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Capillary desaturation experiments produce disconnected (trapped) ganglia of mesoscopic sizes intermediate
between pore size and system size. Experimental evidence for interactions between these mesoscale clusters
during desaturation is analyzed and discussed within the established microscopic and macroscopic laws of
Newton, Young-Laplace, and Darcy. A theoretical expression for capillary number correlations is introduced
that seems to have remained unnoticed. It expresses capillary desaturation curves in terms of stationary capillary
pressures and relative permeabilities. The theoretical expression shows that the plateau saturation in capillary
desaturation curves may in general differ from the residual nonwetting saturation defined through the saturation
limit of the main hysteresis loop. Hysteresis effects as well as the difference between wetting and nonwetting
fluids are introduced into the analysis of capillary desaturation experiments. The article examines experiments
with different desaturation protocols and discusses the existence of a mesoscopic length scale intermediate
between pore scale and sample scale. The theoretical expression is derived entirely within the existing traditional
theory of two-phase flow in porous media and compared to a recent experiment.

DOI: 10.1103/PhysRevE.92.063023 PACS number(s): 47.56.+r, 81.05.Rm

I. INTRODUCTION

A capillary desaturation experiment measures the volume
of fluid flowing out from a porous medium as a result
of injecting a second fluid (immiscible with the first) at
varying injection rates. Displacement of a nonwetting fluid
by a wetting fluid is of great importance for hydrocarbon
production processes [1–3].

Most capillary desaturation experiments are carried out
in “discontinuous mode.” A discontinuous mode desaturation
typically starts from a sample filled with nonwetting fluid and
increases the injection rate of the wetting fluid in steps, i.e.,
with a step function protocol in time. It is called “discontinuous
mode” because the configuration of the residual fluid is
discontinuous in the sense of not connected from inlet to
outlet. On the other hand, in a “continuous mode” desaturation
one starts always from a continuous initial configuration in
which the resident fluid is hydraulically connected to the
inlet and outlet. Rather than increasing the injection rate
sequentially, the sample is emptied, refilled, and then injected
with a new (increased) rate. Experiments in continuous mode
are more laborious and expensive than discontinuous mode
experiments. Many experiments report a constant plateau
saturation of the remaining resident fluid at small injection
rates followed by a gradual decrease at higher injection rates,
as seen, for example, in Figs. 3-17, 3-18, and 3-19, pp. 70–73,
of Ref. [3].

Dimensionless (or scaling) groups are algebraic combina-
tions of the constitutive parameters from the mathematical
model. Examples, such as the Reynolds or Péclet number, arise
in many fields of physical science. In capillary desaturation
experiments the results are commonly given in terms of the
capillary number, which quantifies the ratio of viscous to
capillary forces.

Given the correlation between displacement efficiency and
capillary number during water flooding, it is believed that mo-
bilization of residual nonwetting fluid depends predominantly
on the competition between viscous and capillary forces [4].
Less importance is usually attributed to other factors such as
initial fluid configuration, desaturation protocol, mesoscopic
cluster interactions, and/or the nature of the displacement
processes (drainage vs imbibition) during the experiment.
One of our motivations for this work is to advance the study
of these additional factors influencing capillary desaturation
experiments. Recent experiments [5–7] have called for studies
of the process dependence. In this work we take up such studies
by analyzing these desaturation experiments. As a result we
propose to perform not only desaturation experiments, but
also saturation experiments in which the nonwetting saturation
increases rather than decreases during stationary wetting fluid
flow. Mobilization and trapping, coalescence, and breakup of
nonwetting fluid then determines the increase of nonwetting
saturation in the same way as in desaturation experiments from
the competition between viscous and capillary forces.

Recovery of residual oil during water flooding depends
upon how small the capillary forces become relative to viscous
forces. Accordingly, the results of capillary desaturation
experiments are generally presented as functions of various
capillary numbers instead of injection rates, because capillary
numbers are supposed to reflect the force balance. A capillary
number is a dimensionless group

Ca = (viscous forces)

(capillary forces)
(1)

that quantifies the ratio of viscous to capillary forces. Ideally,
the condition Ca ≈ 1 marks the transition from capillary-
dominated to viscous-dominated flow. Numerous definitions
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of capillary numbers, however, do not fulfill this expectation,
as shown in [8–10].

Herein, we present a new formulation for the force balance
between viscous and capillary forces of macroscale two-phase
flow that has previously been overlooked. This new finding is
based on introducing the force balance F quantitatively into
Eq. (1) by writing

(viscous pressure drop)

(capillary pressure)
= F (S,v,L) (2)

and investigating its dependence on saturation S, velocity v,
and system size L. This simple exercise has, to the best of
our knowledge, never been done and turns up a surprising
result that is applicable to capillary desaturation. The main new
result of our investigation is Eq. (27) below, which expresses
the force balance F (S,v,L) = f (S,Ca) quantitatively as a
function of saturation and the macroscopic capillary number
Ca introduced in [9]. Setting F = F0 to some fixed value F0

generates capillary number correlations S = SF0 (Ca) that seem
to be new. Capillary number correlations appear in capillary
desaturation experiments and were heretofore not predictable
within the traditional theoretical framework. Our new findings
provide a means to develop theoretical capillary desaturation
curves that compare well to experimental results.

The article is motivated by the question: Is there a
mesoscale between pore scale and sample scale? It is
organized as follows: Section II formulates the problem as
a problem of length scales. Mobilization and recovery of
residual oil produces disconnected nonwetting clusters whose
average extension is determined by a balance of viscous
and capillary forces. Section II also formulates six specific
objectives that have been addressed and achieved. Section III
introduces notation and, more importantly, formulates scale
separation between microscopic pore scale and macroscopic
laboratory scale. The mathematically precise formulation of
scale separation was crucial for all of our subsequent analysis.

