing the variance
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FIG. 2. Approximate lower bounds φ(0,a) and approximate
upper bounds φ(215,a) for the porosity φ for resolutions a =
8a0,4a0,2a0,a0,a0/2 are shown as (+) data points. A total of eight
straight lines show extrapolations of these upper and lower bounds to
a = 0. The symbols × connected by a solid line show the porosity
estimated from maximizing the variance of the grey scale histogram.

of the grayscale histogram, a standard technique in image
processing [29].

Figure 3 shows the mean values

φ∗(c) = ϕ0(c) + ϕ215(c)

2
(7)

plotted against the differences

φ∗∗(c) = ϕ215(c) − ϕ0(c) (8)

as data points. It also shows a linear fit to the data as a dashed
line. The linear fit extrapolates to the value

lim
c→0

φ∗(c) = 0.134 313 ± 0.000 01, (9)

where the uncertainty is from the residues of the fit.
We now turn to an estimate for the specific internal surface

S. Assume that every voxel Vi(a) at resolution a with 0 <

gi(a) < 216 is cut by a single plane. Let Bi(R) denote a ball
with radius R centered at the center of the voxel Vi(a). Then
Bi(a/2) is the inscribed ball with radius a/2, and Bi(

√
3a/2)

denotes the circumscribed ball with radius
√

3a/2. If the voxel
is cut by a single plane, then the surface area of the cut is
bounded above by the area of the circle forming the base of
the spherical cap cut from the circumscribed ball

√
3a/2. Let

b denote the radius of the circle forming the base, let h denote
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FIG. 3. Linear fit to the mean values φ∗(c) vs differences φ∗∗(c)
for c = 8a0,4a0,2a0,a0.

the height of the cap, and let R be the radius of the sphere from
which the cap is cut. Then

b2 = h(2R − h) (10)

and

V = π

3
h2(3R − h) (11)

is the volume of the spherical cap. Introducing the voxel
porosity

ψ = 3V

4πR3
(12)

and solving the last equation for h and gives

hm(ψ) = R

{
1 + 2 cos

[
arccos(1 − 2ψ) + 2mπ

3

]}
(13)

as a function of voxel porosity, where m = 0,1,2. The
inequality

0 � h � R (14)

selects the solution with m = 2. The area of the circle at the
base of the spherical cap is A = πb2 so that

A(ψ,R) = πh2(ψ) [2R − h2(ψ)] (15)

is the relation between the circular base area and the volume
fraction of a spherical cap cut from a sphere of radius R.

TABLE II. Slopes and intercepts for extrapolations in Fig. 2 according to Eq. (5).

c k0(c) ϕ0(c) k215(c) ϕ215(c)

8a0 −0.004 944 104 133 756 0.131 677 153 054 625 0.006 128 869 055 829 0.133 806 445 926 894
4a0 −0.005 437 994 277 600 0.133 652 713 629 999 0.006 038 194 581 379 0.134 169 143 824 69
2a0 −0.005 680 456 774 371 0.134 137 638 623 542 0.005 981 708 264 244 0.134 282 116 458 962
a0 −0.005 843 877 976 029 0.134 301 059 825 200 0.005 942 813 391 024 0.134 321 011 332 18
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Combined with Eq. (1), this yields the upper bound

Smax(g,a) = 1

a3
A

(
1 − g

216
,

√
3a

2

)
(16)

for the specific internal surface inside a voxel with resolution
a having gray value g under the assumption that the voxel is
cut by a single flat plane.

For the lower bound we use the circular base area obtained
by the intersection with the inscribed ball Bi(a/2) of radius
a/2. The minimum is attained when the intersection plane is
oriented perpendicular to one of the space diagonals of the
cubic voxel. The inscribed ball is intersected by the plane
only when its distance from the nearest voxel corner ex-
ceeds a(

√
3 − 1)/2. This occurs at ψ = √

3(
√

3 − 1)3/16 ≈
0.0424 68 and at ψ = 1 − [

√
3(

√
3 − 1)3/16] ≈ 0.957 53.

