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Horizontal flow and capillarity-driven redistribution in porous media
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A recent macroscopic mixture theory for two-phase immiscible displacement in porous media has introduced
percolating and nonpercolating phases. Quasi-analytic solutions are computed and compared to the traditional
theory. The solutions illustrate physical insights and effects due to spatiotemporal changes of nonpercolating
phases, and they highlight the differences from traditional theory. Two initial and boundary value problems
are solved in one spatial dimension. In the first problem a fluid is displaced by another fluid in a horizontal
homogeneous porous medium. The displacing fluid is injected with a flow rate that keeps the saturation constant
at the injection point. In the second problem a horizontal homogeneous porous medium is considered which is
divided into two subdomains with different but constant initial saturations. Capillary forces lead to a redistribution
of the fluids. Errors in the literature are reported and corrected.
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I. INTRODUCTION

Although numerous natural and technical processes involve
two-phase flow in porous media, their theoretical description
has remained a challenge for many decades [1] (see [2–5]
as well as [6,7] for more recent historical remarks). Darcy’s
law is commonly extended to two or more immiscible fluids
using the concepts of relative permeability and capillary
pressure [8–11].

The applicability of the traditional and commonly accepted
generalized Darcy theory (subsequently called “traditional”)
is limited to extremely slow displacement processes, so slow
that the interfacial motion and momentum exchange between
the two fluid phases are negligible. Because of these severe
limitations its predictive power is limited to simple problems
where hysteresis, dynamic effects (such as time-dependent
capillary pressures or relative permeabilities), or varying
residual saturations are not important. Alternative theories
range from explicit hysteresis models [12–14] to modifications
of the capillary pressure or relative permeabilities with
additional unknowns [15–18]. Although it is well known that
percolating and nonpercolating fluid parts show fundamentally
different behavior [8,19–22], this fact is not reflected in the
traditional theory. A macroscopic model which takes the
difference between nonpercolating and percolating fluid parts
explicitly into account was first proposed in Ref. [23] and
further elaborated in subsequent publications [6,7,24–27]. This
model no longer suffers from the restriction to extremely
slow velocities because it allows for interfacial motion. In
recent works numerical and analytical solutions of initial and
boundary value problems of this theory have been computed
[28–30].

In this paper similarity solutions are found for two idealized
problems. These further enrich and explore the new theory. The
first idealized problem considers co- and countercurrent flows
in a semi-infinite porous medium. The medium is closed at
infinity with a wall whose permeability can be changed from
permeable to impermeable. The second problem concerns
redistribution of the two immiscible fluids driven by capillary
forces in an infinite horizontal medium. Methodically, both
systems of coupled nonlinear partial differential equations
including initial and boundary conditions admit similarity

solutions, which can be found by solving simpler ordinary
differential or integro-differential equations.

In Sec. II of the paper a brief review of the model is
given. In Secs. III and IV, simplifying assumptions are stated.
These assumptions admit a quasi-analytical treatment of the
system of coupled nonlinear partial differential equations
for certain initial and boundary value problems. Two of
them are presented in Sec. V. The first one resembles the
McWhorter-Sunada problem [31] but accounts for percolating
and nonpercolating fluid parts. Its solutions are discussed in
Sec. VII and examples are given. The second is an adaptation
of the redistribution problem of Philip [32] and is solved
and discussed in Sec. VIII. Concluding remarks are given
in Sec. IX.

II. DEFINITION OF THE MODEL

A. Balance laws and constitutive assumptions

The basic idea of percolating and nonpercolating fluid
phases was originally introduced in Refs. [23–25], and a closed
mathematical model was formulated in Refs. [6,7,26]. Some
numerical solutions have been obtained in Refs. [28,29]. In
this section the model is restricted to one spatial dimension.

Percolating (=hydraulically connected) and nonpercolat-
ing (=hydraulically not connected, trapped) fluid parts are
distinguished as separate phases. A mathematically precise
definition of percolating and nonpercolating phases was given
in Refs. [6] (p. 016307), [7] (p. 213), [26] (p. 121), and [27]
(p. 142f) and is therefore not repeated here. Note that the
definition is completely general. It applies also in cases
where wetting films are present. Hence, a two-phase system
is treated as a four-phase system. Following the notation
of [7] the wetting fluid is named water and indexed with
W , while the nonwetting fluid is called oil and indexed
with O. The percolating water is identified with index i = 1,
the nonpercolating water with i = 2, the percolating oil with
i = 3, and the nonpercolating oil with i = 4. The index i = 5
represents the rock matrix. Volume conservation requires

S1 + S2 + S3 + S4 = 1, (1)

where Si(x,t) is the saturation of phase i as function of position
x ∈ S ⊂ R and time t � t0. From here on t0 = 0 is assumed
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without loss of generality. The one-dimensional sample region
S ⊂ R is an (infinite or finite) interval. The mass balance for
fluid phase i ∈ {1,2,3,4} in a one-dimensional porous medium
is expressed in differential form as

∂(φSi�i)

∂t
+ ∂(φSi�ivi)

∂x
= Mi, (2)

where �i(x,t),φ(x,t),vi(x,t) are mass density, porosity, and
velocity of phase i as functions of position x ∈ S and time
t ∈ R+, and Mi is a source or sink term for the corresponding
phase. For incompressible fluids and rigid homogeneous media
one assumes

φ(x,t) = φ, (3a)

�1(x,t) = �W , (3b)

�2(x,t) = �W , (3c)

�3(x,t) = �O, (3d)

�4(x,t) = �O (3e)

independent of x and t . Here �W ,�O are the densities of water
and oil.

The source terms Mi in Eq. (2) allows one to model
the mass exchange between percolating and nonpercolating
phases through breakup and coalescence. They were assumed
in Refs. [6,7,26] to be proportional to the rate ∂SW /∂t of
saturation change as

M1(SW ,S2,∂tSW ) = −M2 = η2φ�W

(
S2 − S∗

2

S∗
W − SW

)
∂SW

∂t
,

(4a)

M3(SW ,S4,∂tSW ) = −M4 = η4φ�O

(
S4 − S∗

4

S∗
W − SW

)
∂SW

∂t
,

(4b)

where η2,η4 are constants and the short-hand ∂t = ∂/∂t was
used. The factor in brackets postulates that the mass exchange
between percolating and nonpercolating phases is proportional
to the amount of nonpercolating phase present. The parameters
S∗
W , S∗

2 , and S∗
4 are defined by

S∗
W (∂tSW ) = (1 − SO im)�(∂tSW )

+ SW dr[1 − �(∂tSW )], (5a)

S∗
2 (∂tSW ) = SW dr[1 − �(∂tSW )], (5b)

S∗
4 (∂tSW ) = SO im�(∂tSW ), (5c)

where SW dr,SO im are limiting saturations for S2,S4 and �(x)
denotes the Heaviside unit step function.

