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Accurate determination of geometrical and physical properties of natural porous materials is notoriously
difficult. Continuum multiscale modeling has provided carefully calibrated realistic microstructure models of
reservoir rocks with floating point accuracy. Previous measurements using synthetic microcomputed tomography
(μ-CT) were based on extrapolation of resolution-dependent properties for discrete digitized approximations of
the continuum microstructure. This paper reports continuum measurements of volume and specific surface with
full floating point precision. It also corrects an incomplete description of rotations in earlier publications. More
importantly, the methods of differential permeametry and differential porosimetry are introduced as precision
tools. The continuum microstructure chosen to exemplify the methods is a homogeneous, carefully calibrated
and characterized model for Fontainebleau sandstone. The sample has been publicly available since 2010 on the
worldwide web as a benchmark for methodical studies of correlated random media. High-precision porosimetry
gives the volume and internal surface area of the sample with floating point accuracy. Continuum results with
floating point precision are compared to discrete approximations. Differential porosities and differential surface
area densities allow geometrical fluctuations to be discriminated from discretization effects and numerical
noise. Differential porosimetry and Fourier analysis reveal subtle periodic correlations. The findings uncover
small oscillatory correlations with a period of roughly 850 μm, thus implying that the sample is not strictly
stationary. The correlations are attributed to the deposition algorithm that was used to ensure the grain overlap
constraint. Differential permeabilities are introduced and studied. Differential porosities and permeabilities
provide scale-dependent information on geometry fluctuations, thereby allowing quantitative error estimates.
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I. INTRODUCTION

Accurate determination of geometrical or physical proper-
ties of natural porous materials requires accurate geometrical
microstructure as emphasized by numerous authors [1–5]. Dig-
ital images obtained from microcomputed tomography (μ-CT)
provide only a rough approximation of the microstructure with
a resolution typically in the μm range which is often insuffi-
cient for multiscale media and multiscale methods [6–9].

Modeling of realistic random media has recently received
increasing attention in mathematics and physics of complex
materials and porous media [10–20]. An accurate, calibrated
and well-characterized reference structure of porous
Fontainebleau sandstone was provided in [21,22]. It can be
used for testing and benchmarking analytical and numerical
methods in a realistic medium. Our objective in this paper
is to develop an algorithm to compute porosity and surface
area density with floating point precision. Realizing that
extrapolation of discrete approximations is insufficient [22],
one is forced to consider direct analysis of continuum data.
Experimentally, Fontainebleau sandstone has been and still
is frequently used as an example for a realistic, yet simple,
example of a porous consolidated geomaterial [23–28]. Many
investigations consider Fontainebleau sandstone, because it
is a rare example of a simple natural porous medium with
intergranular porosity varying from about 0.02 to 0.28 without
large change in grain granulometry.

Differential porosimetry and differential permeametry refer
to the quantitative analysis of their derivatives with respect
to volume. Examples are porosity, internal surface area, or
permeability. In both methods it is necessary to prepare
samples that differ only infinitesimally and to compute the
observables with sufficiently high precision, so that their
derivatives remain unaffected by numerical noise.

Given the set P ⊂ R3 (pore space), assumed to be the
realization of a random medium inside a region S ⊂ R3

(sample region), its permeability k(P) is obtained [4] from
(spatially averaging) the velocity field v(x) that solves the
dimensionless boundary value problem

�v(x) = ∇p(x), x ∈ P ∩ S, (1a)

∇ · v(x) = 0, x ∈ P ∩ S, (1b)

p(x) = 0, x ∈ P ∩ ∂So, (1c)

p(x) = 1, x ∈ P ∩ ∂Si, (1d)

v(x) = 0, x ∈ ∂(P ∩ S) \ (∂Si ∪ ∂So) (1e)

for stationary laminar fluid flow in the domain P, where �

is the Laplacian, p(x) denotes the pressure field, ∂P is the
boundary of P, ∂S is the sample boundary, ∂Si ⊂ ∂S is the
inlet boundary, and ∂So ⊂ ∂S is the outlet. Laminar fluid flow
within a random pore space P occurs in numerous applied
problems ranging from hydrology to petroleum engineering
(see [4] and references therein). One would like to predict the
dependence of the permeability k(P) on the random geometry
P without detailed knowledge of P. Randomness and lack of
exact knowledge of P suggest employing averaged geometric
quantities such as porosity φ(P), defined in (9), or internal
surface area density σ (P), defined in Eq. (10), and assuming
that a functional relation such as

k(P) ≈ k(φ(P),σ (P), . . . ) (2)

holds with high probability for the microstructures of interest
[4,29–32]. Investigating the existence or nonexistence of a
functional relation such as Eq. (2) becomes possible if its
geometric and physical quantities can be computed with
high precision. Already the computation of precise volumina
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or porosities for random geometries, however, has to our
knowledge never been accomplished and remains currently
limited to extrapolation from discrete approximations [22].
More difficult, and still an unsolved problem at present, is the
computation of floating point precise permeabilities k(P) for
the continuum model.

II. PROBLEM AND OBJECTIVE

The objective of this paper is to compute geometric
properties of the continuum microstructure of Fontainebleau
sandstone [21] with floating point precision. The aim of such
analysis is threefold. First, it is a prerequisite for precise
tests and understanding of the relation between geometric
and physical quantities. Second, high numerical precision is
needed to distinguish geometric fluctuations and correlations
from numerical noise or discretization artefacts. Third, high
precision allows a quantitative test of the pervasive but elusive
concept of representative elementary volumes (REVs) for
homogeneous media.

The computation of precise physical or geometrical proper-
ties for a random three-dimensional continuum microstructure
is difficult. To the best of our knowledge all computations for
sedimentary rocks (such as sandstones or limestones) are at
present restricted to experimental or synthetic μ-CT approxi-
mations. The present paper reports the first computationally
efficient techniques for computing floating-point-precisely
volume and surface area for continuum microstructures. The
technique is applied to a direct comparison between the
continuum microstructure and its synthetic μ-CT images
[21,22]. Differential porosities and differential permeabilities
are introduced. The results are used to estimate the permeabili-
ties and compare them with solutions of Eq. (1) for discretized
approximations (synthetic μ-CT’s).

III. COMPLEX MICROSTRUCTURES AS RANDOM SETS

Correlated random media, such as the Fontainebleau model
of [21], may be approached computationally and mathemati-
cally as closed and random sets X in R3 [33]. For convenience
of the reader its definition is recalled here. A random closed
set X is a measurable function

X : (�,O,μ) → (F ,B(F)) (3)

from a probability space (�,O,μ) to the measurable space
(F ,B(F)) [33]. Here � denotes the set of outcomes or
realizations, O the σ algebra of events, and μ the probability
measure. The symbol F denotes the set of all closed subsets
of R3 and its Borel σ algebra B(F) is defined as the σ algebra
generated by the set system {FK : K ∈ C} with

FK = {F ∈ F : F ∩ K = ∅}, (4)

where C is the system of all compact subsets of R3. The image
measure μX = X(μ) of μ under the map X is the distribution
of the random closed set. For an event A ∈ B(F) the notation
μ(X ∈ A) stands for the probability μ({ω ∈ � : X(ω) ∈ A})
that X ∈ A holds. If μ(X ∈ A) = 1 then X ∈ A holds almost
surely. For real-valued functions f : F → R the expectation

value is defined as

〈f (X)〉 =
∫
F

f (F)dμX(F) =
∫

�

f (X(ω))dμ(ω). (5)

Two random closed setsX andX′ are stochastically equivalent,
written X ∼ X′, if their distributions are the same, i.e., if
μX = μX′ .