Therefore, one finds the lower bound Smin(g,a) = 0 for g � 9
and g � 206, while

Smin(g,a) = 1

a3
A

(
1 − g

216
,
a

2

)
(17)

holds for 10 � g � 205. Upper and lower bounds for the
specific surface are obtained from these results by summation
as

Sb(a) = 1

N (a)

215∑
g=1

M(g,a)Sb(g,a), (18)

where b = min respectively b = max. Table III lists the results
for Smin(a) and Smax(a) for a = 8a0,4a0,2a0,a0,a0/2.

Table III shows that the bounds for the specific surface are
rather wide. It is then of interest to investigate the following
simple geometric estimate: In the limit a → 0 most voxels
are intersected by a single plane. The intersecting planes can
have varying orientations. As a simple approximation it may
be assumed that the effect of different orientations is averaged
out, and that a single orientation suffices to estimate the specific
surface inside a voxel. Here we assume this single direction to
be a space diagonal of the voxel. All four space diagonals
are equivalent by symmetry so that it suffices to consider
one direction. A simple mean-field-like appproximation is to
assume that every voxel with porosity ψi(a) given in Eq. (1)
is intersected by a single plane oriented perpendicular to one
of the four space diagonals of the voxel.

Let 0 � d �
√

3a denote the distance from the corner of
the voxel along the diagonal to the intersection point, where the
plane intersects the space diagonal. By symmetry it suffices to
consider 0 � d �

√
3a/2. For 0 � d � a/

√
3 the intersection

forms an equilateral triangle. In this case d is related to the
voxel porosity ψ by

d(ψ,a)

a
=

(
2(1 − ψ)√

3

)1/3

(19)

and the area of the triangle is

A(d,a) = 3
√

3

2
d(ψ,a)2. (20)

For the range a/
√

3 � d �
√

3a/2 the intersection forms a
hexagon. In this case the analogous results are

d(ψ,a)

a
=

√
3

2
− cos

[
arccos[2(2ψ − 1)/

√
3] + π

3

]
(21)

and

A(d,a) =
√

3

2
[3d2 − 3(

√
3d − a)2]. (22)

The specific surface area of a voxel with gray value g is then

Smf(g,a) = A[d(ψ,a),a]

a3
(23)

computed from Eqs. (19) and (20) for 1 � g � 36 or from
Eqs. (21) and (22) for 37 � g � 108 with ψ = 1 − (g/216).
For g > 108, i.e., ψ smaller than roughly 1/2, Eqs. (19) and
(20) are used for 180 � g � 215, while (21) and (22) are used
for 109 � g � 179, but now in both cases with ψ = g/216.
The second line in Table III is then obtained by inserting
Eq. (23) into Eq. (18) with b = mf.

The last line in Table III gives the specific internal
surface Smeasured(a) calculated directly using the algorithm
from Ref. [30]. The data are obtained by averaging segmented
(1024)3 blocks. The segmentation threshold was chosen by
maximizing the variance of the grayscale histogram [29]. For
a = 8a0,4a0,2a0 all blocks were included into the average,
for a = a0 half of the blocks, and for a = a0/2, 10% ran-
domly chosen blocks were averaged in the measurement. The
calculation of Smeasured(a) took ∼1100 h CPU time (without
segmentation), while the mean-field estimate Smf(a) can be
obtained (e.g., within MATLAB) directly from the histogram
M(g,a) at virtually no computational cost.

The authors thank Martin Hecht and Frank Huber
for technical assistance. They are grateful to Sim-Tech
(Forschungszentrum für Simulationstechnik) for computing
resources and financial support.

TABLE III. Smax(a) and Smin(a) are the upper and lower bounds computed from Eqs. (16) and (17), respectively, and Eq. (18) for specific
internal surfaces as functions of resolution a. Smf(a) is the mean-field estimate computed from Eqs. (18)–(23). Smeasured(a) is calculated by
applying the direct algorithm from Ref. [30] to thresholded cubic subsamples, and averaging the results as described in the last paragraph of
the main text.

a(a0) 8 4 2 1 0.5

Smax(a) (mm−1) 20.039 20.530 20.774 20.904 20.946
Smf(a) (mm−1) 9.6371 9.8774 9.9978 10.061 10.065
Smin(a) (mm−1) 6.0407 6.1915 6.2673 6.3068 6.3096
Smeasured(a) (mm−1) 9.168 ± 0.02 9.825 ± 0.06 10.159 ± 0.16 10.307(±0.43) 10.355(±1.34)
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