The momentum balance is written for phase i ∈ {1,2,3,4}
as

φSi�i

Di

Dt
vi − φSi

∂�i

∂x
− φSiFi = mi − viMi, (6)

where Di/Dt = ∂/∂t + vi∂/∂x denotes the material derivative
for phase i, �i the stress tensor in the ith phase, Fi the body
force per unit volume acting on the ith phase and mi denotes
the momentum transfer into phase i from all the other phases.
The material derivatives are neglected here, i.e.,

φSi�i

Divi

Dt
= 0, (7)

because realistic subsurface flows have small Reynolds num-
bers [33]. Note, however, that interfacial motion takes place.
The stress tensors for the four phases are specified as

�1(P1) = −P1, (8a)

�2(P3,S2) = −P3 + γP ∗
2 S

γ−1
2 , (8b)

�3(P3) = −P3, (8c)

�4(P1,S4) = −P1 + δP ∗
4 Sδ−1

4 , (8d)

where P1(x,t) and P3(x,t) are the fluid pressures in the
percolating phases, and the constants P ∗

2 ,P ∗
4 and exponents

γ,δ account for surface tension effects.
The momentum transfer mi in Eq. (6) is assumed to be given

by linear viscous drag. More specifically, they are assumed
linear in the velocity differences

m1(v1,v3,v4) = R13(v3 − v1) + R14(v4 − v1) − R15v1, (9a)

m2(v2,v3,v4) = R23(v3 − v2) + R24(v4 − v2) − R25v2, (9b)

m3(v1,v2,v3) = R31(v1 − v3) + R32(v2 − v3) − R35v3, (9c)

m4(v1,v2,v4) = R41(v1 − v4) + R42(v2 − v4) − R45v4, (9d)

where the resistance coefficients Rij are assumed to be
constitutive parameters. The last terms on the right-hand side
represent viscous drag between the fluid phases and the wall,
whose velocity is v5 = 0. The resistance coefficients R12 = 0
and R34 = 0 were assumed to vanish, because there is no
common interface and hence no direct viscous drag between
these phase pairs.

The body forces are given by gravity and capillarity.
Capillary body forces for the nonpercolating phases are
necessary in a macroscopic theory, because these fluid parts
are acted upon by gravity but neither sink nor rise in a
porous medium. The capillary body forces were specified in
Refs. [6,7,26] as

F1 = �1g sin ϑ, (10a)

F2(S1,∂xS1) = �2g sin ϑ + �a
∂S−α

1

∂x
, (10b)

F3 = �3g sin ϑ, (10c)

F4(S3,∂xS3) = �4g sin ϑ + �b
∂S

−β

3

∂x
, (10d)

with constitutive parameters �a,�b and exponents α,β > 0.
The angle 0 � ϑ � π/2 is the angle between the direction
of the column and the direction of gravity. For ϑ = 0 the
column is oriented perpendicular to gravity, while ϑ = π/2
corresponds to alignment. For more details on the physical
motivation of the constitutive assumptions we refer the reader
to the original publications [6,7,26,27].

B. Reformulation of the model

The balance laws (1), (2), and (6) are rearranged in terms of
volume flux densities. Inserting Eq. (7) into Eq. (6) it becomes
linear in the velocities vi . Its right-hand side can be written as⎛⎜⎜⎜⎝

m1 − M1v1

m2 + M1v2

m3 − M3v3

m4 + M3v4

⎞⎟⎟⎟⎠ = −R̃

⎛⎜⎜⎜⎝
v1

v2

v3

v4

⎞⎟⎟⎟⎠ , (11)
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where the components of the generalized resistance matrix R̃

are

R̃(SW ,S2,S4,∂tSW ) :=

⎛⎜⎝ R11 0 −R13 −R14

0 R22 −R23 −R24

−R31 −R32 R33 0
−R41 −R42 0 R44

⎞⎟⎠ ,

(12)

and the short-hand notation

R11(SW ,S2,∂tSW ) := R15 + R13 + R14 + M1, (13a)

R22(SW ,S2,∂tSW ) := R25 + R23 + R24 − M1, (13b)

R33(SW ,S4,∂tSW ) := R35 + R31 + R32 + M3, (13c)

R44(SW ,S4,∂tSW ) := R45 + R41 + R42 − M3 (13d)

was used. To obtain expressions for the volume flux densities
Qi , Eq. (11) is inserted into Eq. (6). The resulting set of
equations is solved for the velocities and multiplied with the
corresponding phase volume fractions φSi , i ∈ {1,2,3,4}. As
a result one finds⎛⎜⎜⎜⎝

Q1

Q2

Q3

Q4

⎞⎟⎟⎟⎠ :=

⎛⎜⎜⎜⎝
φS1v1

φS2v2

φS3v3

φS4v4

⎞⎟⎟⎟⎠ = �

⎛⎜⎜⎜⎝
∂x�1 + F1

∂x�2 + F2

∂x�3 + F3

∂x�4 + F4

⎞⎟⎟⎟⎠ , (14)

where the mobility matrix � has been introduced. The
components of � are given by

λij (SW ,S2,S4,∂tSW ) := φ2SiSj [R̃−1]ij (15)

in terms of the inverse of R̃. The primary variables are SW ,S2,
and S4. The mass balances (2) are combined linearly and
volume conservation (1) is applied to obtain

φ
∂SW

∂t
+ ∂QW

∂x
= 0, (16a)

φ
∂S2

∂t
+ ∂Q2

∂x
= − M1

�W
, (16b)

φ
∂S4

∂t
+ ∂Q4

∂x
= −M3

�O
, (16c)

∂

∂x
(QW + QO) = 0, (16d)

where QW = Q1 + Q2 and QO = Q3 + Q4.

III. SIMPLIFYING ASSUMPTIONS

A. Immobility of nonpercolating fluids

As a first approximation it is assumed that the nonperco-
lating phases i = 2,4 are immobile. This can be ensured by
assuming that

R25 � Rij , (17a)

R45 � Rij (17b)

for all pairs (i,j ) with (i,j ) ∈ {1,2,3,4} × {1,2,3,4,5} and
(i,j ) �= (2,5) and (i,j ) �= (4,5). It will also be assumed that

R25 � M1, (18a)

R45 � M3 (18b)

holds. The approximation may be justified physically by the
observation that the motion of contact lines on the internal
surface requires that capillary forces be overcome, and this
creates additional resistance that is much higher than the
viscous drag.

In the limit R25 → ∞, R45 → ∞ only the components
λ11,λ13,λ31,λ33 of the mobility matrix � differ from zero.
Hence, the volume fluxes are approximated as

QW = λ11(∂x�1 + F1) + λ13(∂x�3 + F3), (19a)

QO = λ31(∂x�1 + F1) + λ33(∂x�3 + F3), (19b)

Q2 = 0, (19c)

Q4 = 0, (19d)

where the nonzero components of the mobility matrix are
explicitly given by

λ11(SW ,S2,S4,∂tSW ) = φ2 R33

R2
13 + R11R33

S2
1 , (20a)

λ13(SW ,S2,S4,∂tSW ) = φ2 R13

R2
13 + R11R33

S1S3 = λ31, (20b)

λ33(SW ,S2,S4,∂tSW ) = φ2 R11

R2
13 + R11R33

S2
3 (20c)

in terms of the saturations

S1(x,t) = SW (x,t) − S2(x,t), (21a)

S3(x,t) = 1 − SW (x,t) − S4(x,t). (21b)

In Eq. (20) Onsager reciprocity R31 = R13 is assumed to hold.