A random closed set X is called stationary (or homoge-
neous) if X + x ∼ X for all x ∈ R3, where the notation F + x
for a set F ⊂ R3 means F + x = {a + x : a ∈ F}. A random
closed set X is called isotropic if BX ∼ X for all rotations
B ∈ SO(3), where BF := {Ba : a ∈ F}.

A nonempty stationary random closed set is almost surely
unbounded [33]. This seems to exclude applications be-
cause experimental samples are always bounded. However,
a bounded real-world sample may be viewed as the realization
of a stationary random closed set observed in a sample region
[33]. To see this let

E = {x = (x,y,z) ∈ R3 : 0 � x,y,z � 1} (6)

denote the unit cube and let X′ ⊂ E denote a (random or
deterministic) compact set contained in E. Define X′′ :=⋃

z∈Z3 X′ + z and let ξ be a random vector, independent of
X′, which is uniformly distributed in E, i.e., its distribution
is the Lebesgue measure restricted to E. Then X = X′′ + ξ

is a stationary random closed set. This opens the possibility
to estimate geometrical and physical observables from spa-
tial averaging within a randomly placed bounded sampling
window.

For a random closed setX the average local volume fraction
is defined as

φ(x) = 〈χX(x)〉 (7)

for all x ∈ R3, where χX(x) is the characteristic or indicator
function of the set X defined as χX(x) = 1 for x ∈ X and
χX(x) = 0 for x /∈ X. For stationary random closed sets it is
well known that

φ(x) = φ(x0) = μ(x0 ∈ X) = 〈V (X ∩ E)〉 =: φ(X) (8)

is constant and independent of x for every fixed x0 ∈ R3.
The constant φ(X) is the porosity (volume fraction, volume
density). More generally,

φ(X) = 〈V (X ∩ B)〉
V (B)

(9)

holds for every Borel set B ⊂ R3 with 0 < V (B) < ∞. As
a consequence the ratio V (X ∩ B)/V (B) is an unbiased
estimator for porosity.

The situation is less simple for other densities such as the
average surface area of X per unit volume (specific internal
surface). It may be defined as [33]

σ (X) = 〈A(X ∩ B)〉
V (B)

, (10)

where the area

A(K) =
∫

∂K
dμ2 (11)

is well defined if K is the closure of its interior. Here dμ2 is the
two-dimensional Hausdorff measure [34]. The first difficulty
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is that the surface area A(X ∩ B) is in general not defined
for arbitrary Borel sets B. For that reason the arbitrary Borel
set B is restricted to become a convex compact “observation
window” W with positive volume and the random closed
set X is restricted to the extended convex ring (i.e., locally
polyconvex sets). The convex and compact set W is also
called a measurement cell. Now X ∩ W has a well-defined
surface area. The second difficulty is that the surface area
contains also contributions from X ∩ ∂W, not only from the
internal boundary of X. Such boundary effects can be avoided
by rescaling the observation window W to 
W = {
x : x ∈
W,
 > 0} for large 
. Ideally, the density f of an observable F

f (X) = lim

→∞

〈F (X ∩ 
W)〉
V (
W)

(12)

is obtained from an infinite-volume limit 
 → ∞. For the
Fontainebleau sample only a single realization exists and the
expectation cannot be taken. Thus the question arises whether
the pointwise limit

f (X,ω) = lim

→∞

F (X(ω) ∩ 
W)
V (
W)

(13)

exists and, if yes, whether it is a constant for almost all ω ∈ �.
This is the problem of ergodicity. The convergence to the limit
is related to the REV problem of how large to choose 
.

Answering such questions requires high-precision mea-
surements of the geometric observables. In this paper volume
and surface area are studied directly on a realistic continuum
geometry with floating point accuracy.

IV. MODEL

The random closed set of the Fontainebleau model of [21]
is visualized in Figs. 1 and 2. Its set of realizations � is the set

� = (D × [Rmin,Rmax] × B0,2π × {1,2, . . . ,g})M (14)

of all finite sequences ω = (ω1, . . . ,ωM ) ∈ � whose elements

ωi = (ri ,Ri,ai ,Ti), i = 1, . . . ,Ndep (15)

FIG. 1. (Color online) Visualization of the original grain deposit
U in a cubic region D of 19.04 mm side length from which the cubic
sample S with side length 15 mm was cropped. The cubic region
shown on the image contains a total of Ndep = 1022 149 grains.

FIG. 2. Cross section with side length 15 mm of the cropped
sample S ⊂ D. Grain matrix M is rendered black, pore space P
shown in white. The sample region S intersects N = 534 811 grains
of the original deposit U.

specify position ri ∈ D ⊂ R3, size Ri ∈ [Rmin,Rmax] ⊂ R,
orientation ai ∈ B0,2π , and type Ti ∈ {1,2, . . . ,g} of the ith
grain Gi . The deposition box (units of length are micrometers)

D = (−170, − 170, − 170)T + 19 040E (16)

is a cubic region obtained from scaling the unit cube E to
a side length of 19 040 μm. In addition it is shifted by the
vector (−170, − 170, − 170) μm. The position ri ∈ D and
size Ri ∈ [Rmin,Rmax] of a grain are identified with the center
and radius of an inscribed sphere

Bri ,Ri
= {x ∈ R3 : |x − ri | � Ri}. (17)

The grain sizes Ri are chosen randomly with uniform
distribution in the interval [Rmin,Rmax] with Rmin = 80 μm,
Rmax = 170 μm. The grains are deposited randomly in D
subject to certain overlap restrictions. The overlap between
two grains i,j is defined as the overlap of the inscribed balls

O(ωi,ωj ) = Ri + Rj − |xi − xj |
Ri + Rj − |Ri − Rj | . (18)

The overlap obeys 0 < O(ωi,ωj ) � λ with λ = 0.158 25
being the maximum allowed overlap. The grains are chosen
randomly with equal probability 1/g from g = 99 different
types of polyhedra, each having 18 faces.

The number M denotes the maximum length of the
sequence. It may be chosen arbitrarily subject only to the
bound given in Eq. (20) below. The random variable Ndep is
the random number of grains deposited inside the deposition
box D. Accordingly, one defines

ωi = (0,0,0,0) (19)
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for i = Ndep + 1, . . . ,M to indicate that these grains are
absent. A lower bound for the maximum length M of a
sequence ω can be estimated in terms of the system parameters.
It depends on the volume V (D) of the deposition box, on the
minimum grain size Rmin, and on the maximum overlap λ.
Choosing M such that

M >
V (D)

4
√

2[(1 − 2λ)Rmin]3
(20)

will ensure that Ndep < M holds. For the parameters V (D) =
(19.04 mm)3, λ = 0.158 25, and Rmin = 80 μm the resulting
bound of M ≈ 7.5 × 106 > Ndep is indeed much larger than
the number Ndep ≈ 106 of deposited grains.