Section IV gives a brief analysis of force balance and
capillary number on the pore scale. Section V discusses the
force balance and capillary number on the sample scale,
uncovering Eq. (27) as the main new result. Section VI relates
the main new result to a variety of alternative definitions
for capillary number and visco-capillary force balance. This
discussion is crucial for the subsequent application of Eq. (27)
to experiment in Sec. VII. Equally important is the exper-
imental fact that capillary desaturation experiments depend
critically on the desaturation protocol. Accordingly, Sec. VII
defines and distinguishes various experimental protocols in
these experiments. It then applies Eq. (27) in two ways: Firstly,
to discuss and analyze the recent experiments of [5]. The result
is presented in Fig. 3. Secondly, to propose a new experiment
[with the protocol specified in Eq. (56)] and predict its outcome
in Fig. 4. Figures 3 and 4 are the main results demonstrating
the fruitful application of Eq. (27) to existing experiments, as
well as its predictive power for new experiments.

Section VIII places the main results of Eq. (27), Fig. 3,
and Fig. 4 in a broader context. It discusses protocol depen-
dence, plateau saturation, cooperative dynamics, and inertial
effects. This discussion achieves the objectives formulated
in Sec. II. The article concludes with a summary of results.
The motivating question of length scales, at present, cannot

be answered with yes or no. However, investigating this
question has uncovered new facts related to the importance of
nonpercolating fluid parts for residuals, capillary desaturation,
and macroscopic two-phase immiscible displacement.

II. PROBLEM AND OBJECTIVES

The problem to be discussed in this article is the question of
whether or not there exists a mesoscopic length scale with new
constitutive laws intermediate between the microscopic pore
scale � and the macroscopic sample size L. Recent capillary
desaturation experiments in [5,11] seem to hint towards the
possible existence of a mesoscopic length scale. Existing
theories do not explain or predict capillary desaturation
curves or spatiotemporal changes of nonpercolating residual
saturations. Direct upscaling from pore to sample scale may
be difficult or impossible, because mesoscopic nonpercolating
clusters and their interaction become important [12–14].

The theoretical importance of nonpercolating trapped clus-
ters (ganglia) on macroscopic scales (Darcy scale and larger)
was emphasized already in [15]. It was thoroughly analyzed in
[16] and [17]. The results of this analysis led to the proposal
of a generalized macroscopic theory [18] predicting hysteresis
[19], recovering the traditional theory [20], and highlighting
the role of interfacial areas in [21]. Experimental evidence for
the possible importance of a mesoscopic scale seems to have
been found in recent experimental advances allowing in situ
monitoring of immiscible displacement processes using fast
x-ray computed microtomography [5]. Theoretical evidence
for the importance of clusters on macroscopic scales was found
in [22] for immiscible fluids in hydrostatic equilibrium, in [23]
for raising and/or rotating closed columns, in [24] for Buckley-
Leverett shocks, in [25] for McWhorter-Sunada flows and
capillarity-driven horizontal redistribution (the Philip prob-
lem), in [26] for saturation overshoot, and in [27] for multistep
outflow experiments. Recent drainage and imbibition experi-
ments with pore scale imaging performed by [11] confirm that
the dynamics is nonlocal and that capillary action at menisci
is percolating over some mesoscopic distance. These experi-
mental observations and theoretical advances all seem to hint
towards a mesoscopic cluster scale that might be defined via the
nonpercolating clusters and their interaction with each other.

The main objectives of this paper are:
(1) to study the process dependence of capillary desatura-

tion curves and the dependence on the desaturation protocol,
(2) to introduce new capillary saturation curves for oil

injection based on traditional two-phase flow theory,
(3) to propose new capillary saturation experiments with

oil injection instead of water injection,
(4) to introduce a new relation between capillary desatura-

tion curves and the product of relative permeabilities with
normalized capillary pressure functions that seem to have
remained unnoticed so far,

(5) to show that the plateau saturation in capillary desat-
uration curves is not given as the residual oil saturation SO r

[defined in Eq. (25b) below], but can be either 1 − SW i [where
the irreducible water saturation SW i is defined in Eq. (25a)
below] or any saturation below 1 − Sz, where Sz is defined
as the zero Pc

imb(Sz) = 0 on the capillary pressure curve for
secondary imbibition, and
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(6) to quantify the large variation of breakpoints in capil-
lary desaturation curves within the traditional two-phase flow
theory.

III. PRELIMINARIES

A. Notation

Time is denoted as t ∈ R and position as x ∈ R3. The
geometry of the porous medium and its fluid content is
represented mathematically by several closed subsets of R3.
These are

R3 ⊃ S := sample core, (3a)

S ⊃ P := pore space, (3b)

S ⊃ S \ P = M := matrix space, (3c)

P ⊃ W(t) := wetting fluid at time t, (3d)

P ⊃ P \ W(t) = O(t) := nonwetting fluid at time t, (3e)

where W stands for water (wetting) and O for oil (nonwet-
ting). The wetting and nonwetting fluid are assumed to be
immiscible. The Euclidean position space R3 carries the usual
topology, metric structure, and Lebesgue measure d3x. The
volume of a subset G ⊂ R3 is defined and denoted as

|G| :=
∫
R3

χG (x) d3x =
∫
G

d3x, (4)

where

χG(x) :=
{

1 for x ∈ G
0 for x /∈ G

(5)

is the characteristic (or indicator) function of a set G. The
interior in(G) of a set G is the union of all open sets contained
in the set G. It is assumed that

S = P ∪ M, in(P) ∩ in(M) = ∅ (6)

holds and the volume fraction

φ = |P|
|S| = 1 − |M|

|S| (7)

is called porosity. The surface, or boundary, of a set G is
denoted as ∂G. All boundaries are assumed to be sufficiently
smooth. The set P ∩ M = ∂P \ ∂S = ∂M \ ∂S is the rigid
internal boundary between P and M.

