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Hysteresis in relative permeabilities suffices for propagation of saturation overshoot:
A quantitative comparison with experiment
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Traditional Darcy theory for two-phase flow in porous media is shown to predict the propagation of
nonmonotone saturation profiles, also known as saturation overshoot. The phenomenon depends sensitively on the
constitutive parameters, on initial conditions, and on boundary conditions. Hysteresis in relative permeabilities is
needed to observe the effect. Two hysteresis models are discussed and compared. The shape of overshoot solutions
can change as a function of time or remain fixed and time independent. Traveling-wave-like overshoot profiles
of fixed width exist in experimentally accessible regions of parameter space. They are compared quantitatively
against experiment.
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I. INTRODUCTION

A recent theoretical analysis [1] and parameter study [2]
suggest the computation of quantitative numerical solutions
of traditional models of two-phase flow with hysteresis in
relative permeabilities for application to the longstanding
problem of nonmonotone saturation profiles (also known as
saturation overshoot) in porous media [3–18]. Displacement
processes in porous media are known to cause theoretically
difficult phenomena, such as saturation overshoot, gravity
driven fingering, or preferential flow paths, under experimental
conditions in which a drainage front follows an imbibition
front [3,4,10,11,16,18].

Many authors have excluded saturation overshoot solutions
for traditional models of two-phase flow on physical or mathe-
matical grounds [5,6,8,9,12,16,19], at least within the Richards
model from hydrology [20]. “As a result of anomalous
experimental results” (see [16], p. 4531) there is “a wide spread
belief that the standard multiphase model is incomplete”
(see [16], p. 4531) and “that the Richards equation, or
any other continuum description, would likely be physically
inadequate” (see [10], p. W04215-6). Incompleteness of the
standard multiphase model in turn implies “the necessity of
extensions to the multiphase flow equations to describe the
unstable flow” (see [16], p. 4531). Overshoot profiles can be
generated by introducing extraneous terms into the Richards
equation [21]. Relaxation terms have been proposed in [19] to
produce unstable flows and fingering. Extensions from static to
so-called dynamic capillarity were investigated in [9,12,17].
Multiphase flow equations based on a phase field approach
were suggested in [13,14].

Despite the widespread belief that the standard multiphase
model is incomplete, a recent investigation has reported
evidence to the contrary [1]. Extensive numerical simulations
have demonstrated the existence of significant saturation
overshoot. In Ref. [2] the influence of initial and boundary
conditions on the height, propagation, growth, and decay of
saturation overshoot was explored in depth.

Given the theoretical controversy, a direct and quantitative
test of theory against experiment becomes important. Light
transmission experiments were performed systematically in
[10]. Other experimental observations are available from
[3,4,7,11]. Results indicate a sensitive dependence on experi-
mental parameters. It was found that overshoot does not exist

below a minimum infiltrating flux or above a maximum initial
water saturation. Although the results in [10] are reported as
traveling wave profiles of constant width, the experimental
tolerance for the difference between the velocity of the
drainage and the imbibition front could be non-negligible.
More experiments on longer columns would be desirable to
determine the accuracy within which the width of the overshoot
region is constant.

II. PROBLEM AND OBJECTIVE

The problem discussed in this work arises from three facts.
Experiments have demonstrated the existence of nonmonotone
saturation profiles [3,4,7,10,11]. The experimental observa-
tions are considered to be outside the range of applicability of
the standard two-phase flow equations [5,6,8,16,19]. Recent
investigations suggest that hysteresis in the relative perme-
abilities might reproduce the experimental observations in the
context of traditional theory at least in the Buckley-Leverett
limit [1,2]. The key problems have been highlighted in an
intuitive physical manner in Secs. 1 and 2 of Ref. [1].

The results in [1,2] leave open the problem whether
the jump-type hysteresis model can be applied quantita-
tively to experimental observations such as those reported
in [3,4,7,10,11]. Moreover, the jump-type hysteresis model
employed in [1,2] exhibits discontinuities of fractional flow
not present in experiment.