The orientation ai ∈ B0,2π of a grain is specified as a
rotation vector

ai = |ai |ei (21)

whose orientation ei = ai/|ai | ∈ B0,1 is the rotation axis and
whose length |ai | is the rotation angle. The rotation matrix B
corresponding to an axis-angle rotation a has the components
bij listed in Appendix A in Eq. (A1). The orientation is chosen
randomly. The parameters of its distribution are given in [21].

Note that in previous publications [6–8,21] both the
mathematical and also the verbal description of the domain
for ai was erroneously specified as ai ∈ ∂B0,1 instead of
ai ∈ B0,2π . We emphasize however that all computations in
[6–8,21] were correctly performed based on Eq. (21) with
ai ∈ B0,2π so that the reported results remain unchanged and
correct.

The Borel σ algebra O of the underlying probability space
(�,O,μ) is the product algebra of the Borel σ algebras of
its factors (for the types {1,2, . . . ,g} this is the power set).
Figure 1 shows the realization U(ω) of the random closed set
from [21] that is studied here. It consist of Ndep = 1 022 149
randomly positioned partially overlapping grains of random
size, orientation, and type. Their union

U =
Ndep⋃
i=1

Gi (22)

is a polyconvex random closed set.1 To eliminate boundary
effects a cubic sample region S ⊂ D of side length 1.5 cm was
cropped from the realization U(ω). The intersection

M(ω) = S ∩ U(ω) (23)

is the grain matrix. The pore space inside S is defined as

P(ω) = S \ M(ω); (24)

the closure of the complement of M(ω) in S. P(ω) denotes
again the realization of the random closed set P = S \ M.
The grain matrix M(ω) of the cropped sample contains N =
534 811 grains. A cross section is shown in Fig. 2. In the figure
the grains are shown in black, the pores in white.

The parameters of the random closed set U were calibrated
geometrically in [21] to match the geometric properties of

1Convex and compact sets are called convex bodies [33]. Finite
unions of convex bodies are called polyconvex sets. The set of
polyconvex sets is called the convex ring R.

Fontainebleau sandstone. An experimental microtomogram at
7.5 μm resolution was available from [25]. The geometric
calibration was based on matching volume fraction (porosity),
specific surface, integrated mean curvature, Gaussian curva-
ture, two-point-correlation function, local porosity distribu-
tions (with 240 μm and 480 μm measurement cell size), and
local percolation probabilities at the same measurement cell
sizes. The comparison of these quantities at a = 7.5 μm is
given in [21].

In [21,22] the sample S was discretized into
N cubic voxels Vi(a) ⊂ S (i = 1, . . . ,N), whose side
length a is a multiple of the base resolution a0 =
1.5 cm/16 384 = 0.915 527 3 μm. Nine different resolutions
a = a0/2,a0,2a0,4a0,8a0,16a0,32a0,64a0,128a0 were used
to compute resolution-dependent properties in [22]. The
porosity was obtained as 13.431 ± 0.001%. The specific
internal surface area was estimated as 10.35 ± 1.34 mm−1.
The permeability of a subsample of size (300)3 was found as
1182 mD in [21].

V. METHOD

The method of binary space partitioning (BSP trees) [35,
Chap.,12] was suggested and used in [36] to compute the
volume of the pore space. This method suffers from large
memory requirements, low speed, and lack of precision. Binary
space partitioning failed to compute the precise volume for the
Fontainebleau sample [36].

The method adopted in this paper is based on the general
formula [37]

V (M ∩ W) = V

(
N⋃

i=1

G̃i

)

=
∑

I∈P(N)

(−1)|I|−1 V

(⋂
i∈I

G̃i

)
, (25)

valid not only for volume, but for any additive set functional
[33]. In Eq. (25) the sets

G̃i = Gi ∩ W (26)

denote the grains Gi restricted to a bounded, rectangular
polyhedral window W ⊂ S. The integer N is the number
of grains Gi ⊂ R3, V (G) denotes the volume (Lebesgue
measure) of a subset G ⊂ R3, |I| the cardinality of the index
set I ∈ P(N ), and P(N ) the set of all nonempty subsets of the
set {1, . . . ,N} [37]. Equation (25) combined with the fact that
the intersection of two convex compact polyhedra is again a
convex compact polyhedron [38] allows the computation of
V (M ∩ W) to be reduced to the computation of the volume of
convex and compact polyhedra as will be shown next.

Given any j = 1, . . . ,N the recursive algorithm transforms
the set {G1, . . . ,Gj } of original grains into a set

Lj = {
(K1,ζ1), . . . ,

(
KZj

,ζZj

)}
(27)

of pairs. Each pair (K,ζ ) consists of a grain (polyhedron) K
and an indicator ζ = ±1. For j = 0 define L0 = ∅ to be the
empty set. Given Lj−1, the set Lj is constructed iteratively as
follows:

(1) If j � N , compute the volume V (G̃j ), else stop.
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(2) If V (G̃j ) = 0, increment j by 1 and return to (1).
(3) If V (G̃j ) �= 0, then

(a) set KZj−1+1 = G̃j , ζZj−1+1 = 1 and add the pair
(KZj−1+1,ζZj−1+1);

(b) set i = k = 1;
(c) if i � Zj−1 compute V (Ki ∩ G̃j ) else incre-

ment j by 1 and return to (1);
(d) if V (Ki ∩ G̃j ) = 0 increment i by 1 and return

to (3c);
(e) if V (Ki ∩ G̃j ) �= 0 set ζZj−1+1+k = −ζi

and KZj−1+1+k = Ki ∩ G̃j and add the pair
(KZj−1+1+k,ζZj−1+1+k);

(f) increment i by 1, increment k by 1, go to (3c).
To reduce the computational cost of determining the

intersections in step (3), the regionW is decomposed into cubic
cells whose side length is the diameter of the smallest sphere
containing the largest grain. In this way only grains within the
same cell as the cell containing grain G̃j and within its 26
neighboring cells need to be checked for nonzero intersection.
This decreases the numerical effort enormously, especially for
large systems with many thousands of grains.

The total volume of the pore space P inside the measure-
ment cell W can now be computed from the set LN of pairs as

V (P ∩ W) = V (W) −
ZN∑
j=1

ζjV (Kj ) (28)

by computing all V (Kj ) with j = 1, . . . ,ZN . Because every
Kj is the intersection of two convex and compact polyhedra it
is itself a convex and compact polyhedron [38]. The algorithm
for computing the volume V (Kj ) for arbitrary convex and
compact polyhedra is detailed in Appendix B.