It will be assumed, throughout, that the sets P and M are
path connected. A set is called path connected if any two of its
points can be connected by a path contained inside the set. This
excludes isolated disconnected pores and grains [28, Problem
6.(a), p. 120]. Moreover, it will be assumed that ∂P ∩ ∂S 	= ∅
and ∂M ∩ ∂S 	= ∅. Analogous to Eq. (6), also the fluid regions
are disjoint except for their boundary, i.e.,

P = W(t) ∪ O(t), in(W(t)) ∩ in(O(t)) = ∅ (8)

holds for all t . Their volume fractions

SW(t) = |W(t)|
|P| = |P \ O(t)|

|P| = 1 − SO(t) (9)

are called saturations. The volumetric injection rates of the
two immiscible and incompressible fluids are denoted for

i = W,O as

Qi = volumetric injection rate of fluid i (10)

and have units of m s−1. Matrix rigidity implies

Q(t) = QW(t) + QO(t), (11)

where Q(t) is the total volumetric flux.

B. Scale separation

Porous media physics requires one to distinguish the micro-
scopic pore scale � from the macroscopic sample scale L. The
two scales are related by coarse graining or, mathematically,
by a scaling limit as emphasized in [29,30]. The two scales
will be distinguished by a tilde ˜ for microscopic pore

scale quantities when necessary. Thus x̃ ∈ R̃
3

represents a
position in the pore scale description, while x ∈ R3 refers

to a macroscale position. The relation between R̃
3

and R3

may be symbolically written as R3 ∼ (R̃
3
)R̃

3

. This expression
symbolizes the formal relation

x̃ = εx = �

L
x, x̃ ∈ R̃

3
,x ∈ R3 (12)

in the scaling limit ε → 0. To illustrate its meaning, consider
the microscopic saturations

S̃W (̃x,t) = χW(t)(̃x), x̃ ∈ R̃
3

(13a)

S̃O (̃x,t) = χO(t)(̃x), x̃ ∈ R̃
3

(13b)

that are trivially defined in terms of characteristic functions.
Let

εG = {εx : x ∈ G}. (14)

The macroscopic saturations are to be understood formally as
the scaling limit

SW(x,t) = lim
ε→0

1

|εG|
∫
G

χW(t)(x + εy) d3y, (15a)

SO(x,t) = lim
ε→0

1

|εG|
∫
G

χO(t)(x + εy) d3y, (15b)

where x ∈ S ⊂ R3 whenever this limit exists and is inde-
pendent of G. Note that Eq. (15) is formal, because the

integrand is understood as a function of ỹ = εy ∈ R̃
3
. For

more mathematical rigour on homogenization, see, e.g., [31].
Existence of the scaling limit is tantamount to the existence of
an intermediate “representative elementary volume” G being
large compared to � and small compared to L.

IV. MICROSCOPIC PORE SCALE �

Consider stationary flow of a fluid inside the pore space P.
On the pore scale the viscous forces are given quantitatively
by Newton’s law of internal friction,

(viscous pressure gradient) = μ|∇̃ṽ|

≈ μ
|̃v(̃x) − ṽ(̃xwall)|

|̃x − x̃wall| , (16)
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where μ is the fluid viscosity, ∇̃ṽ is the phase velocity
gradient,1 and ṽ(̃x,t) = ṽ(̃x) is the phase velocity for stationary
flow. The capillary forces are quantified by the Young-Laplace
law as

(capillary pressure) = σWOκ, (17)

where σWO is the interfacial tension and κ the interfacial
mean curvature in thermodynamic equilibrium between the
two phases. Using the same scale in both laws,

|̃x − x̃wall| ≈ κ−1 ≈ � = (pore diameter), (18a)

approximating ṽ(̃x) by its spatial average ṽ as

ṽi (̃x) ≈ ṽi = 1

|P ∩ S|
∫
S

χP (̃y)̃vi (̃y) d3ỹ, (18b)

and using

ṽi (̃xwall) = 0 (18c)

for both phases i = W,O, one arrives at the microscopic
capillary number

C̃ai = μi |̃vi |
σWO

(19)

for phase i = W,O. Note that σWO/μi is a characteristic
flow velocity that depends only on the fluid properties. As
a consequence the microscopic capillary number C̃a depends
only on fluid properties but is independent of the pore space
properties.

For a derivation of C̃ai from the pore scale equations of
motion, see [9,32].

V. MACROSCOPIC SAMPLE SCALE L

Consider again the stationary limit t → ∞ of fluid flow in
P. On the scale of a macroscopic sample, the viscous forces
are dominated by wall friction and quantified by Darcy’s law
for single-phase flow,

vD = φv = k

μ

dP

L
, (20)

where vD is the magnitude of the (superficial) Darcy velocity,
v = |v| is the phase velocity of the (interstitial) fluid, and dP

is the magnitude of the viscous pressure drop across a region
of length L. Here μ is the fluid viscosity, k is the (absolute)
permeability, and φ the porosity of the porous medium.

The generalization of Darcy’s law to two immiscible
fluids requires some assumptions. Let W(t0),O(t0) denote
the fluid configuration inside the porous medium at some
initial time t0 and consider flooding at constant injection rates
QW 	= 0,QO = 0 or QW = 0,QO 	= 0 with water or oil. It is
observed experimentally and then assumed theoretically that

1In general, ∇̃ṽi is a tensor of rank 2 and μ is a tensor of rank 4,
yielding the fluid stress tensor of rank 2.

for long times t → ∞ the total volume fractions

lim
t→∞

|W(t)|
|P| = lim

t→∞ SW(t) = SW = S, (21a)

lim
t→∞

|O(t)|
|P| = lim

t→∞ SO(t) = SO = 1 − S, (21b)

approach constant limiting values. The values of SW,SO
will depend on the phase pressures PW,PO. Because the
injection rates are constant, the homogenized phase velocities
vW(t),vO(t) approach constant values. Specifically,

lim
t→∞ |vW(t)| = vW, and lim

t→∞ |vO(t)| = 0, (22a)

lim
t→∞ |vW(t)| = 0, and lim

t→∞ |vO(t)| = vO, (22b)

because QW 	= 0,QO = 0 for water flooding and QW = 0,

QO 	= 0 for oil flooding. Under these assumptions Darcy’s
law is generalized from single-phase flow to two-phase flow
as discussed in [33–37] to

vD = φvi = k kr
i (S)

μi

dPi

L
, (23)

where i = W,O indicates the two phases, and the relative
permeability functions kr

W(S),kr
O(S) quantify the change in

permeability for phase i due to presence of the second phase.
Note that the asymptotic water configuration W(∞) must be
path connected and percolating from inlet to outlet2 in case
(22a), and the same holds for O(∞) in case (22b).