B. Viscous domination

When estimating orders of magnitudes in realistic exper-
iments [28,29], one finds that the resistance coefficients Rij

are typically of order 108 kg m−3 s−1, while the momentum
transfer due to mass exchange is only of order 103 kg m−3 s−1.
Therefore, it is assumed that the viscous drag dominates the
momentum transfer, so that

R15 � M1 or R13 � M1, (22a)

R35 � M3 or R13 � M3 (22b)

holds true. Then the resistance matrix

R̃(SW ,S2,S4,∂tSW ) = R̃ (23)

becomes a constant parameter matrix. Note that for SW → S∗
W

or ∂tSW → ∞, the assumption breaks down. This case is
avoided here by assuming that the saturations S∗

W and SW are
usually not known with a precision better than 10−4. Therefore,
|S∗

W − SW | > 10−4 is enforced throughout. It is also assumed
that the rate of saturation change in typical experiments is very
slow and obeys ∂tSW < 1 s−1.

C. Self-consistent closure condition

The system of nonlinear partial differential equations
is closed self-consistently. The most general form of self-
consistent closure was given in Refs. [28,29]. Here, a sim-
plification is employed. Guided by the residual decoupling
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approximation from [6,7] the relation

∂P3

∂x
= ∂P1

∂x
+ 1

2

∂

∂x

(
�aS

−α
1 − �bS

−β

3

+ γP ∗
2 S

γ−1
2 − δP ∗

4 Sδ−1
4

)
(24)

suffices to recover the traditional capillary pressure concept for
sufficiently slow displacement processes from the generalized
theory. The difference between the phase pressures of the
percolating phases

Pc := P3 − P1 (25)

is identified as the macroscopic capillary pressure Pc. Integrat-
ing Eq. (24) yields [6,7,26]

Pc(S1,S2,S3,S4) = 1
2

(
�aS

−α
1 − �bS

−β

3

+ γP ∗
2 S

γ−1
2 − δP ∗

4 Sδ−1
4

) + C, (26)

where the integration constant C is determined experimentally
together with the parameters �a,�b,P

∗
2 ,P ∗

4 and the exponents
α,β,γ,δ. Note that the number of parameters is less than in
the traditional theory [see Eq. (12) in Ref. [7]]. For realistic
values and experimental determination of these parameters see
Sec. VII C below.

IV. MODEL REDUCTION AND FRACTIONAL
MOBILITY FUNCTIONS

To obtain fractional flow and mobility functions, the
approximations (17), (18), (22), and (26) are inserted into
Eqs. (16). Equation (16d) implies that the total flux

Q(t) = QW (x,t) + QO(x,t) (27)

is constant in the whole domain and depends only on time. By
inserting Eqs. (8) and (10) into Eq. (19) and then inserting the
result and Eq. (24) into Eq. (27), one finds

∂P1

∂x
= − 1

λW + λO

(
Q(t) − λWF1 − λOF3 − λO

∂Pc

∂x

)
(28)

for the pressure gradient of the percolating water. The
mobilities of water and oil

λW (SW ,S2,S4) = λ11 + λ13, (29a)

λO(SW ,S2,S4) = λ33 + λ13 (29b)

are introduced analogously to the traditional theory [3,10]. The
fractional flow function fW and the fractional mobility λ are
defined as

fW (SW ,S2,S4) = λW

λW + λO
, (30a)

λ(SW ,S2,S4) = λ11λ33 − λ2
13

λW + λO
. (30b)

Inserting Eqs. (8), (10), (25), (28), and (30) into Eq. (19) yields

QW = fWQ(t) + λ(F1 − F3) + λ
∂Pc

∂x
(31)

for the water flux. By inserting this into Eq. (16) a set of three
coupled nonlinear partial differential equations

φ
∂SW

∂t
+ Q(t)

∂fW

∂x
+ ∂

∂x
[λ (F1 − F3)]

+ ∂

∂x

(
λ

∂Pc

∂x

)
= 0, (32a)

φ
∂S2

∂t
+ M1

�W
= 0, (32b)

φ
∂S4

∂t
+ M3

�O
= 0 (32c)

for the saturations SW ,S2,S4 is obtained. If the flux Q(t) is
imposed externally, it is not necessary to solve the elliptic
equation (28) for the pressure. The problem is then reduced to
solving Eq. (32) for SW ,S2,S4 subject to suitable initial and
boundary conditions.

To avoid overcrowding the notation the index W of the
water saturation SW is omitted in subsequent sections. From
now on, S represents the water saturation instead of SW .

V. INITIAL AND BOUNDARY VALUES

Two initial and boundary value problems for Eqs. (32)
are discussed here. The first problem searches for solutions
with similarity variable x/

√
t in the co- and countercurrent

displacement of a nonwetting fluid through a wetting fluid.
The second problem considers capillarity-driven horizontal
redistribution. For the traditional theory the first problem was
discussed by McWhorter and Sunada in Ref. [31] and the
second problem was discussed by Philip in Ref. [32].

A. Diffusive similarity solutions with decreasing flux [31]

Consider a one dimensional semi-infinite sample S =
(0,∞) which is mounted perpendicularly to gravity (ϑ = 0).
The medium has a wall of variable permeability at x = ∞. It
is flooded from left to right with the wetting fluid. Diffusive
similarity requires that the flux QW (0,t) at x = 0 has to decay
as 1/

√
t . The boundary conditions are

QW (0,t) = A√
t
, (33a)

S(∞,t) = Sr, (33b)

Si(∞,t) = Sir (33c)

for all t > 0 and i = 2,4. The parameter A has units ms−1/2.
Although the flux in Eq. (33a) diverges for t → 0, it remains
integrable, so that these boundary conditions can in principle
be approximated in an experiment. It will be seen below that
Eq. (33a) at x = 0 leads to constant S� = S(0,t) at x = 0. This
allows one to replace A with S� in numerical computations.
The initial saturations are specified with i = 2,4 as

SW 0(x) = S(x,0) = Sr, (34a)

Si0(x) = Si(x,0) = Sir (34b)

on the semi-infinite domain (0,∞).
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B. Capillarity-driven horizontal redistribution [32]

In the capillarity-driven horizontal redistribution problem
one considers an infinite sample S = R perpendicular to
gravity (ϑ = 0). The sample is closed at both ends. This means
that the total volume flux

Q(t) = 0 (35)

vanishes for all times t � 0. The initial saturation profiles are
discontinuous at x = 0, so that

SW 0(x) = S(x,0) = S� + (Sr − S�)�(x), (36a)

Si0(x) = Si(x,0) = Si� + (Sir − Si�)�(x), (36b)

where i = 2,4, −∞ < x < ∞, and �(x) is the Heaviside step
function. The boundary conditions are

S(−∞,t) = S�, (37a)

Si(−∞,t) = Si�, (37b)

S(∞,t) = Sr, (37c)

Si(∞,t) = Sir (37d)

for all t > 0 and i = 2,4.