VI. RESULTS

A. Precision measurements

Figure 3 shows porosity data for the continuum
Fontainebleau model. With an accuracy of 15 significant digits
the numerical uncertainty of the data is much smaller than the
linewidth. The four curves trace the porosity inside four cubic
measurement windows

W1(
) = (L − 
,0,0)T + 
E, (29a)

W2(
) = (L − 
,0,L − 
)T + 
E, (29b)

W3(
) = (L − 
,L − 
,0)T + 
E, (29c)

W4(
) = (L − 
,L − 
,L − 
)T + 
E, (29d)

whose side lengths 
 increase from 2 to 15 000 μm in steps
of 2 μm. Each of the four curves

φi(
) = V (P ∩ Wi(
))
V (Wi(
))

(30)

with i = 1 (black), i = 2 (green), i = 3 (red), and i = 4 (blue)
corresponds to a different corner of S from which the cubic
windows are grown towards the opposite corner along the
space diagonals of S. All four curves converge to the full
sample Wi(L) = LE = S. Its porosity was computed with

0.0 2.5 5.0 7.5 10.0 12.5 15.0

12.5

13.0

13.5

14.0

14.5

15.0

[mm]

φ
i(

)
[%

]

FIG. 3. (Color online) Porosity φi(
),i = 1,2,3,4 of the 15 mm
sample S shown in Fig. 2 as a function of measurement cell
size 
 for four cubic measurement cells W increasing from four
corners to the full sample S along a space diagonal. Specifically, the
measurement cells are W1(
) = (L − 
,0,0)T + 
E (black, solid),
W2(
) = (L − 
,0,L − 
)T + 
E [black (green), dashed], W3(
) =
(L − 
,L − 
,0)T + 
 E [black (red), dotted], and W4(
) = (L −

,L − 
,L − 
)T + 
 E [black (yellow), dash-dotted].

floating point precision as

φi(L) = φ(S) = 13.431 010 133 598 4% (31)

with an uncertainty of at most ±1 in the last digit.
Figure 4 shows the pore surface area per unit volume

σi(
) = A(P ∩ Wi(
))
V (Wi(
))

(32)

for the same four suites of measurement cells Wi(
) as in
Fig. 3. The pore surface area density of the full sample to
which all four curves converge for 
 = L is

σi(L) = σ (S) = 10.473 444 544 162 2 mm−1 (33)

with an uncertainty of at most ±1 in the last digit.

0.0 2.5 5.0 7.5 10.0 12.5 15.0

10.2

10.4

10.6

10.8

11.0

[mm]

σ
i(

)
[m

m
−

1 ]

FIG. 4. (Color online) Internal surface area density σi(
) of the
Fontainebleau sample S as a function of measurement window size

 for the same four cubic measurement cells as in Fig. 3. Colors are
identical to those in Fig. 3.
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B. REV plots

Plots similar to Fig. 3 are often used in a schematic way
without actual data to illustrate the idea of a representative
elementary volume for porosity or other observables [39, p.60,
Fig. 4.3]. Figures 3 and 4 suggest that the REV length is around
10 mm for both porosity and surface area density.

Both plots seem to show that the sample is very homo-
geneous. Experimental specimens of Fontainebleau sandstone
are typically much more heterogeneous than our continuum
model. It turns out, however, that the homogeneity seen
in Figs. 1, 2, 3, and 4 is deceptive. The sample is less
homogeneous than it appears to the eye. Strong fluctuations
and unexpected correlations can be detected by differential
porosimetry. This illustrates the importance of high-precision
analysis for REV studies.

C. Differential porosimetry

Instead of plotting the porosities φi(
) against 
 it is
instructive to consider the volume V (P ∩ Wi(
)) as a function
of the averaging volume V (Wi(
)). This approach sug-
gestscomparison of the average porosity inside the averaging
window defined in Eq. (30) to the differential porosity defined
as

ψi = d V (P ∩ Wi(
))
dV (Wi(
))

, (34)

i.e., ψi = dui/dvi , where ui = V (P ∩ Wi(
)) is considered as
a function ui(vi) of vi = V (Wi(
)). The comparison is shown
in Fig. 5.

The same comparison is shown in Fig. 6 for internal surface
area and differential internal surface area

τi = dA(P ∩ Wi(
))
dV (Wi(
))

, (35)

where A(P ∩ Wi(
)) = ui is considered as a function ui(vi) of
vi = V (Wi(
)). Both figures show strong fluctuations in the
differential porosity (respectively differential internal surface
area) when their spatial averages are essentially constant.

0 500 1000 1500 2000 2500 3000

12.5

13.0

13.5

14.0

14.5

15.0

V2 [mm3]

φ
2(

V
2)

,ψ
2(

V
2)

[%
]

FIG. 5. Comparison of porosity φ2(V2) (solid curve) and differ-
ential porosity ψ2(V2) (dashed curve) as functions of the volume
V2 = V (W2(
)) defined in Eq. (29b).
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10
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V
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−
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FIG. 6. Comparison of specific internal surface area σ2(V2) (solid
curve) and differential internal surface area τ2(V2) (dashed curve) as
functions of the averaging volume V2 = V (W2(
)) of the averaging
window defined in Eq. (29b).

These fluctuations become even more pronounced when the
averaging windows are chosen such that the averaging volumes
become equidistant. Let

Wx(
) = W(
,L,L), (36a)

Wy(
) = W(L,
,L), (36b)

Wz(
) = W(L,L,
), (36c)

where

W(
x,
y,
z) = [0,
x] × [0,
y] × [0,
z] (37)

denotes a rectangular parallelepiped (cuboid) with side lengths

x,
y,
z. Let φx(Vx) denote the porosity defined from Eq. (30)
with i = x as a function of Vx = V (Wx(
)). The corresponding
differential porosity is denoted as ψx(Vx) and similarly for
internal surface area σx(Vx) and its differential τx(Vx). Figures
7 and 8 show the results. Similar plots are obtained along
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FIG. 7. Porosity φx(Vx) and differential porosity ψx(Vx) for
equidistant averaging volumes Vx .
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FIG. 8. Internal surface area σx(Vx) and differential internal
surface area τx(Vx) for equidistant averaging volumes Vx .

the y or z direction. Apart from strong random fluctuations a
periodic oscillation is clearly observed in these plots. Fourier
analysis confirms the periodicity and gives a period of 850 μm
corresponding to five times the maximum grain size.

Figure 9 plots the differential surface area density against
the differential porosity for the curves ψx(Vx) and τx(Vx)
shown in Figs. 7 and 8 in the range 1688 mm−1 � Vx �
3375 mm−1. The numerical uncertainty is much smaller than
the symbol size in Fig. 9. The last point for Vx = 3375 mm−1

corresponds to the full sample and it is marked by a green (light
gray) square. The red (gray) line is a power-law fit to the data
of the form τ = aψb. The fit parameters are a = 3.767 mm−1

and b = 0.394. Figure 9 illustrates and emphasizes the fact
that there does not exist a unique relation between σ and φ

despite their strong correlation.
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FIG. 9. (Color online) Differential internal surface area density
versus differential porosity for the last half of the curves ψx(Vx) and
τx(Vx) shown in Figs. 7 and 8. The last point corresponding to the full
sample is shown as the center of the green (light gray) square. The red
(gray) line shows a fit of the function τ = aψb with a = 3.767 mm−1

and b = 0.394 to the data.