The asymptotic pressure difference PO(t) − PW(t) for
t → ∞ reflects microscopic capillarity on macroscales. The
difference is assumed to depend only on saturation,

lim
t→∞ (PO(t) − PW(t)) = Pc(S) = Pb P̂c(S), (24)

but not on the phase velocities, although dynamic capillary
effects have been observed [38,39]. The function Pc(S) is
called capillary pressure and P̂c(S) is its dimensionless form.
The functions Pc(S) and kr

i (S) are defined on the interval
[SW i,1 − SO r]. The parameters SW i,SO r, defined as solutions
of the equations

kr
W(SW i) = 0, (25a)

kr
O(1 − SO r) = 0, (25b)

are the irreducible water saturation SW i and the residual oil
saturation SO r. Both parameters SW i and SO r are assumed to
be small but nonvanishing, i.e., 0<SW i � 1 and 0<SO r � 1.
With SW i and SO r the parameter Pb in Eq. (24) is defined
as

Pb = Pc

(
SW i + 1 − SO r

2

)
. (26)

2Limitations and previously unnoticed implicit assumptions for the
validity of (23) were first addressed in [15] and then formulated math-
ematically and explicitly as the residual decoupling approximation in
[18–20].
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If there is hysteresis, so that the values P im
b 	= P dr

b differ, then
Pb = (P im

b + P dr
b )/2 will be used. The dimensionless capillary

pressure function P̂c(S) can be positive and negative. The
relative permeabilities are positive and monotone functions.

The force balance between the viscous and capillary forces
of macroscale two-phase flow can now be expressed either as
a function of S,vi , and L,

Fi(S,vi,L) = (viscous pressure drop in phase i)

(capillary pressure)

= |dPi |
|PO − PW| (27a)

= μi φ vi L

k kr
i (S)|Pc(S)| (27b)

= Cai

kr
i (S)|P̂c(S)| (27c)

= fi(S,Cai) i = W,O , (27d)

or as a function of S and the macroscopic capillary number Cai

in the last two equalities. The macroscopic capillary number
Cai is defined as in [9] by

Cai = μi φ vi L

k Pb
i = W,O , (28)

and it depends not only on fluid properties, but also on
properties of the porous medium such as porosity and
permeability. Equation (27) seems to be a new result that has
been overlooked so far. Note that Ca does not explicitly depend
on the interfacial tension σWO between the two phases and that
the quantity Ai = k Pb/(μi φ) with i = W,O is dimensionally
not a velocity but a specific action, i.e., action per unit mass. For
a derivation of Cai from the traditional macroscale equations
of motion, see [9,32].

VI. MESOSCOPIC CLUSTER SCALE Lcl

As of today there does not seem to exist a rigorous
connection between the microscopic Newton and Laplace law
and the macroscopic generalized Darcy law. This fact was
discussed at length in [9,16,17,20,32,40] and it is the reason
why the microscopic interfacial tension σWO does not appear
explicitly in the macroscopic capillary number in Eq. (28).
Nevertheless, numerous authors have mingled pore and sample
scale in an attempt to discuss nonpercolating fluid parts,
mesoscopic clusters, or trapped ganglia. A classic example,
that led to some confusion, is given in [41] where Darcy’s law
for single-phase flow (20) is inserted into Eq. (19) to write

C̃a
OPC
i = k dPi

σWOφ L
, i = W,O , (29)

replacing velocity and viscosity by permeability, porosity,
and pressure gradient. Subsequently, [4, Eq. (9)] used the
generalized Darcy law Eq. (23) in Eq. (19) to obtain

C̃a
MB
i = k kr

i (S) dPi

σWO φ Lcl
i = W,O , (30)

a pore scale capillary “number” that is now a function of
saturation S. They then interpret this expression as a saturation-
dependent “critical” capillary number for mobilization of

trapped oil ganglia with linear extent Lcl. Solving for Lcl gives
Lcl = Lcl(S,C̃ai). Such approaches were critically examined
in [9,32,40]. The problem with Eq. (30) emerges by noting
that the same relation (30) can be obtained from the equality
between the expression in (27a) and expression (27b) by using
Eq. (24) and multiplying with 1/σWO. This derivation shows
that the influence of Pc(S) on Lcl(S) is lost. More importantly,
it is clear from Eqs. (22a) and (22b) that the generalized
Darcy law requires path-connected and percolating phases.
Its application to disconnected trapped phases is questionable,
at least as long as cross terms are not included in the analysis
[42,43]. This casts some doubt on the interpretation of L ≈ Lcl

as a length scale of clusters.
More recently this cluster length Lcl was discussed using

Ca instead of C̃a in [5] following [40]. The idea is to assume
that mesoscopic (nonpercolating) clusters or trapped ganglia
are roughly of size

Lcl ≈ Li(S,vi) = k kr
i (S)|Pc(S)|
μi φ vi

, i = W,O , (31)

where the length scale Li(S,vi) is obtained from the macro-
scopic force balance by setting Fi(S,vi,L) = 1 in Eq. (27).
The capillary correlation from [5, Eq. (7)] is defined following
Eq. (27b) as (i = W,O)

CaAGOKB
i = μi φ vi Lcl(S,v,	)

k∗∗(S,v,	) Pc
∗∗(S,v,	)

(32)

by replacing the macroscopic length L with the mesoscopic
Lcl, the effective permeability k kr

i (S) with a computed
permeability k∗∗ = k∗∗(S,v,	), and the macroscopic capillary
pressure |Pc(S)| with a computed pore scale capillary pressure
Pc

∗∗ = Pc
∗∗(S,v,	). The quantities k∗∗ and Pc

∗∗ are obtained
from pore scale imaging ofP,W, andO by computations based
on digital image analysis. Their values depend on numerous
numerical and computational parameters summarized as 	.
Examples are segmentation thresholds, lattice constants, or
density functional parametrizations used by [5] to replace
more conventional computational fluid dynamics approaches.
Within the limits of applicability of the macroscopic consti-
tutive laws (23) and (24), such computational approaches are
expected to yield

k∗∗(S,v,	) ≈ k kr
i (S), (33a)

Pc
∗∗(S,v,	) ≈ Pc(S), (33b)

independent of v and 	. If this holds true, then inserting
Eq. (31) is expected to give

CaAGOKB
i ≈ 1, (34)

provided Lcl ≈ Li(S,vi) holds true. Measuring the cluster
length Lcl from fast x-ray computed microtomography [5,
Fig. 1] finds values of

CaAGOKB
i ≈ 10 (35)

from saturation-weighted averaging of the cluster size distri-
bution.