VI. FRACTIONAL FLOW FORMULATION

Both problems defined in Sec. V concern horizontal media
without gravity. In this case ϑ = 0, and the body forces

F1 = 0, (38a)

F3 = 0 (38b)

are absent. Inserting Eqs. (38) and the mass exchange terms
from Eq. (4) into Eqs. (32) one finds

φ
∂S

∂t
+ ∂

∂x
[Q(t)fW (S,S2,S4)

+ λ(S,S2,S4)
∂

∂x
Pc(S,S2,S4)

]
= 0, (39a)

∂S2

∂t
= −η2

(
S2 − S∗

2

S∗
W − S

)
∂S

∂t
, (39b)

∂S4

∂t
= −η4

(
S4 − S∗

4

S∗
W − S

)
∂S

∂t
. (39c)

Equations (39b) and (39c) have the solutions [7]

S2(x,t) = S∗
2 + (S20(x) − S∗

2 )
(

S∗
W − S(x,t)

S∗
W − SW 0(x)

)η2

, (40a)

S4(x,t) = S∗
4 + (S40(x) − S∗

4 )
(

S(x,t) − S∗
W

SW 0(x) − S∗
W

)η4

, (40b)

where the initial saturations are given by Eqs. (34) or (36).
The limiting saturations S∗

W , S∗
2 ,S∗

4 are given by Eqs. (5). For
imbibition processes [i.e., for ∂tS(x,t) > 0 for t � 0]

S∗
W (x,t) = 1 − SO im, (41a)

S∗
2 (x,t) = 0, (41b)

S∗
4 (x,t) = SO im (41c)

holds, while

S∗
W (x,t) = SW dr, (42a)

S∗
2 (x,t) = SW dr, (42b)

S∗
4 (x,t) = 0 (42c)

holds for drainage processes [i.e., for ∂tS(x,t) < 0 for t � 0].
The fractional flow formulation

φ
∂S

∂t
+ ∂

∂x

(
Q(t)fW (S) − D(S)

∂S

∂x

)
= 0 (43)

is obtained by inserting Eq. (40) into Eq. (39a). The fractional
flow function fW (S) and the so called “capillary diffusion
coefficient” D(S) are defined as

fW (S) = fW (S,S2,S4) , (44a)

D(S) = −λ (S,S2,S4)
d

dS
Pc (S,S2,S4) , (44b)

where S2 = S2(S; SW 0,S20) and S4 = S4(S; SW 0,S40). The
initial conditions may introduce an explicit x dependence into
fW and D.

Contrary to the traditional theory, the parameter func-
tions Pc(S; SW 0,S20,S40) as well as fW (S; SW 0,S20,S40) and
λ(S; SW 0,S20,S40) of the present theory depend not only on
the saturation but also on the type of process through the
initial conditions SW 0,S20,S40. Figures 1 and 2 illustrate these
functions for four typical processes, namely, primary and
secondary drainage and imbibition. The initial saturations for
these four processes are listed in Table I.

A displacement process is named primary imbibition if
water invades a completely oil filled porous medium. It is
named primary drainage if oil invades a completely water
filled porous medium. A displacement process is named a
secondary drainage if the water is displaced starting from the
maximum saturation S = 1 − SO im of a preceding primary
imbibition. It is named a secondary imbibition analogously.

Figure 1 shows four typical Pc(S) functions for pri-
mary and secondary drainage and imbibition computed from

FIG. 1. Typical capillary pressure vs water saturation relation
Pc(S; SW 0,S20,S40) for primary imbibition (solid), secondary im-
bibition (dashed), primary drainage (dash-dotted), and secondary
drainage (dotted). The corresponding initial saturations SW 0,S20,S40

are listed in Table I, while the parameter values are listed in Table II.
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FIG. 2. Parameter functions for characteristic processes. From
top to bottom the fractional flow function fW (S), its derivative
dfW (S)/dS and the macroscopic capillary diffusion coefficient D(S)
are shown. Solid curves show primary imbibition functions, dashed
curves show secondary imbibition functions, dash-dotted curves
show primary drainage, and dotted curves show secondary drainage
processes.

Eqs. (26) and (40). They correspond to the initial saturations
SW 0,S20,S40 listed in Table I. The capillary pressure is
higher for drainage processes than for imbibition processes.
The primary curves enclose the secondary curves. The
secondary curves form the main hysteresis loop ranging
from S = SW dr to S = SO im. For parameter values see
Table II.

Figure 2 illustrates the fractional flow function fW (S), its
derivative dfW /dS, and the macroscopic capillary coefficient
D(S) for the processes shown in Fig. 1. Note that the
primary and secondary drainage curves almost coincide for
S ∈ [SW dr,1 − SO im] for all three functions. The reason for
this coincidence is that R33/R11 ≈ 20 (see Table II).

The fractional flow functions fW (S) give the fraction of the
advective water flux to total advective flux at saturation S. The
fraction is higher for imbibition processes than for drainage
processes and the primary curves enclose the secondary curves

TABLE I. Initial saturations SW 0,S20,S40 for primary and sec-
ondary imbibition as well as primary and secondary drainage
processes.

Primary Secondary Primary Secondary
imbibition imbibition drainage drainage

SW 0 0 SW dr 1 1 − SO im

S20 0 SW dr 0 0
S40 0 0 0 SO im

TABLE II. Values of the parameters taken from [7]. The viscous
resistances correspond to viscosities μW = 0.001 kg m−1 s−1 and
μO = 0.02 kg m−1 s−1 and a permeability of k = 1.0 × 10−11 m2.

Water Oil

Parameter Value Units Parameter Value Units

�W 1000 kg m−3 �O 800 kg m−3

η2 4 η4 3
SW dr 0.15 SO im 0.19
�a 1620 Pa �b 25 Pa
α 0.52 β 0.90
P ∗

2 2500 Pa P ∗
4 400 Pa

γ 1.5 δ 3.5
R11 1.16 106 kg m−3 s−1 R33 2.31 107 kg m−3 s−1

R13 0 kg m−3 s−1 R31 0 kg m−3 s−1

which form the main hysteresis loop ranging from S = SW dr

to S = 1 − SO im.
The derivative dfW /dS of the fractional flow functions is

the velocity of advective waves in terms of the total flux Q/φ

in the porous medium. The maximum velocity is higher for
the secondary imbibition than for the primary imbibition and
the saturation at the maximum velocity is higher for drainage
than for imbibition.

The nonlinear diffusion coefficient D(S) shows a single
maximum for all processes. The maxima of the two drainage
processes almost coincide in terms of magnitude and satura-
tion. For the secondary imbibition, the maximal diffusion and
its saturation are ceteris paribus significantly larger than those
for the primary imbibition.