The problem solved in this paper is to compute solutions of
a simple but more realistic hysteresis model with continuous
(reversible) scanning curves. The model is parametrized
using experimentally realistic parameters and its solution
gives quantitative predictions for the column experiments of
[3,4,7,10,11].

Accordingly, this paper has two specific objectives. The
main objective is to formulate a generalization of the jump-
type hysteresis model for the water infiltration experiments
described in [10] and to solve the resulting mathematical
model with hysteresis numerically. The second objective is
a brief comparison of the generalized hysteresis model with
the previously used jump-type model.

The results are surprising. Contrary to longstanding claims
in the literature, saturation overshoot profiles comparable to
real experiments are possible within the traditional Darcy
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theory for two-phase flow in porous media using monotone
relative permeability and capillary pressure functions.1 More-
over, the theoretical and experimental profiles are found to be
in quantitative agreement.

III. MATHEMATICAL MODEL

A. Equation of motion

Consider two-phase flow in a one-dimensional porous
medium S within the traditional Darcy theory. The porous
medium is vertically oriented and it contains two immiscible
fluids, a wetting phase W and a nonwetting phase O. The
hysteretic fractional flow formulation reads

φ
∂S

∂t
+ Q

∂

∂z

[
fG(S) − DG(S)

∂S

∂z

]
= 0, (1)

with z ∈ R and t � 0. The symbol φ is the porosity, Q is the
total volume flux, and the saturation S(z,t) of the wetting phase
W is the unknown. The fractional flow function is denoted by
fG(S), and DG(S) is the capillary coefficient. The symbol G
denotes a graph that represents the flow process.

The graph G is a time-dependent subset of the set [0,1] ×
R+ × R+ × R representing the (S,kr

W,kr
O,pc) space. Here

kr
W is the relative permeability of the wetting phase and

kr
O is the relative permeability of the nonwetting phase.

Further, pc = P ′
c = dPc/dS is the derivative of the capillary

pressure Pc(S) with respect to the saturation S. The graph is a
triplet

G = (GW,GO,Gc), (2)

where GW is a graph in the (S,kr
W) plane, GO is a graph

in the (S,kr
O) plane, and Gc is a graph in the (S,pc) plane.

The graphs GW and GO are subsets of [0,1] × R+ and the
graph Gc is a subset of [0,1] × R. The time dependence
of G reflects the process dependence of the parameter
function.

For (S,X) ∈ GW and (S,Y ) ∈ GO the value of the fractional
flow fG(S) � 0 at the saturation S for the flow process G
is

fG(S) =
1 + kg

QμO
Y (�W − �O)

1 + μW

μO

Y

X

, (3a)

1Reference [22] states that the traditional theory “cannot produce
the observed nonmonotonic profiles for constant boundary conditions
and monotonic P-S and K-S curves due to its diffusive nature”
and “[the] traveling wave profile is monotonic, as long as the
unsaturated conductivity is positive and convex (increasing faster than
linearly with saturation), and the capillary pressure is monotonically
decreasing (i.e., the derivative of Pc(S) is always negative). Hysteresis
does not play a role . . ..” While these statements hold true for the
parabolic limit, it was shown in [1,2] that already existing overshoot
profiles inside the porous medium can propagate due to hysteresis
as traveling waves in the hyperbolic limit. The constitutive functions
ki
W : [0,1] → R, ki

O : [0,1] → R, and pi
c : [0,1] → R used in [1,2]

are identical to those used here and they are monotone functions.

where k is the absolute permeability, �W and �O are the
densities of the wetting and nonwetting phases, μW and μO

are the viscosities, and g is the gravitational acceleration. For
(S,X) ∈ GW, (S,Y ) ∈ GO, and (S,Z) ∈ Gc the value of the
capillary coefficient DG(S) � 0 at the saturation S for a flow
process G is