Note, also, that the length scale Li(S,vi) may often fall
between � and L, but it can also exceed beyond these limits.
In fact, 0 � Li < ∞ in general. The length scale Li cannot be
considered a new mesoscopic length scale, because it is not
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FIG. 1. Cross section of 2.6 mm × 2.5 mm (632 × 607 pixel,
16-bit gray values) at 4.1-μm resolution from a three-dimensional
computer tomographic image of a VitraPOR P2 Robu sintered glass
specimen. Matrix M is shown in gray, pores P are black.

derived from a new mesoscopic constitutive law. Mesoscopic
laws for Lcl, defined as the saturation-weighted average of
the distribution of cluster sizes, are also lacking at present.
Although constitutive laws for disconnected fluids have been
proposed in [19] and discussed in [21], the present article
will stay within the confines of the traditional Darcy-based
constitutive theory.

VII. APPLICATION TO EXPERIMENT

A. Definition of desaturation protocols

As emphasized above (see also footnote 2), the validity
of the generalized Darcy law (23) requires path-connected
fluids, i.e., fluid configurations that percolate from inlet
to outlet. Application of Cai from (28) to water flooding
desaturation experiments therefore requires that also the oil
configuration O(t0) is percolating at the initial time t0, if the
generalized Darcy law is assumed to describe the reduction of
oil saturation. An appropriate desaturation protocol consists of
M steps with

O(tk−1) = P, (36a)

W(tk−1) = ∅, (36b)

QO(t) = 0, tk−1 � t � tk (36c)

QW(t) = Qk χ[tk−1 ,tk ] (t), tk−1 � t � tk (36d)

with 1 � k � M and tk is chosen such that

[tk−1,tk] \ suppOO(t) 	= ∅ (37)

holds for every fixed k. Here Qk are constant and OO(t)
denotes the volumetric production rate (outflow) of oil. Its
support suppOO(t) is the set of time instants t ∈ R for which

OO(t) 	= 0 holds. Condition (37) means that the oil production
has stopped. During the experiment the oil phase is kept at a
sufficiently high ambient pressure so that, depending on the
pressure drop across the sample, also oil can enter the sample
during the water flood. The desaturation protocol (36) is a
continuous mode displacement where water is injected into
continuous oil. It will be referred to as CO/WI for short.

The CO/WI protocol (36) requires one to clean the sample
after each step and refill it with oil. This is costly and
time consuming. Many capillary desaturation experiments are
therefore performed in discontinuous mode. In discontinuous
mode the water injection rate QW is increased in steps, and
the initial configuration of step k is the final configuration of
step k − 1. The initial oil configuration O(t0) may or may not
be percolating. The desaturation protocol

O(tk−1) = arbitrary, 1 � k � M (38a)

W(tk−1) = arbitrary, 1 � k � M (38b)

QO(t) = 0, tk−1 � t � tk (38c)

QW(t) = Qk χ[tk−1 ,tk ] (t), tk−1 � t � tk (38d)

Qk � Qk+1, 1 � k � M − 1 (38e)

will be referred to as DO/WI (discontinuous oil/water in-
jection). Here tk is again chosen such that condition (37)
holds, i.e., one waits sufficiently long until the oil production
OO(t) after step k − 1 has ceased. For nonpercolating fluid
configurations the applicability of Eqs. (23) and (28) is in
doubt, as emphasized in [40] and known from experiment
[10].

To exclude gravity effects the water flow direction is usually
oriented perpendicular to gravity. In addition, the sample’s
thickness parallel to gravity is chosen much smaller than the
width of the capillary fringe �W = Pb/(
Wg), where 
W is
the mass density of water and g the acceleration of gravity to
minimize saturation gradients due to gravity.

Finally, a new protocol, introduced in [5], is used for
application to experiment in the next section. In [5] the
cylindrical sample was oriented vertically, parallel to the
direction of gravity, in contradistinction to the conventional
setup. The wetting fluid was injected from the bottom against
the direction of gravity. The sample was always wetted by
a water reservoir at the top. The water pressure in the top
reservoir was increasing during the experiment due to water
accumulation. A period of water injection was followed by a
period of imaging the fluid distributions. The new injection
protocol resulting from these procedures is defined as

|O(t0)| = (1 − SW i) |P|, (39a)

|W(t0)| = SW i |P|, (39b)

O(tk−1) = arbitrary, 1 � k � M (39c)

W(tk−1) = arbitrary, 1 � k � M (39d)

QO(t) = 0, tk−1 � t � tk (39e)

QW(t) = Qk χ[tk−1 ,tk ] (t), tk−1 � t � tk (39f)

Q2k = 0, 1 � k � M/2 (39g)

Q2k−1 � Q2k+1, 1 � k � M/2 (39h)
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where t2k+1 is chosen subject to condition (37). This protocol
will be referred to as DO/IWI/G, standing for discontinuous
oil/interrupted water injection/gravity. Note, however, that the
oil configuration was typically percolating at t = t0. During
the imaging intervals [t2k−1,t2k], resaturation and relaxation
processes may have changed the original fluid configuration
and saturation as compared to the instant when the pump was
switched off.