VII. DIFFUSIVE SIMILARITY SOLUTIONS WITH
DECREASING FLUX [31]

A. General solution

Consider Eq. (43) with initial conditions (34) and boundary
conditions (33). Following McWhorter and Sunada [31,34,35]
a similarity solution

S(x,t) = S

(
x√
t

)
= S(η) (45)

with similarity variable η = x/
√

t will be searched for [36].
Inserting Eq. (45) into Eq. (43) shows that an ordinary
differential equation for S(η) is obtained if Q(t) ∼ 1/

√
t .

Combining this observation with Eqs. (27) and (33a) suggests
that we can define a proportionality factor r by

Q(t) = rQW (0,t) = rA√
t
. (46)

The coefficient r must obey 0 � r � 1. It is bounded by
r � 1 because of volume conservation, and r � 0 because the
wetting phase is injected from left to right. r may be viewed as
a normalized “permeability at infinity.” r = 0 corresponds to
an impermeable wall at the right boundary. r = 1 represents
free outflow conditions at x = ∞, and QO(0,t) = 0 at x = 0.
Therefore the flow of water and oil is cocurrent for r = 1
and countercurrent for r = 0. The total flux is constant [see
Eq. (27)] in the whole medium because both fluids are
incompressible.
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Equation (43) is now rewritten as

φ
∂S

∂t
+ QW (0,t) [1 − rfW (Sr )]

∂F

∂x
= 0 (47)

in terms of a normalized diffusive flux defined as

F (S(x,t),x,t) = QW (x,t) − Q(t)fW (Sr )

QW (0,t) − Q(t)fW (Sr )
(48)

and the water flux

QW (x,t) = Q(t)fW (S) − D(S)
∂S

∂x
(49)

from Eq. (31). Passing to the similarity variable η = x/
√

t in
Eq. (47) gives for t �= 0 and 0 < (dS/dη) < ∞

η = 2A[1 − fW (Sr )r]

φ

dF

dS
, (50)

while Eq. (48) becomes

F [S(η)] =
rA[fW (S) − fW (Sr )] − D(S) dS

dη

A − rAfW (Sr )
. (51)

Here, by the same abuse of notation as for S, the same symbol
F was used for two different functions. If S(η) can be inverted,
then Eq. (50) can be viewed as an equation for the inverse
function η(S). Taking the derivative d/dS on both sides of
Eq. (50), inverting it, and inserting it for dS/dη into Eq. (51)
one arrives finally at the result

d2F

dS2
= − φ

2A2[1 − fW (Sr )r]2

D(S)

F (S) − f (S)
, (52)

where

f (S) = r
fW (S) − fW (Sr )

1 − rfW (Sr )
(53)

was introduced as an abbreviation. Equation (52) is now
interpreted not as an equation for the unknown function S(η),
but for the unknown function F (S) with boundary conditions
F (Sr ) = 0, F (S�) = 1, and F ′(S�) = 0 from Eq. (50). Its
solution represents an implicit relation between the problem
data.

The previous paragraph has shown that for similarity
solutions with η = x/

√
t an implicit relation exists between

S� and A if Sr is considered to be fixed. While the problem
formulation assumes that A is given and S� is to be found, it
is numerically more convenient to exploit their relation with
given S� and unknown A. An explicit equation for A is obtained
by integrating Eq. (52) twice over the interval [Sr ,S�] and using
the boundary condition (33). It reads as

A2 = φ

2[1 − rfW (Sr )]2

∫ S�

Sr

(ν − Sr )D(ν)

F (ν) − f (ν)
dν (54)

and provides a one-to-one relation between A and S�. Inte-
grating (52) twice and inserting (54) into the result yields an
integral equation

F (S) = 1 −

∫ S�

S

(ν − S)D(ν)

F (ν) − f (ν)
dν∫ S�

Sr

(ν − Sr )D(ν)

F (ν) − f (ν)
dν

(55)

for F independent of A. Given the solution F , the saturation
profile S(η) is calculated from the inverse of (50). A numerical
algorithm is required to determine the solution of Eq. (55),
because its analytical solution is not known.

B. Numerical scheme

A simple iterative scheme for solving Eq. (55) is

Fk+1(S) = 1 −

∫ S�

S

(ν − S)D(ν)

Fk(ν) − f (ν)
dν∫ S�

Sr

(ν − Sr )D(ν)

Fk(ν) − f (ν)
dν

. (56)

Given the initial guess Fk=1(S) = 1 it converges rapidly in
most cases but fails for S� → 1 − SO im. An iteration scheme
which converges also for values S� closer to 1 − SO im was
proposed by Fucik et al. [35]. Denoting the principal part of
the integrals as G = D/(F − f ) it is written as

Gk+1(S) = D(S) + Gk(S)

(
f (S) −

∫ S�

S
(ν − S)G(ν)dν∫ S�

Sr
(ν − Sr )G(ν)dν

)
.

(57)

The interval [Sr,S�] is discretized by N equidistantly dis-
tributed points. Hence, the ith saturation is Si = Sr + (i − 1)h
with h = (S� − Sr )/(N − 1) and the ith element of G is
defined as Gi = G(Sr + (i − 1)h). The integrals in Eq. (57)
are numerically approximated as

Ij :=
∫ S�

S=Sr+(j−1)h
(ν − S)G(ν)dν

=
N−1∑
i=j

{ai − [Sr + (j − 1)h]bi}, (58a)

IN := 0, (58b)

where j = 1, . . . ,N − 1 and the coefficients ai,bi stand for

ai =
∫ Sr+ih

Sr+(i−1)h
νG(ν)dν

 h

2
Sr (Gi + Gi+1) + h2

6
[(3i + 1)Gi + (3i + 2)Gi+1],

(59a)

bi =
∫ Sr+ih

Sr+(i−1)h
G(ν)dν  h

2
(Gi + Gi+1), (59b)

where i = 1, . . . ,N − 1. With these definitions the iterative
scheme reads as

Gk+1
j = Dj + Gk

j

(
fj + Ij

I1

)
. (60)

Note that I1 is the integral over the whole interval from Sr to
S�. The flux coefficient A is calculated by inserting the discrete
results into Eq. (54)

A =
√

φ I1

2[1 − rfW (Sr )]2
. (61)
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As proposed by Fucik et al. [35], the iteration scheme is
considered to be converged if

|Ak+1 − Ak| < ε, (62)

where ε is the desired accuracy. The solution is

η(Sr + (j − 1)h) =
√

2

φI1

N−1∑
i=j

bi . (63)

It is obtained by integrating Eq. (52) only once and inserting
the result together with Eqs. (59) and (61) into Eq. (50).

The numerical solutions obtained in this way may serve as
a benchmark for direct numerical solvers of the original set of
strongly coupled nonlinear partial differential equations.