DG(S) = −
X

k

QμW
Z

1 + μO

μW

X

Y

, (3b)

where Q is the total flux.
At each given and fixed position z ∈ R the local flow

process G is obtained from a hysteresis model. For rate-
independent hysteresis models the hysteresis operators are usu-
ally written as maps that map the function S(z,·) : [0,∞) →
[0,1] at fixed z to one of the parameter functions X(z,·) :
[0,∞) → R+, Y (z,·) : [0,∞) → R+, or Z(z,·) : [0,∞) → R
at z. Such hysteresis operators are then written as integrals over
elementary plays and stops [23,24]. In contrast, the hysteresis
operator in this paper is a mapping that maps a function
S(z,·) : [0,∞) → [0,1] to a time-dependent graph G(t).

B. Hysteresis models

1. Reversible scanning curves

In our hysteresis model with reversible scanning curves,
also called the δ-model for short, the graphs for the relative
permeabilities and the capillary pressure consist of three
subgraphs: one subgraph for primary imbibition (labeled with
im), one for secondary drainage (labeled with dr), and one
subgraph for reversible scanning curves (labeled with sc)
that interpolate between primary imbibition and secondary
drainage. The idea behind reversible scanning curves in the
δ-model is a degeneracy or collapse of normal scanning loops
as schematically shown in Fig. 1. The left panel of Fig. 1
shows an example of a scanning loop and the right shows the
associated reversible scanning curve.

The dashed lines in Fig. 1 are (primary or secondary)
drainage or imbibition curves forming the (sufficiently equili-
brated) boundaries of the main hysteresis loop. The solid lines

S

k
r W

dr

im

sc

S

k
r W

dr

sc

im

FIG. 1. Schematic illustration of a scanning loop (left subfigure)
and a reversible scanning curve (right subfigure) for kr

W(S). Scanning
curves (solid lines) are labeled sc. Main branches (dashed lines) are
labeled im (imbibition) or dr (drainage).
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are scanning curves interpolating between the main curves.
Graphs for imbibition, drainage, and scanning curves are
defined as

Gi
W = {

(S,X) ∈ [
Si

min,S
i
max

] × R+ : X = ki
W(S)

}
, (4a)

Gi
O = {

(S,Y ) ∈ [
Si

min,S
i
max

] × R+ : Y = ki
O(S)

}
, (4b)

Gi
c = {

(S,Z) ∈ [
Si

min,S
i
max

] × R : Z = pi
c(S)

}
, (4c)

with i = dr,im,sc. The saturations Si
min and Si

max are specified
in Eq. (10) and the functional forms ki

W(S), ki
O(S), and pi

c(S)
are given in Sec. III C below.

For fixed z ∈ R the hysteresis operator H(z,t) at time
instant t � 0 maps a piecewise monotone function S(z,·)
to a graph G(z,t) ⊂ [0,1] × R+ × R+ × R. Let Mpm([0,t])
and Mpc([0,t]) denote the sets of piecewise monotone
and piecewise constant functions on [0,t], respectively.
Then H(z,t) = H3(z,t) ◦ H2(z,t) ◦ H1(z,t) is defined as a
composition of three operators with

H(z,t) : Mpm([0,t]) → [0,1] × R+ × R+ × R,

S(z,·) �→ G(z,t); (5a)

H1(z,t) : Mpm([0,t]) → Mpc([0,t]),

S(z,·) �→ S∗∗(z,·); (5b)

H2(z,t) : Mpc([0,t]) → Mpc([0,t]),

S∗∗(z,·) �→ S∗(z,·); (5c)

H3(z,t) : Mpc([0,t]) → [0,1] × R+ × R+ × R,

S∗(z,·) �→ G(z,t). (5d)

The intermediate piecewise constant functions S∗∗(z,·) and
S∗(z,·) are defined using the decomposition

0 = t0 < t1 < t2 < · · · < tN(t) = t (6)

of the time interval [0,t] such that S(z,·) is monotone on each of
the subintervals [t i ,t i+1]. Then the piecewise constant function
S∗∗(z,·) is defined as