B. Application to mesoscopic experiments [5]

This section applies concepts and results from the preceding
sections to recent highly advanced capillary desaturation
experiments with simultaneous fast x-ray computed micro-
tomography [5]. The experiments in [5] used the DO/IWI/G
protocol defined in (39). The experiment had M = 5 steps with

Qk = 10k−2 μL/min = 1.666 6 × 10k−13 m3 s−1, (40)

vWk = Qk

φAS
= 4.17 × 10k−8m s−1, (41)

as injection rates and, respectively, phase velocities. After
reaching stationary water flow without oil production, the non-
wetting phase saturations remaining inside the sample were
measured and found to be SO1 = 0.75,SO2 = 0.75,SO3 =
0.5,SO4 = 0.3,SO5 = 0.2.

The experiments were performed on sintered borosilicate
glass, commercially available as VitraPOR P2 from ROBU
Glasfilter Geräte GmbH (Hattert, Germany). A quadratic cross
section of this porous medium with a side length of 2.6 mm
is shown in Fig. 1 to illustrate its pore structure. The pore
structure is less homogeneous than that of certain natural
sandstones often used for pore scale and core scale studies.
A cylindrical specimen

S = [0,L] × {x ∈ R2 : |x| � d} (42)

of this porous medium with diameter

d = 0.025 23 m, (43a)

length

L = 0.087 78 m, (43b)

and total volume |S| = 4.388 5 × 10−5 m3 was measured
to have a pore volume of |P| = 1.409 0 × 10−5 m3 and a
grain volume of |M| = 2.979 5 × 10−5 m3. Its porosity and
Klinkenberg-corrected air permeability,

φ = 0.321, (44a)

k = 8.952 × 10−12 m2, (44b)

correspond to a well-permeable, medium- to coarse-grained
sandstone. Mercury injection porosimetry was performed on
this sample. It showed a breakthrough pressure of P

Hg
b ≈

258 4 Pa, resulting in a typical pore size of roughly 56 μm
if

σHg = 0.48 N m−1, (45a)

ϑHg = 139◦, (45b)
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FIG. 2. Capillary pressure Pcj (S) and relative permeabilities
kr

i j (S) for drainage (symbols, j = dr) and imbibition (smooth solid,
j = im) i = W,O. The capillary pressure for drainage is obtained
from mercury porosimetry on VitraPOR P2 by rescaling according
to Eq. (47) with a Leverett J-function ansatz. The imbibition curve
and all relative permeabilities shown were specified theoretically,
because experimental data were not available. Their values shown
here are typical and were used in all computations.

are used for the surface tension and contact angle of mercury,
respectively. The capillary desaturation experiments in [5]
were performed using n-decane as the nonwetting fluid O
and water with CsCl as contrast agent as the wetting fluid W.
The mercury pressures can be rescaled with

σWO = 0.03 N m−1, (46a)

ϑWO ≈ 35◦, (46b)

to the water/n-decane system according to

Pc(S) = σWO cos(ϑWO)

σHg cos(ϑHg)
Pc

Hg(S), (47)

if the Leverett J-function scaling is assumed to to be valid. The
rescaled mercury drainage pressure function in the range up to
3086 Pa is shown in the upper part of Fig. 2 with crosses. For
subsequent computations the imbibition curve and the relative
permeabilities shown in Fig. 2 had to be assumed theoretically,
because experimental data were not available. The particular
choice for their functional form will influence the numerical
results, but is not important for our theoretical argument. The
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fluid viscosities were

μW = 0.89 × 10−3 Pa s, (48a)

μO = 3.0 × 10−3 Pa s, (48b)

for water denoted W and n-decane denoted as O.
The capillary desaturation experiments in [5] were per-

formed not on the full sample S, but on a small subset of S.
That cylindrical subsample had

d = 0.004 m, (49a)

L = 0.01 m, (49b)

AS = 1.26 × 10−5 m2, (49c)

where AS denotes the cross-sectional area.3

The resulting microscopic capillary numbers were4

C̃aWk = μWvWk

σWO
= 1.23 × 10k−9, (50)

with k = 1,2,3,4,5. To compute the macroscopic capillary
number from (28) the characteristic pressure Pb is taken from
the rescaled drainage curve in the upper part of Fig. 2 as

Pb ≈ 1753 Pa. (51)

With this the macroscopic capillary numbers for the L =
8.778-cm sample are

CaWk = μW φ vW L

k Pb
≈ 6.60 × 10k−5 (52)

for k = 1,2,3,4,5, while they are

CaWk = 7.52 × 10k−6 (53)

for the 1-cm sample. Note that the width �W of the capillary
fringe of water

�W = Pb


Wg
≈ 0.179 m (54)

is around 18 cm, where 
 = 1000 kg m−3 is the density of
water and g is the acceleration of gravity.

Figure 3 compares the experimental observations to the the-
oretical predictions. Assuming L to be fixed, the theoretically
predicted capillary desaturation curve SO(CaW; F ) for fixed
force balance F is obtained from the solution S(CaW; F ) of
Eq. (27),

F = fW(S,CaW), (55)

as SO(CaW; F ) = 1 − S(CaW; F ). Figure 3 shows two capil-
lary desaturation curves SO(CaW; 1) for water injection into
continuous oil according to the CO/WI protocol (36). One
curve (crosses) represents drainage, while the solid curve

3Assuming perfect isotropy, the dimensionless aspect ratio ma-
trix becomes diagonal with Â = diag(1.99,1.99,0.25) according to
Eq. (28) in [40]. Because of the ratio of Axx/Azz ≈ 8, it should be
kept in mind that geometric factors can change the force balance by
an order of magnitude.