C. Examples

For the computation of imbibition processes the fluid and
rock properties are taken from [7]. They are listed in Table II.
The viscous resistances are assumed to correspond to a per-
meability k = 10−11 m2, porosity φ = 0.347, and viscosities
μW = 0.001 kg m−1 s−1 of water and μO = 0.02 kg m−1 s−1

of oil. This results in resistance coefficients R11 = 1.16 ×
106 kg m−3 s−1 and R33 = 2.31 × 107 kg m−3 s−1. The coef-
ficient R13 = 0 kg m−3 s−1 is assumed to vanish. The model
parameters are summarized in Table II.

The simulations in this paper are restricted to imbibition
processes. Drainage processes can be simulated similarly, but
are not discussed due to space restrictions.

The parameters for the initial conditions and boundary
conditions are specified in Table III. Initial conditions of
type A correspond to a primary imbibition process, and initial
conditions of type B to a secondary imbibition process. The
initial conditions of type C correspond to a hypothetical
experiment with a high fraction of nonpercolating phases.

Results for initial conditions A are shown in Fig. 3, for
initial conditions B in Fig. 4, and a comparison for B and
C is given in Fig. 5. For clarity the profiles are compared
as functions of x at fixed time t = 1000 s. All profiles are
self-similar with respect to η = x/

√
t .

As r → 1 and S� → 1 − SO im the required injected flux
A increases and the flow is dominated by its advective
hyperbolic part. Values for A for the different setups are given
in Table III. Thus, diffusive second-order terms in saturations
become less and less important. The theory for multiphase flow
processes in porous media, which neglects diffusive saturation

TABLE III. Parameters for the initial and boundary values in
Eqs. (34), (33), (36), and (37). The constant A is given in units of
10−3 m s−1/2. It was chosen such that the saturation S(0,t) = 0.7 in
all cases.

A B C

A(r = 0) 0.312 0.283 0.258
A(r = 0.8) 0.560 0.571 0.554
A(r = 1) 3.797 4.550 4.774
Sr 0 0.15 0.15
S2r 0 0.15 0.15
S4r 0 0 0.19

1

0.8

0.6

0.4

0.2

FIG. 3. Saturation profiles for primary imbibition processes (ini-
tial condition A) with three different values of r at t = 1000 s. Solid
curves correspond to r = 1, dashed curves to r = 0.8, and dash-dotted
curves to r = 0. The saturation profiles of the Buckley-Leverett
problem with flux decreasing as ∼1/

√
t are shown for comparison

as dotted curves. The profile S2 = 0 coincides with the x axis. The
profile SW has values in the saturation range from 0 to 0.7, and the
profile 1 − S4 has values in the range from 0.8 to 1.

terms of second order in space, is commonly known as the
Buckley-Leverett theory. It was recently adapted to account
for immobile nonpercolating fluid parts [30]. The solutions of
the Buckley-Leverett theory for initial conditions with a single
discontinuity in space are self-similar with x/t for constant
total flux Q. If the flux is decreased as Q ∝ 1/

√
t the solutions

are self-similar with η = x/
√

t and a comparison of the
solutions of both considered methods is feasible. Although the
solutions for r = 0.8 and r = 0 show the same self-similarity,
a comparison is omitted due to the absence of fronts in these
profiles.

1

0.8

0.6

0.4

0.2

FIG. 4. Saturation profiles for secondary imbibition processes
(initial condition B) with three different values of r at t = 1000 s.
Solid curves correspond to r = 1, dashed curves to r = 0.8, and dash-
dotted curves to r = 0. The saturation profiles of the Buckley-Leverett
problem with flux decreasing as ∼ t−1/2 are shown for comparison as
dotted curves. The profile S2 has values in the range from 0 to 0.15.
The profile SW has values in the saturation range from 0.15 to 0.7,
and the profile 1 − S4 has values in the range from 0.81 to 1.
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1

0.8

0.6

0.4

0.2

FIG. 5. Comparison of saturation profiles for initial conditions
B and C with three different values of r = 0 (left profiles), r = 0.8
(middle profiles), and r = 1.0 (right profiles) at t = 1000 s. Solid
curves correspond to initial conditions of type B and dashed curves to
initial conditions of type C. The profiles S2 have values in the range
from 0 to 0.15. The profiles SW have values in the saturation range
from 0.15 to 0.7, and the profiles 1 − S4 have values in the range
from 0.81 to 1.

Figure 3 shows saturation profiles for different values of r

with respect to the spatial coordinate x at time t = 1000 s. All
cases show a displacement of oil by water. As the percolating
oil is displaced, nonpercolating oil is produced by breakup. The
invasion front has reached a five times larger distance from the
injection well if the porous medium permits full outflow at
the right boundary (r = 1) compared to impeded outflow (r =
0, 0.8). If outflow at the right side is impeded, the diffusive
contribution is dominating the process. Compared to linear
diffusion the propagation is suppressed for low saturations
because D(S) → 0 for S → 0 as illustrated in Fig. 2. For
r = 1 the advective part is dominant and the profile is close to a
rarefaction shock as expected from Buckley-Leverett theory. A
comparison of the Buckley-Leverett solution and the solution
for r = 1 shows that both predict the same velocity of the
shock. For higher saturations S� → 1 − SO im the diffusive
similarity solution approaches the Buckley-Leverett solution
even closer.

Figure 4 shows saturation profiles similar to Fig. 3 but for
a secondary imbibition. Qualitatively the results are similar
to the primary imbibition solutions. Advection dominates the
solution for r = 1 and diffusion for r = 0 and 0.8.

A comparison of the solution for primary (Fig. 3) and
secondary (Fig. 4) imbibition yields two remarkable insights.
A significantly higher water injection rate is required for
the secondary imbibition to maintain a constant saturation
S = 0.7 at the inlet compared to the primary imbibition. This
is explained by the increase of the mobility of the water due
to coalescence of nonpercolating water with the percolating
water. The effect is pronounced for r = 1 and r = 0.8. It
is absent for r = 0. Such an effect is not predicted by the
traditional theory, where the saturations are rescaled using
effective saturations instead of real saturations. To capture this
effect within the traditional theory different sets of constitutive
parameters would have to be applied for primary and secondary

imbibition processes, while the present approach uses a single
parameter set for all processes.

Figure 5 shows a comparison of saturation profiles for
initial conditions of types B and C. Solid curves correspond to
initial conditions B and dashed curves correspond to initial
conditions C. As before, saturation profiles are shown for
the values r = 0, 0.8, 1.0. Qualitatively the solutions for both
initial conditions (B and C) are similar. Quantitatively, only
the case r = 1.0 (free outflow, advection dominated) shows
a significant difference: the invasion front is faster if more
nonpercolating oil is initially present in the medium. The
mathematical reason for this behavior is that the fractional
flow function fW (S) in Eq. (43) has for S < 0.25 a higher
slope for initial condition C than for B. As a consequence the
derivative df/dS is much higher in this saturation range and
this term dominates over the diffusive term in Eq. (43) when
r → 1. Physically this reflects the fact that the presence of
nonpercolating oil reduces the volume available to water in
cocurrent flow (r = 1) so that at comparable flow rates (cf.
Table III) the front velocity must be increased.