D. Comparison to synthetic μ-CT

The observation of periodic oscillations by differential
porosimetry raises the question whether these oscillations can
also be observed in traditional nondifferential porosimetry,
perhaps even in discrete approximations, for sufficiently high
precision. To answer this question the discretized and thresh-
olded approximation available as the set of files a8*.gbd.gz
from [40] will be used.

The discretized approximation to the continuum geometry
has a total porosity of

φ̃(S) = 13.4319% (38)

and a surface area density of

σ̃ (S) = 9.2938 mm−1 (39)

as measured with the algorithms described in [41]. While the
porosity agrees with Eq. (31) to five digits the area density
differs from Eq. (33) already in the first digit. Accordingly, the
relative errors are only

�φ(S)

φ(S)
= |φ̃(S) − φ(S)|

φ(S)
≈ 0.0066% (40)

for porosity and

�σ (S)

σ (S)
= |̃σ (S) − σ (S)|

σ (S)
≈ 11.263% (41)

for internal surface area density. The large absolute difference

�σ (S) = 1.179 61 mm−1 (42)

results from the discretization of flat polyhedral faces on a
structured cubic grid.

Figure 10 shows the comparison between the continuum
model and its discretized and thresholded approximation at a
resolution of 7.3242 μm. The discretized sample is available
as file set a8*.gbd.gz from [40] for download. Figure 10 shows
four curves: the continuum porosity φx(
) = φ(Wx(
)) =
φ(W(
,L,L)) and the discrete porosity φ̃x(
) = φ̃(Wx(
)) =
φ̃(W(
,L,L)) for exactly the same suite of measurement
windows with 10 � 
 � 15 mm. The porosities are shown
as black curves on the bottom and they have their ordinate
(vertical axis) on the left. Note the reduced range of values
on the abscissa. The continuum surface area density σx(
) =
σ (Wx(
)) = σ (W(
,L,L)) for 10 � 
 � 15 mm is shown as
a blue solid line on top with ordinate on the right. The blue
line with open square symbols on the top is the discrete
surface area density σ̃x(
) = σ̃ (Wx(
)) = σ̃ (W(
,L,L)) for
10 � 
 � 15 mm rescaled by a factor σ (S)/σ̃ (S) ≈ 1.112 63
to correct for the discretization error.

It is seen that the discrete porosity overestimates the true
continuum porosity. On the other hand the fluctuations due to
the random geometry are reproduced faithfully. Remarkably,
the same holds for the surface area density. Despite the
large discretization error of 11% the geometric changes
produce identical fluctuations of the discrete and continuum
measurement. This shows that the discretization provided in
a8*.gbd.gz is a faithful representation of the continuum model.
The continuum model as well as its discretization clearly show
small oscillations in porosity and surface area density with a
period of roughly 850 μm.
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FIG. 10. (Color online) Continuum porosity φx(
) (lower black
solid line) and discrete porosity φ̃x(
) (lower black line with open
circles) are shown on the bottom with 10 � 
 � 15 mm on the
abscissa and their ordinate on the left. Continuum internal surface
area density σx(
) [upper blue (gray) solid line] and rescaled discrete
surface area density σ̃x(
)σ (S)/σ̃ (S) [upper blue (gray) line with
open squares] are shown on the top with 10 � 
 � 15 mm on the
abscissa and their ordinate on the right. The lines with symbols
(open circles and open squares) refer to the discretization a8*.gbd.gz
from [40] with a resolution of 8 × 15 000/16 384 = 7.3242 μm. The
solid lines show floating point precision results evaluated in steps
of �
 = 8 × 15 000/16 384 = 7.3242 μm corresponding to the side
length of one voxel in the discretized image.

E. Thin section analysis

Experimentally one often has only a few thin sections
available for analysis. Quasi-two-dimensional thin sections
are routinely prepared experimentally and are easily evaluated
computationally with our algorithm. If the continuum model
is indeed homogeneous (stationary) then standard theorems of
stereology [33,42] predict that porosity and internal surface
area density can also be measured from thin sections. If the
medium is also ergodic then the validity of Eq. (13) for almost
all ω ∈ � implies that large thin sections are sufficient.

To test ergodicity and the validity of Eq. (13) for φ or σ the
following five different thin sections of height �z = 2a0 ≈
1.8 μm have been selected along the z axis:

W0(
) = W(
,
,2a0), (43a)

W1831.1(
) = (0,0,1831.1)T + W(
,
,2a0), (43b)

W4577.6(
) = (0,0,4577.6)T + W(
,
,2a0), (43c)

W6207.3(
) = (0,0,6207.3)T + W(
,
,2a0), (43d)

W9036.3(
) = (0,0,9036.3)T + W(
,
,2a0). (43e)

These five different thin sections P(ω) ∩ Wi(
) with i ∈
{0,1831.1,4577.6,6207.3,9036.3} may be viewed as five
different realizations ωi in W0(
) = W(
,
,2a0). The question
becomes whether the size L of the sample is large enough for

φ(P,ωi) = lim

→∞

V (P(ω) ∩ Wi(
))
V (Wi(
))

≈ V (P(ω) ∩ Wi(L))
V (Wi(L))

(44)
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FIG. 11. (Color online) Porosity traces φ(ωi,
) of the 15 mm
sample S shown in Fig. 2 as functions of measurement cell size 


for five different thin sections ωi . The thin sections had a height of
�z = 2a0 ≈ 1.8 μm and are colored as i = 0 (black), i = 1831.1
[green (very light gray)], i = 4577.6 [red (gray)], i = 6207.3 [blue
(dark gray)], and i = 9036.3 [magenta (light gray)]. At 
 = 15 the
line order from top to botton is black, red, magenta, blue, green.

to equal 〈V (P ∩ W0(∞))〉 /V (W0(∞)) independent of i.
Figure 11 shows the five curves

φ(ωi,
) = V (P(ω) ∩ Wi(
))
V (Wi(
))

(45)

with i = 0 (black), i = 1831.1 (green), i = 4577.6 (red), i =
6207.3 (blue), and i = 9036.3 (magenta) as a function of 


for 0 � 
 � L. It is clearly seen that the fluctuations are of
the same order as those of the differential porosity in Fig. 7.
This shows that the results still depend on i at this system
size. Combined with the results for the differential porosity
this suggests estimating the total porosity as

φ(S) ≈ 13.4 ± 1.0%, (46)

where the uncertainty is mainly attributed to geometric
fluctuations.

For experimentally obtained thin sections it is not easy to
obtain the surface area density, but this can be done easily here.
The results for

σ (ωi,
) = A(P(ω) ∩ Wi(
))
V (Wi(
))

(47)

are shown in Fig. 12. Combined with the differential results
from Fig. 8 the surface area density of the 15 mm sample is
estimated as

σ (S) ≈ 10.5 ± 0.3 mm−1, (48)

where the uncertainty is attributed to geometric fluctuations
due to insufficient spatial self-averaging.