4These capillary numbers differ from those shown in Fig. 1 of [5]
by a factor φ.
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FIG. 3. Two theoretical capillary desaturation curves
SO(CaW; 1) for water injection into continuous oil according
to the CO/WI protocol (36) with force balance F = 1. One curve
(crosses) assumes drainage, the other curve (solid) uses imbibition.
The lower plateau value of the imbibition curve (solid) is given
by the the zero of Pc

imb [see Eq. (60)]. At this saturation F = ∞
diverges, and below it CaW cannot be expected to represent the
correct force balance (due to breakup of the nonwetting phase into
disconnected ganglia). Crosses are computed using the rescaled
mercury drainage pressures and relative permeabilities for drainage
shown in Fig. 2. The solid curve without symbols is computed from
the imbibition curves in Fig. 2. Also shown are three experimental
capillary desaturation correlations plotting the experimental values
SOk with k = 1,2,3,4,5 as squares against C̃aW from Eq. (50), as
triangles against CaW from Eq. (53), and as circles against CaW
from Eq. (52).

represents imbibition. Crosses are computed using the rescaled
mercury drainage pressures and relative permeabilities for
drainage shown in Fig. 2. The solid curve without symbols
is computed from the imbibition curves in Fig. 2. The values
of SO r = 0.15 and 1 − SW i = 0.75 are indicated by dashed
horizontal lines.

If all assumptions underlying the traditional equations and
the derivations of SO(CaW; F ) hold true, then the experimental
results are expected to fall in between the two limiting drainage
and imbibition curves. To test this expectation, Fig. 3 shows
three experimental capillary desaturation correlations. The
experimental values SOk with k = 1,2,3,4,5 are plotted as
squares against C̃aW k from Eq. (50), as triangles against CaW k

from Eq. (53), and as circles against CaW k from Eq. (52).
This comparison between theory and experiment rules out the
use of microscopic capillary number C̃aW k as the abscissa in
capillary desaturation curves. The misleading use of this num-
ber is still widely spread in current literature, although it has
been criticized already in [9,32]. The comparison with CaW k

confirms the predictions of traditional two-phase flow theory
as far as orders of magnitude are concerned. However, it must
be emphasized that the comparison uses the CO/WI protocol
for theory, but the DO/IWI/G protocol for experiment. The
theoretical predictions restrict capillary desaturation curves to
the region CaW < 1. This prediction is a consequence of the
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fact that the traditional theory cannot account for disconnected
nonpercolating fluid parts. Figure 3 represents, to the best
of our knowledge, the first example in which bounds for
capillary desaturation curves have been predicted based solely
on the constitutive functions of the traditional two-phase flow
theory.

C. Predictions for new experiments

This section introduces for the first time continuous mode
capillary saturation experiments in analogy to capillary desat-
uration experiments. The new saturation protocol is defined
as

O(tk−1) = P, (56a)

W(tk−1) = ∅, (56b)

QO(t) = Qk χ[tk−1 ,tk ] (t), tk−1 � t � tk (56c)

QW(t) = 0, tk−1 � t � tk (56d)

where 1 � k � M . For each fixed k the time tk is chosen such
that

[tk−1,tk] \ suppOW(t) 	= ∅ (57)

holds, i.e., such that the water production has ceased. The
saturation protocol (56) will be referred to as CO/OI protocol
(continuous oil/oil injection). To the best of our knowledge,
such capillary saturation experiments with CO/OI protocol
have not been performed.

During the CO/OI protocol the water phase is kept at a suffi-
ciently high ambient pressure so that water can enter the sample
while oil is injected. If the ambient pressure is sufficiently high
and the oil injection rates are small, the resulting displacement
process is expected to show strongly interacting mesoscopic
cluster dynamics with numerous breakup and coalescence
processes of mesoscopic clusters.

Applying the theoretical prediction from Eq. (27) yields
capillary saturation curves SO(CaO; F ) for fixed force balance
F from solutions S(CaO; F ) of the equation

F = fO(S,CaO), (58)

as SO(CaO; F ) = 1 − S(CaO; F ), analogous to capillary de-
saturation curves shown in Fig. 3. The theoretically predicted
bounding capillary saturation curves S(CaO; 1) for drainage
(crosses) and imbibition (solid curve) are displayed in Fig. 4,
using again the function Pc,k

r
W,kr

O shown in Fig. 2. Exper-
iments following the CO/OI protocol are expected to fall in
between these two limiting curves. Figure 4 shows that the
region between the curves becomes narrow for CaO ≈ 0.1
or 0.3 � SO � 0.7 for the chosen parameters. In this region,
strongly interacting mesoscopic clusters are expected to arise
from strongly fluctuating breakup and coalescence of oil
ganglia. This expectation is consistent with theoretical network
modeling in [44] and with recent experimental observations
of two temporal regimes of percolating and nonpercolating
fluid flow during imbibition into Gildehauser sandstone
in [45].
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FIG. 4. Theoretically predicted capillary saturation curves for oil
injection into continuous oil according to the CO/OI protocol (56) at
F = 1. The curve with crosses corresponds to drainage, the solid line
without symbols to imbibition.

VIII. DISCUSSION

A. Theoretical predictions

This article has introduced theoretical predictions from
Eq. (27) shown in Fig. 3 for continuous mode capillary
desaturation that until now seem to have remained unnoticed
within the established traditional theory of two-phase flow.
The predictions illustrated in Fig. 3 provide a quantitative
basis to discuss deviations observed in capillary desaturation
experiments. They help to establish limits of validity for the
traditional theory, as well as for continuous mode desaturation.
Predictions require precise knowledge of Pc(S),kr

W(S), and
kr
O(S), emphasizing the importance and need for reliable

special core analysis of high quality.

B. Protocol dependence

The efficiency of residual oil recovery during water flooding
depends not only on the balance of forces, but also on other
factors, such as the distribution of fluids inside the medium
and/or the desaturation protocol. The difference between
continuous-mode and discontinuous-mode desaturation is
known in the literature and it may change the critical capillary
number (breakpoint) by several decades (see, e.g., [40]).
The present paper suggests for the first time equally strong
differences between the DO/IWI/G and DO/WI protocols.
For the latter protocol the breakpoint is sometimes found
decades above unity. Further studies of protocol dependence
are encouraged to corroborate and clarify such differences and
their origin.