Figures 3–5 all show that the different hydrodynamic prop-
erties of percolating and non-percolating phases might lead
to effects that could be measured in laboratory experiments.
In particular, the effects of initial nonpercolating water on
the imbibition process are not predicted by the traditional
theory. The effects predicted here could hardly be included
in the traditional theory, because every initial condition would
require a reparametrization of all parameter functions of the
traditional theory.

VIII. CAPILLARITY-DRIVEN HORIZONTAL
REDISTRIBUTION [32]

A. General solution

The method of solution of the capillarity-driven horizontal
distribution problem at zero flux parallels the treatment of [32].
Our presentation follows closely that of [37].

The initial conditions (36) are homogeneous with one
discontinuity at x = 0. Without loss of generality Sr < S� is
assumed. For a water wet medium, capillary forces will then
drive the water from the left into the right domain and oil
from right to left, because there is no net flux. By inserting
Eq. (35) into Eq. (43), the initial and boundary value problem
is subdivided into

φ
∂S

∂t
− ∂

∂x

(
D�(S)

∂S

∂x

)
= 0, (64a)

S(x,0) = S�, S(−∞,t) = S� (64b)

for x < 0, and

φ
∂S

∂t
− ∂

∂x

(
Dr (S)

∂S

∂x

)
= 0, (65a)

S(x,0) = Sr, S(∞,t) = Sr (65b)

for x > 0. We introduce here the notation

F j (S) = F(S,S2(S; Si,S2i),S4(S; Si,S4i)), (66)

where j = �,r and F = D,λ,Pc to distinguish left and right
parameter functions. The macroscopic capillary diffusion
coefficients D�,Dr , the fractional mobilities λ�,λr , and the
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capillary pressure functions P �
c ,P r

c differ in the left and right
domains because of the initial conditions. The initial and
boundary value problems (64) and (65) are not closed. Physical
considerations [32,37] require that pressures and fluxes at the
interface between the two domains at x = 0 are continuous.
This reads as

lim
x↗0

QW (x,t) = lim
x↘0

QW (x,t) , (67a)

lim
x↗0

P �
c (S(x,t)) = lim

x↘0
P r

c (S(x,t)). (67b)

Hence, the solution strategy is to find self-similar solutions of
the two initial and boundary value problems (64) and (65) in
the similarity variable η = x/

√
t . This results in two boundary

value problems:

φ

2
ηS ′ + [D�(S)S ′]′ = 0, (68a)

S(−∞) = S�, (68b)

S(0−) = S−, (68c)

for η ∈ (−∞,0), and

φ

2
ηS ′ + [Dr (S)S ′]′ = 0, (69a)

S(+∞) = Sr, (69b)

S(0+) = S+, (69c)

for η ∈ (0, +∞). Here a prime ′ denotes the derivative d/dη.
The boundary values S−,S+ remain to be specified. The
physical constraints (67) are now applied to specify them.

Whenever the capillary functions P �
c ,P r

c defined in Eq. (66)
are invertible it is possible to define the two functions
h+

− (s) ,h−
+ (s) : [0,1] → [0,1] by

h+
−(s) := (

P r
c

)−1 ◦ (
P �

c (s)
)
, (70a)

h−
+ (s) := (

P �
c

)−1 ◦ (
P r

c (s)
)
, (70b)

where (P i
c )−1 with i = �,r denotes the inverse of the corre-

sponding capillary function. With the help of these functions
the constraint on the pressures (67b) reads as

S+ = h+
− (S−) , (71a)

S− = h−
+ (S+) . (71b)

The continuity condition for the fluxes (67a) is now applied
to obtain a second constraint. It has been shown [38] that for
every saturation S− < S� the boundary value problem (68) has
a unique decreasing solution. Similarly, for every saturation
S+ > Sr the boundary value problem (69) has a unique
increasing solution. With these solutions the “quasi-fluxes”

Q̃−(S−) = lim
η↗0

D�(S)
dS

dη
, (72a)

Q̃+(S+) = lim
η↘0

Dr (S)
dS

dη
(72b)

at the origin are given as functions of the saturations at the
boundary. The term “quasi-flux” is used because they have to
be divided by

√
t to obtain physical fluxes. It has further been

shown [38] that if S− > h−
+ (Sr ) holds, Q̃−(S−) is continuously

decreasing with respect to S− ∈ [h−
+ (Sr ) ,S�]. It is vanishing

at its maximum saturation Q̃−(S�) = 0 and hence Q̃−(S−) >

0 for S− ∈ [h−
+ (Sr ) ,S�]. Similarly, if Sr < h+

− (S�) holds,
Q̃+ (S+) is a continuously increasing function with respect
to S+ ∈ [Sr,h

+
−(S�)]. It is vanishing at its minimum saturation

Q̃+(Sr ) = 0 and hence Qr (S+) > 0 for S+ ∈ [Sr,h
+
−(S�)]. At

this point we note an error in Theorem 2 on page 387 of
[37]. The words “decreasing” and “increasing” have to be
exchanged. The same error appeared again in the discussion
on page 135 of [39].

From the properties of Q̃−,Q̃+ it is concluded that if there
is a solution pair (S−,S+) with Q̃−(S−) = Q̃+(S+), then it is
unique. Continuity of fluxes and pressures makes the solution
unique. Expressing the saturation S+ in Q̃+ in terms of S−
with function (70b) one defines a function for the difference
of the quasi-fluxes at the origin �Q̃(s) = Q̃−(s) − Q̃+(h−

+(s))
which is a continuous and monotonically decreasing function
with �Q̃(h−

+(Sr )) > 0 and �Q̃(S�) < 0. Therefore �Q̃ has
a unique root in [h−

+(Sr ),S�] and the problem is well posed.
However, there is no simple expression for the fluxes available
and an iterative procedure for solving the boundary value
problems (68) and (69) is required. In the remainder of
this section the boundary value problems (68) and (69) are
transformed as in Ref. [37]. This transformation permits a more
effective algorithm, because it directly solves for the quasi-
fluxes and computes the saturation profile only once at the end.

The monotonicity of S in η ∈ (η�,0), where
η� = max{η|S(η) = S�}, permits a transformation of the
ordinary differential equation (68) for S = S(η) into
an ordinary differential equation for η = η(S). With
S ′(η) = 1/η′(S) and Q̃�(S) = D�(S)(dS/dη) the result of the
transformation reads as

∂

∂S
Q̃�(S) = φ

2
η for S− < S < S�. (73)

By taking the derivative with respect to S and inserting
η′ = −D/Q̃� one obtains an ordinary differential equation
for Q̃�(S) which is independent of η. For η > 0 the procedure
is completely analogous and finally the two boundary value
problems

Q̃�(S)
d2

dS2
Q̃�(S) = −φ

2
D�(S), (74a)

d

dS
Q̃�(S−) = 0, Q̃�(S�) = 0, (74b)

for S− < S < S�, and

Q̃r (S)
d2

dS2
Q̃r (S) = −φ

2
Dr (S), (75a)

d

dS
Q̃r (S+) = 0, Q̃r (Sr ) = 0, (75b)

for Sr < S < S+, have to be solved. The boundaries S−,S+
remain part of the solution due to the continuity of pressures
and fluxes and an iterative procedure is required. Given
Q̃�(S),Q̃r (S), the inverse of the saturation profile with
Eq. (73) and the right-side equivalent is

η(S) =
{ 2

φ
d
dS

Q̃r (S), for Sr < S < S+,

2
φ

d
dS

Q̃�(S), for S− < S < S�.
(76)

Taken together, this defines the following algorithm.
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TABLE IV. Initial conditions for the capillarity-driven horizontal
redistribution problem.