F. Differential permeametry

Encouraged by the good agreement between continuum
and lattice discretization seen in Fig. 10, it seems promising
to introduce differential permeabilities analogous to the dif-
ferential porosities. Even though permeability can at present
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FIG. 12. (Color online) Traces of surface area density σ (ωi,
) of
the 15 mm sample S shown in Fig. 2 as functions of measurement cell
size 
 for five different thin sections ωi . The thin sections had a height
of �z = 2a0 ≈ 1.8 μm and are colored as i = 0 (black), i = 1831.1
[green (very light gray)], i = 4577.6 [red (gray)], i = 6207.3 [blue
(dark gray)], and i = 9036.3 [magenta (light gray)]. At 
 = 15 the
line order from top to botton is black, red, blue, green, magenta.

not be computed precisely for the continuum model, it can be
computed for discretized approximations, and the impressive
agreement in Fig. 10 suggests that at least the variations of
permeability as functions of 
 will be accurate.

The permeability is obtained by solving Eq. (1) in a region
W and integrating the velocity field

w(W) =
∫
W

v(x) d3x (49)

for several different boundary conditions. As in experiment,
the permeability is estimated from computing the volume flux
per unit area as

k∂Si,∂So (S) = |w(S)|
V (S)

= 1

V (S)

∣∣∣∣∫
S

v(x) d3x

∣∣∣∣ (50)

where v = (vx,vy,vz)T is the solution of Eq. (1) with inlet
∂Si and outlet ∂So. The lower index on k is added to indicate
explicitly the implicit dependence of v on the inlet ∂Si and
outlet ∂So.

Differential permeabilities are introduced analogous to the
differential porosities as

κ = d |w(W(
))|
d V (W(
))

(51)

for a suitable family W(
) of windows. Again they depend
implicitly via v on the inlet ∂Si and the outlet ∂So. Differential
permeabilities can be measured experimentally by grinding
thin slices from a cubic sample.

Equation (1) was formulated as a faithful model of experi-
mental permeability measurements. In experiments the sample
is typically enclosed with impermeable walls perpendicular
to the applied pressure gradient. The permeability is thus
a scalar quantity that depends on the choice of boundary
conditions. Estimating the full permeability tensor requires
different boundary conditions or volume respectively disorder

averaging of pore scale velocities and pressure gradients over
subregions. For a detailed discussion and comparison see
[43]. Here we use the results from precision porosimetry to
estimate the magnitude and fluctuations of the permeability
using experimentally observed correlations.

Various functional relations of the form k = k(φ) or
k = k(φ,σ ) have been proposed according to Eq. (2) for
Fontainebleau sandstone [28,44,45]. The relation

kBZ(φ) =
(

δ

δ0

)2

0.303(100 φ)3.05 mD, (52)

where 1 mD denotes 1 millidarcy= 10−15 m2, is adapted from
[46] for the range 0.09 � φ � 0.28. The improved relation for
the range 0.04 � φ � 0.25,

kZP(φ) =
(

δ

δ0

)2 1011.17(log100φ)3+51.6 lg 100φ

1040.29(log100φ)2+20.22
mD, (53)

where log is the logarithm with base 10, stems from [28].
Both relations apply for a mean grain diameter δ0 = 250 μm
and the prefactor corrects for a deviation from the mean grain
diameter. The Kozeny-Carman relation [29] for a bundle of
nonintersecting capillary tubes reads

kKC(φ,σ ) = φ3

GT 2σ 2
D (54)

where D denotes 1 darcy= 10−12 m2, σ is given in m−1, T
denotes the tortuosity, and G is the shape factor for the tube
cross section. For capillary tube models the tortuosity is the
ratio of tube lengths to L. For granular media, such as sands or
high-porosity Fontainebleau sandstone, the Kozeny-Carman
relation is often applied by eliminating T σ with

T σ = 1

N

N∑
i=1

A(Gi)

V (Gi)
, (55)

the average specific surface area of the grains [29]. Accounting
for the existence of a percolation threshold at φ = φp as
suggested in [45], one arrives at the form

kMN(φ) = 1

GN2

(
N∑

i=1

V (Gi)

A(Gi)

)2
(φ − φp)3

(1 − φ + φp)2
D (56)

where V and A are measured in m3 and m2, respectively.
To compare these functional forms quantitatively against

numerical solutions of Eq. (1) several choices for the average
grain diameter δ come to mind. The mean of the uniform
distribution of grain sizes is (Rmax + Rmin)/2 = 125 μm,

giving 250 μm as the diameter of an inscribed sphere for
all types of grains. The equivalent diameter based on grain
volume is

δv = 250 μm

99

99∑
i=1

(
3V

(
G0

i

)
4π

)1/3

≈ 295 μm, (57)

where G0
i i = 1, . . . ,99 denotes the grain templates (see

Appendix B). The equivalent diameter based on the surface
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FIG. 13. (Color online) Differential permeabilities κi x (solid
lines) of the continuum model estimated from Eqs. (52)–(56) with
i = BZ [red (gray)], i = ZP [green (very light gray, fluctuating
around 800 mD], i = KC (black), i = MN [blue (dark gray)] as
functions of increasing averaging volume. The lines for i = BZ
and i = KC follow each other closely, i = MN lies systematically
above, and i = ZP systematically below. The symbols are the
permeabilities k̃xx (crosses) and differential permeabilities κ̃xx (stars)
for the discretization a8*.gbd.gz obtained from numerical solution of
Eq. (1) using the massively parallel algorithm of [47]. On the right
axis the permeabilities k̃xx (cross), k̃yy (triangle), and k̃zz (circle) for
the full discretized sample are shown.

area of grains is

δa = 250 μm

99

99∑
i=1

(
A

(
G0

i

)
4π

)1/2

≈ 310 μm. (58)

The average diameter of the circumscribed spheres

δu ≈ 380 μm (59)

is an upper bound.
Figure 13 shows various estimates of differential per-

meabilities. The four solid curves representing differential
permeabilities are obtained from estimating the velocity
integral as

|w(Wx(
))| ≈ V (Wx(
))ki x(φ,σ ) (60)

with expressions for kx(φ,σ ) taken from Eqs. (52)–(56) with
i = BZ,ZP,KC,MN and parameters δ0 = 250 μm, δ = δv ≈
295 μm, and G = 3, T = 2.5, and φp = 0.02. The subscript
x signifies that the region of integration changes along
the x directions. The resulting estimates for the differential
permeability are then

κi x(Vx) = ki x(ψx(Vx),τx(Vx)), (61)

where i = BZ (red curve), i = ZP (green curve), i = KC
(black curve), i = MN (blue curve), and Vx = V (Wx(
)).
The estimates for i = KC (black curve) and i = MN (blue
curve) are expected to be systematically too high, because the
Carman-Kozeny expression for granular media is based on
nonoverlapping grains.