C. Plateau saturation

If the saturation or desaturation process is experimentally
reproducible, one expects for the CO/WI and CO/OI protocols
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that

W(ti) ≈ W(tj ), (59a)

|W(ti)| ≈ |W(tj )|, (59b)

S(ti) ≈ S(tj ) ≈ Sp, (59c)

holds in the limit where Qi → 0 and Qj → 0 are both very
small. The saturation Sp denotes the plateau saturation. It is
seen from Fig. 3 as well as Fig. 4 that the plateau saturation
will in general differ from SO r. It fulfills either Sp � 1 − SW i

or Sp � Sz, where Sz is defined as the zero,

Pc
imb(Sz) = 0, (60)

on the capillary pressure curve for secondary imbibition. The
actual value is expected to depend on the protocol.

D. Computation of Pb from image analysis

The stationary pore scale pressure fields Pi (̃x) (i = W,O)
are generally assumed to represent equilibrium pressures for
local thermodynamic equilibrium, although the stationary
phase velocities vi may be nonzero. Even at vi = 0 the
pressures cannot be constant throughout the pore space
P, because curved interfaces exist in local thermodynamic
equilibrium within P.

The macroscopic capillary pressure Pc(S,v) from Eq. (24)
measured in experiments for a sample with saturation S at
constant flow velocity v is typically measured using pressure
sensors located in the oil and water reservoirs outside the
sample. These pressure sensors average the local equilibrium
pressure field Pi (̃x) over the surface ∂D of the sensor.
Assuming that the local equilibrium pressures Pi (̃x; S) depend
parametrically only on S but are independent of v, one has

Pc(S) = 1

|∂DO|
∫

∂DO

PO (̃x; S)d2x̃

− 1

|∂DW|
∫

∂DW

PW (̃x; S)d2x̃, (61)

where ∂Di denotes the sensor surface located in the reservoir of
phase i. In [5] a pore scale capillary pressure Pc

∗∗ is computed
from image analysis of oil clusters as a surface area weighted
average of mean curvatures over the fluid-fluid interface during
the imaging intervals without flow (v = 0). In other words, a
formula such as

Pc
∗∗(S,0,	; w) = σWO

|∂(W ∩ O)|
∫

∂(W∩O)
w(̃x)κ (̃x)d2x̃ (62)

with a weighting function w(̃x) was used to estimate Pb.
The weighting function is based on estimating the fluid-fluid
interfacial area, which in turn depends on the method and
parameters of discretizing the interface. Here κ (̃x) is the
estimate of the local curvature of the interface. The computed
capillary pressures Pc

∗∗(S,0,	; w) reported in Fig. 2(a) of [5]
range between 250 Pa and 380 Pa. This would suggest a value
of

Pb(	; w) = 315 Pa (63)

for the characteristic pressure Pb. We emphasize that clusters
at much higher local Pc have been observed in the exper-

iments. The weighting function w emphasizes the largest
cluster, and this cluster had very low mean curvature. A
precise mathematical relation between Pc and Pc

∗∗ cannot be
given without a rigorous connection between the microscopic
Newton and Laplace law and the macroscopic generalized
Darcy law (cf. Sec. VI). Equations (61) and (62) above do not
establish such a connection because the domains of integration
are disjoint, i.e., ∂Di ∩ ∂(W ∩ O) = ∅. The derivation of
macroscopic capillary properties of porous media expressed
through Pc(S) from microscopic knowledge of the curvature
field κ (̃x) remains a challenge.

E. Cooperative dynamics and inertial effects

Inertial effects and cooperative dynamics of mesoscale
clusters have been visualized using recent advances in x-ray
microcomputed tomography synchrotron beamlines [46]. The
cooperative dynamics is believed to be related to leading
and trailing menisci connected via viscous pressure gradients.
These inertial effects are not visible on the scale of a single
pore. In a porous medium burst-type events are observed, as
reported in [47] and [48]. In [46] it is shown that large events
seem to be more frequent than suggested by simple percolation
models.5 While a single pore scale event occurs over the
millisecond time scale [50], i.e., displacement in a single
pore, the occurrence of multiple spatially correlated events
has been observed to decay over the second time scale [46].
These observations might possibly indicate the emergence of
a mesoscopic time or length scale intermediate between pore
size � and system size L. Recent experimental evidence from
[11] suggests that cluster lengths are flow rate dependent and
widely distributed, ranging from many hundreds of pores down
to a single pore. If such a cluster length or other mesoscopic
length and/or time scale exists, its upper and lower limits are
unknown at present. This challenges, also, the interpretation
of laboratory-based results.

IX. CONCLUSIONS

This article has studied the process dependence of capillary
desaturation curves S(Ca) from the perspective of established
theory and uncovered several new results. It has introduced
a mathematical expression for S(Ca) in terms of relative
permeabilities and normalized capillary pressure functions that
has apparently remained unnoticed so far. The article confirms
the analysis of the traditional equations of motion by [9,32]
and accounts for all explicit and implicit dependencies during
desaturation experiments within the limits of applicability of
the generalized Darcy law and capillary pressure hypothesis.
The following new results have been obtained by combining
Darcy’s law with microscopic arguments. Firstly, this article
provides predictive bounds on capillary number correlations
(capillary saturation curves) for oil injection experiments.

5Simple percolation models [49], while containing a diverging
length scale at the percolation transition, are difficult to apply in
the present context because of very strong geometric correlations and
because invasion percolation models are limited to the slow drainage
limit.
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Secondly, it proposes new capillary saturation experiments
with oil injection instead of water injection. Thirdly, the
suggested novel CO/OI protocol is expected to be dominated
by flow processes involving mesoscale cluster rearrangement.
This is expected to allow for an evaluation and improved
understanding of the emergence or not of mesoscale behavior
with a new mesoscopic length scale. Fourthly, Eq. (27)
introduces a relation between capillary desaturation curves
and the product kr (S)Pc(S) that seems to have remained
unnoticed so far. Fifthly, the large variation of breakpoints
in capillary desaturation curves has for the first time been
partially explained as resulting from the factor kr (S)Pc(S) in
Eq. (27). Finally, the article analyzes the plateau saturation
and breakpoint in capillary desaturation curves. Based on the

traditional two-phase flow theory, the breakpoint may vary
by several decades. It is found that this variation depends
not only on capillary number, but also on protocol, initial
conditions, boundary conditions, and other details of the
capillary desaturation experiment.
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