D E

Sr 0 SW dr

S2r 0 SW dr

S4r 0 0
S� 1 1 − SO im

S2� 0 0
S4� 0 SO im

Pseudocode for calculating S(η)
� Determine S< := h−

+(Sr ) and S> := S�
� while S> − S< > ε do

S− = (S> + S<)/2
Solve (74) to find the quasi-flux Q̃�(S−)
S+ = h+

−(S−)
Solve (75) to find the quasi-flux Q̃r (S+)
if Q̃�(S−) − Q̃r (h+

−(S−)) > 0: S< = S−
if Q̃�(S−) − Q̃r (h+

−(S−)) < 0: S> = S−
end while

� obtain S(η) by inverting (76)
Here ε denotes the desired accuracy.

B. Implementation

Our solution algorithm goes beyond [37] or [32] in two
respects. First, the capillary pressure is an algebraic equation
instead of an ordinary differential equation in Ref. [37] and
invertible by principle. The relatively cumbersome algebraic
inversion is avoided by inverting an arbitrary, precisely fitted,
piecewisely interpolated polynomial numerically. Second,
an implicit finite-difference method in conjunction with a
Newton-Raphson method is used here to solve the boundary
value problems in Eqs. (74) and (75). The implementa-
tion requires more effort than the originally used shooting
technique [37] but it is compensated by a substantially
quicker convergence. Further it directly ensures the Neumann

TABLE V. Saturations at x = 0− and x = 0+ for the primary and
secondary redistribution.

Primary Secondary

− + − +
S 0.506 0.161 0.438 0.281
S2 0.145 0 0.145 0.062
S4 0 0.092 0.016 0.092

boundary condition at S−,S+ by considering them explicitly
in the discretization scheme.

C. Examples

For calculating saturation profiles the parameters from
Table II are used. Redistribution profiles are shown for the two
different initial conditions listed in Table IV. Initial conditions
of type D correspond to a primary redistribution, and initial
conditions of type E correspond to a secondary redistribution.
A primary redistribution consists of a primary drainage in the
right and a primary imbibition in the left domain. A secondary
redistribution consists of a secondary drainage in the right
and a secondary imbibition in the left domain. For clarity the
profiles are plotted with respect to space x at time t = 1000 s
although the profiles are self-similar with respect to η = x/

√
t .

Characteristic values of the solutions are listed in Table V.
Figure 6(a) shows saturation profiles for the primary

redistribution. The initial conditions are depicted as dashed
lines and profiles at t = 1000 s as solid curves. The water
is soaked into the right domain through capillary forces. The
displacement of the oil leads to a production of nonpercolating
oil in the right domain. The oil invades the left domain and
water eventually breaks up while its saturation is decreasing
and nonpercolating water is produced. A discontinuity in the
saturation remains at x = 0 for all times. Nonpercolating water
in the right domain and nonpercolating oil in the left domain
are not produced.

(a) (b)

FIG. 6. Saturation profiles for the Philip problem for (a) a primary redistribution and (b) a secondary redistribution. Solid curves show
profiles at t = 1000 s and dashed lines show the initial conditions. Profile S2 has values in the range from 0 to 0.15. Profile SW has values in
the saturation range from 0.15 to 0.7, and profile 1 − S4 has values in the range from 0.81 to 1.
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FIG. 7. Flux profiles at t = 1000 s for the Philip problem. The
solid curve corresponds to a primary redistribution and the dashed
curve to a secondary redistribution.

Figure 6(b) shows saturation profiles for the secondary
redistribution. The initial conditions are depicted as dashed
lines and profiles at t = 1000 s as solid curves. The water
is soaked into the right domain through capillary forces.
The displacement of the oil there leads to a production of
nonpercolating oil and a reduction to nonpercolating water in
the right domain. The invasion of the oil into the left domain
produces nonpercolating water and reduces nonpercolating oil.
Again a discontinuity remains forever at x = 0.

A comparison of primary and secondary processes shows
that the speed of the redistribution is not substantially
altered by the presence of the nonpercolating fluids. But,
as for horizontal flows discussed above, the redistribution is
facilitated by the presence of nonpercolating fluids. The height
of the saturation jump at x = 0 differs significantly for both
processes.

Figure 7 shows flux profiles for both redistribution prob-
lems. The flux is maximal at the discontinuity and vanishes for
|x| → ∞. The flux for the primary redistribution is shown as
a solid curve and for the secondary redistribution as a dashed
curve. It is seen in this figure that the redistribution for the
secondary processes is slightly faster. Fluxes are everywhere
larger than for the primary processes.

These results show that the theory presented here allows
one to model different processes by a single set of parameters
without advance knowledge of the type of process. The theory
dicussed here predicts a permanent discontinuity in saturation
at the boundary regions of differing process history, and it

identifies the differences in nonpercolating fluid phases as the
origin of this discontinuity. Contrary to this, the traditional
theory requires advance knowledge of the processes that will
occur in a region. Discontinuities in the parametrization within
the traditional theory then allow one to model the phenomenon
but do not provide a physical explanation for it.

IX. CONCLUSION

A limit for a recent mathematical model for multiphase
flow in porous media was obtained by considering a one-
dimensional homogeneous porous medium and assuming that
nonpercolating fluid phases are immobile. The assumptions
permit one to transform the original ten coupled nonlinear
partial differential equations to only three partial differential
equations. Two of these are integrated analytically and the
remaining partial differential equation was solved for two
initial and boundary value problems, commonly known as
the McWhorter-Sunada problem and the Philip redistribution
problem. The remaining partial differential equation was
transformed into an ordinary differential equation which was
solved numerically by iterative procedures introduced by
Fucik et al. [35] for the McWhorter-Sunada problem and by
Pop et al. [37] for the Philip problem. The solutions of the
McWhorter-Sunada problem show that taking into account
nonpercolating phases has a significant impact on the required
injected flux rate and the velocity of the advancing front. They
show also that solutions of the hyperbolic limiting case found
recently in Ref. [30] coincide with the vanishing capillarity
approach. The solutions of the Philip problem illustrate the
capability of mapping the whole hysteresis cycle with one set
of parameters if differences in percolating and nonpercolating
fluid regions are taken into account properly. It further shows
that a discontinuity in water saturation may be stationary even
in a homogeneous medium.
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