The symbols in Fig. 13 are the permeabilities obtained
by numerical solution of Eq. (1) for the discretized sample
a8*.gbd.gz from [40]. Figure 13 shows approximate numerical
results for permeabilities k̃xx (crosses) and differential perme-
abilities κ̃xx (stars) with W(
) = Wx(
) from Eq. (36a) com-

TABLE I. Overview of the computed permeabilities k̃xx and
differential permeabilities κ̃xx of the discretized sample a8*.gbd.gz
from [40] with a resolution of 8 × 15 000/16 384 = 7.3242 μm for
measurement cells Wx(
) = W(
,L,L) with different 
. Total wall
time was around 84 h.


 (mm) Vx (mm3) k̃xx (mD) κ̃xx (mD) CPUs Wall time

3.311 745 1062 1007 512 1.9 h
3.618 814 1060 917 512 2.4 h
4.197 944 1055 981 512 3.2 h
4.636 1043 1046 1013 512 3.8 h
5.310 1195 1047 1027 512 5.0 h
7.859 1768 1024 840 512 10.6 h
10.386 2338 1018 887 512 16.5 h
11.792 2655 1016 982 512 21.7 h
15.0 3375 1008 — 1024 18.6 h

puted from the discretization of the continuum sample. Their
numerical values are given in Table I. These computations
represent the first measurement of differential permeabilities to
our knowledge. The indices xx indicate that inlet and outlet and
∂Si,∂So are the faces perpendicular to the x direction. On the
right the results for k̃yy(P) (triangle) and k̃zz(P) (circle) for the
full sample are also shown. The numerical values for perme-
abilities k̃ (crosses) and differential permeabilities κ̃ (stars) all
seem to fall between the curves of the empirical correlations.

The numerical solution of Eq. (1) for the full sample leads
to a system of equations with roughly 5 × 109 unknowns
whose solution requires substantial computational facilities
and resources. To the best of our knowledge numerical
solutions for systems of size 2048 × 2048 × 2048 are world-
wide among the largest computational efforts of precision
permeametry at present. All computations were performed
on the recently installed Cray XC30 (Hornet) and the earlier
Cray XE6 (Hermit) machines at HLRS Stuttgart using the
massively parallel algorithm developed in [47]. For some
details concerning algorithms and methods used to solve
Eq. (1), see Appendix C. The numerical results are summarized
in Table I together with the numerical resources (number of
CPUs and wall time) required for their calculation.

Table I seems to suggest that the conventional permeabili-
ties k̃xx(Vx) are systematically larger than the newly introduced
differential permeabilities. The numerical results suggest

k̃xx(Vx) > κ̃xx(Vx) = d[Vxk̃xx(Vx)]

dVx

= k̃xx(Vx) + k̃′
xx(Vx) (62)

and hence the derivative k̃′
xx(Vx) < 0 is negative. Indeed

k̃xx(Vx) is seen to decrease nearly monotonically with an
average slope of −0.020 53 mD/mm3 (computed from the first
and last data points). This differs from the case of differential
porosities and surface densities seen in Figs. 7 and 8 where
the differential quantities fluctuate around the nondifferential
ones. Conventional and differential permeabilities must ap-
proach each other for a homogeneous medium. The nearly
monotonic decrease of k̃(Vx) suggests that the asymptotic
regime has not been reached. Linear extrapolation with the
slope −0.020 53 mD/mm3 to a value of 950 mD would suggest
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that the asymptotic regime is reached around 4000 mm3. We
attribute the fact that κ̃xx(Vx) does not fluctuate around k̃xx(Vx)
to the nonadditivity of permeability, contrary to the additivity
of porosity or other Minkowski functionals (see [5,37]).

The differential permeabilities κ̃(Vx) are seen to fluctuate.
The fluctuations appear to be correlated with the fluctuations of
differential porosity and differential surface density although
more computations would be needed to ascertain the truth of
this observation. However, the apparent correlations suggest
that differential permeabilities can be used to characterize
heterogeneities in transport properties in the same way as
differential porosities (and differential surface densities) can
be used to characterize heterogeneities in geometric properties.

VII. CONCLUSION

Differential permeametry and porosimetry were introduced
as precision tools into the analysis and modeling of porous
media. The methods are exemplified using a very homoge-
neous, carefully calibrated continuum model for Fontainebleau
sandstone. The Fontainebleau sample is publicly available on
the worldwide web as a benchmark for methodical studies of
correlated random media.

High-precision porosimetry yields porosity and internal
surface area densities of the continuum model with floating
point accuracy. Continuum results with floating point precision
have been compared quantitatively to discrete approxima-
tions obtained from synthetic microcomputed tomography,
while previous measurements using approximate synthetic
microcomputed tomography were based on extrapolation of
resolution-dependent measurements. Differential porosities
and differential surface area densities allow geometrical
fluctuations to be distinguished from discretization effects
and numerical noise. In the present study the analysis shows
unambiguously that despite the homogeneous visual appear-
ance spatial self-averaging is insufficient due to geometric
fluctuations. In this way high-precision porosimetry can help
to sharpen the pervasive REV concept.

Differential porosimetry and Fourier analysis reveal subtle
periodic correlations. The findings uncover small oscillatory
correlations with a period of roughly 850 μm, thus implying
that the sample is not strictly stationary. The correlations
are attributed to the deposition algorithm that was used to
ensure the grain overlap constraint. Differential permeabilities
are introduced and computed numerically from discretized
approximations to the continuum model structure. Differential
porosities and permeabilities provide detailed and quantitative
information about geometrical fluctuations and their quantita-
tive importance for flow and transport.
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APPENDIX A

The transformation of an axis-angle rotation a = |a|e ∈
B0,2π from the model description to a rotation matrix B = (bij )

reads

b11 = e2
x(1 − cos |a|) + cos |a|, (A1a)

b12 = exey(1 − cos |a|) − ez sin |a|, (A1b)

b13 = exaz(1 − cos |a|) + ey sin |a|, (A1c)

b21 = exey(1 − cos |a|) + ez sin |a|, (A1d)

b22 = e2
y(1 − cos |a|) + cos |a|, (A1e)

b23 = eyez(1 − cos |a|) − ex sin |a|, (A1f)

b31 = exez(1 − cos |a|) − ey sin |a|, (A1g)

b32 = eyez(1 − cos |a|) + ex sin |a|, (A1h)

b33 = e2
z (1 − cos |a|) + cos |a|. (A1i)

In previous publications [6–8,21] the orientation was often
specified as a unit quaternion q. The transformation from a
quaternion q = (qx,qy,qz,qw) to a rotation matrix B = (bij )
reads

b11 = 1 − 2
(
q2

y + q2
z

)
, (A2a)

b12 = 2(qxqy + qwqz), (A2b)

b13 = 2(qxqz − qwqy), (A2c)

b21 = 2(qxqy − qwqz), (A2d)

b22 = 1 − 2
(
q2

x + q2
z

)
, (A2e)

b23 = 2(qyqz + qwqx), (A2f)

b31 = 2(qxqz + qwqy), (A2g)

b32 = 2(qyqz − qwqx), (A2h)

b33 = 1 − 2
(
q2

x + q2
y

)
. (A2i)

In [21], the orientation was given as three Tait-Bryan
rotation angles θ1,θ2,θ3. The transformation from Tait-Bryan
angles θ1,θ2,θ3 to a unit quaternion q = (qx,qy,qz,qw) reads

qx = − sin
θ1

2
cos

θ2

2
cos

θ3

2
+ cos

θ1

2
sin

θ2

2
sin

θ3

2
, (A3a)

qy = − cos
θ1

2
sin

θ2

2
cos

θ3

2
− sin

θ1

2
cos

θ2

2
sin

θ3

2
, (A3b)

qz = − cos
θ1

2
cos

θ2

2
sin

θ3

2
+ sin

θ1

2
sin

θ2

2
cos

θ3

2
, (A3c)

qw = + cos
θ1

2
cos

θ2

2
cos

θ3

2
+ sin

θ1

2
sin

θ2

2
sin

θ3

2
. (A3d)

APPENDIX B

Generally, a polyhedron G ⊂ R3 is specified as an inter-
section of m closed half spaces

G =
m⋂

j=1

Hj (B1)

with

Hj = {x ∈ R3 : (x − xj ) · nj � 0}, (B2)

where xj is a point on the bounding plane ∂Hj and nj is a face
normal pointing to the outside of G.

In the Fontainebleau model all grains have m = 18. Each
grain G in the Fontainebleau model is a convex and bounded
polyhedron [of type T , located at position r, scaled by a factor
R and oriented by a vector a (rotation matrix B)]. It is obtained
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as G = RBG0 + r by translation, rotation, and rescaling of a
grain template G0 in normal position. A grain template G0 =⋂m

j=1 H
0
j in its normal position, size, and orientation is defined

by m half spaces H0
j ,j = 1, . . . ,m, each defined by a vector

x0
j such that

H0
j = {

x ∈ R3 :
(
x − x0

j

) · x0
j � 0

}
(B3)

holds. The vectors x0
j are simultaneously face normals and

points on the face itself. After rotating the grain by matrix B,
scaling by scalar R, and translating by vector r, the parameters
nj and xj in Eq. (B2) read

nj = Bx0
j , (B4a)

xj = (
RBx0

j + r
)
, (B4b)

with x0
j being the template parameters from Eq. (B3).

Picking (without loss of generality) any of the vertices of
the grainG the numbering of the m bounding planes ∂Hj , j =
1, . . . ,m can always be chosen such that the first three of them
intersect in the chosen vertex of G. Denoting this vertex as s1,
it follows that the intersection

{s1} = ∂H1 ∩ ∂H2 ∩ ∂H3 ⊂ G (B5)

is a single point. The volume V of G is then given by

V = 1

3

m∑
j=1

Aj (xj − s1) · nj , (B6)

where Aj is the area of the polygon Fj = ∂Hj ∩ G. From
s1 ∈ ∂H1, s1 ∈ ∂H2, and s1 ∈ ∂H3 follows (xj − s1) · nj = 0
for j = 1,2,3. Therefore, the first three terms in the summation
in Eq. (B6) vanish and the summation

V = 1

3

m∑
j=4

Aj (xj − s1) · nj (B7)

starts from j = 4. It remains to determine the areas Aj .
The area A of a plane, convex polygon F ⊂ R3 defined by

its vertices ck ∈ R3, k = 1, . . . ,q can be efficiently calculated
by projecting the vertices onto one of the coordinate planes
as long as the area of the projected polygon does not vanish.
For reasons of numerical accuracy the coordinate plane should
be chosen such that the surface area of the projected polygon
is maximal. This is the coordinate plane which is perpen-
dicular to the largest component of the normal vector of the
polygon F .

Let n = (nx,ny,nz) be the normal vector of the polygon
F . Then its vertices ck = (ckx,cky,ckz) are projected onto the
vertices cx

k ,c
y

k or cz
k ∈ R2 according to the following rules:

(a) Case 1: (Projection along x onto yz plane)
If |nx | � |ny | and |nx | � |nz|, then cx

k = (cky,ckz).
(b) Case 2: (Projection along y onto xz plane)

If |ny | > |nx | and |ny | � |nz|, then cy

k = (ckz,ckx).
(c) Case 3: (Projection along z onto xy plane)

If |nz| > |nx | and |nz| > |ny |, then cz
k = (ckx,cky).

(The different choice of > or � in these cases serves to cover
also those situations in which equalities among |nx |,|ny |,|nz|
occur.) As a result the projected polygon is defined by its
vertices cα

k ,k = 1, . . . ,q where α = x (Case 1), α = y (Case

2), or α = z (Case 3). In the following the index α refers to
a single one of the three cases. Subsequently the projected
vertices cα

k are translated by the vector −cα
1 ,

cα
k = cα

k − cα
1 , k = 1, . . . ,q, (B8)

and renumbered such that the sequence of unit vectors
cα
k /|cα

k |,k = 2, . . . ,q, describes a counterclockwise rotation.
This is achieved computationally by permuting the indices
until for all k ∈ {2, . . . ,q − 1}

cα
k × cα

k+1 � 0 (B9)

holds, where a × b = axby − aybx is the two-dimensional
cross product. The area of the projected polygon is then given
by

Aα
⊥ = 1

2

q−1∑
k=2

cα
k × cα

k+1, (B10)

where α corresponds to one of the three cases. Finally, the area
of the original (not projected) polygon is

A = Aα
⊥

|nα| , (B11)

where α, as before, indicates which one of the three possible
projections was applied.

APPENDIX C

The Stokes problem (1) is solved using a modified and
parallelized version of the well-known SIMPLE algorithm on
a staggered grid [47,48]. The SIMPLE algorithm is matrix-free
and has minimal memory requirements. It is parallelizable and
performs well for porous media. The iterative algorithm uses
a pressure correction method for solving the (dimensionless)
time-dependent Stokes equation

∂v(x,t)

∂t
= −∇p(x,t) + �v(x,t), (C1a)

∇ · v(x,t) = 0, (C1b)

in P for the pressure p(x,t) and the velocity v(x,t). In the limit
of large times, the time evolution of the solution p(x,t) , v(x,t)
converges towards the stationary solution p(x) , v(x). (The use
of all symbols of the notation is restricted to this Appendix to
avoid any conflict with the rest of the text.)

The algorithm consists of the following schematic steps:
(1) Initially at step n = 0, the initial pressure and velocity

fields are specified from prior knowledge, expectation, or
computation as p0(x) and v0(x).

(2) Given the velocity vn and pressure pn at step n, an
intermediate velocity v∗ is calculated according to

v∗ = vn + δt · (−∇pn + �vn) (C2)

for a sufficiently small time interval δt .
(3) Given v∗, the pressure-correction equation for the

correction field p′

�p′ = 1

δt
∇ · v∗ (C3)

is solved.
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(4) Pressure and velocity are updated to step n + 1
according to

pn+1 = pn + αp · p′, (C4a)

vn+1 = v∗ − αv · δt∇p′, (C4b)

with underrelaxation factors αp for pressure and αv for
velocity.

(5) Finally, error estimates for pressure and velocity
are computed and the algorithm returns to step C as
long as the error is above the desired accuracy, else it
stops.

The algorithm is parallelized by identifying and dividing
the domain into layers such that each layer can be computed
parallel to the rest.
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