S∗∗(z,t) = S(z,t i) (7)

for all t ∈ [t i ,t i+1) and all i = 0, . . . ,N(t) − 1. At each z the
piecewise constant function S∗(z,·) is defined for t ∈ [t i ,t i+1)
as

S∗(z,t) = S∗∗(z,t i−k) (8a)

whenever for fixed i = 0, . . . ,N(t) − 1 the inequalities

|S∗∗(z,t i−k−1) − S∗∗(z,t i)| � δ, (8b)

|S∗∗(z,t i−j ) − S∗∗(z,t i)| < δ (8c)

hold for all 0 � j � k. The number δ > 0 is a model parameter
independent of z and t . The number δ gives the name of
δ-model.

The graphG(z,t) at position z and time t in Eq. (5) is defined
as the triple

G(z,t) = (GW(z,t),GO(z,t),Gc(z,t)), (9a)

where

Gj (z,t) = G im
j (z,t) ∪ Gsc

j (z,t) ∪ Gdr
j (z,t) (9b)

S

k
r W

0.51 A 0.81 10

0.2

0.4

0.6

sc

im

dr

FIG. 2. Illustration of GW for the δ-model with δ = 0.3 and
A = 0.66. For S ∈ [0,A − δ/2] the solid line is the (equilibrated)
secondary drainage main branch, for S ∈ (A − δ/2,A + δ/2) it is
the reversible scanning curve, and for S ∈ [A + δ/2,1] it is the
(equilibrated) primary imbibition main branch.

for j = W,O,c. A graph GW for the wetting phase relative
permeability is illustrated in Fig. 2. The graphs Gj

i with i =
dr,im,sc and j = W,O,c were defined in Eq. (4) above. The
saturations Si

min and Si
max in Eq. (4) are defined as

Sdr
min = 0, (10a)

Sdr
max = Ssc

min = A − δ/2, (10b)

Ssc
max = S im

min = A + δ/2, (10c)

S im
max = 1, (10d)

where δ > 0 and A ∈ [0,1]. It is the saturation interval for the
reversible scanning curve. The number A ∈ [0,1] at position z

and time t , defined as

A(z,t) =
{
S∗(z,t) − δ/2 if S∗(z,t) � S(z,t)

S∗(z,t) + δ/2 if S∗(z,t) � S(z,t),
(11)

is the center saturation of the interval [A − δ/2,A + δ/2].

2. Jump-type hysteresis

The jump-type hysteresis model used in [1,2] is a special
case of the reversible δ-model. In this case the hysteresis
parameter is δ = 0 and

A(z,t) = S∗(z,t) = S∗∗(z,t) (12)

holds for all z and t . The scanning curves disappear altogether
and the graphs G(z,t) only consist of primary imbibition and
secondary drainage branches. Equation (9) degenerates into

G(z,t) = (GW(z,t),GO(z,t),Gc(z,t)), (13a)

Gj (z,t) = G im
j (z,t) ∪ Gdr

j (z,t) (13b)

for j = W,O,c.
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C. Functional forms

The definition of the hysteresis operator and the mathe-
matical model is now completed by specifying the functional
forms ki

W(S), ki
O(S), and pi

c(S) used in Eq. (4). The functional
form of the main primary imbibition curve is

kim
W(S) = Ke

Wim

[
S im

e (S)
]αim

, (14a)

kim
O (S) = Ke

Oim

[
1 − S im

e (S)
]βim

, (14b)

P im
c (S) = Pbim

{[
S im

e (S)
]−1/γim − 1

}1−γim
, (14c)

S im
e (S) = S

1 − SOr
, (14d)

where the parameters Ke
Wim, Ke

Oim, and Pbim are the end
points; the parameters αim, βim, and γim are exponents; and the
effective saturation S im

e depends on the irreducible saturation
of the nonwetting phase SOr. The functional form of the
secondary drainage curve is chosen similarly as

kdr
W(S) = Ke

Wdr

[
Sdr

e (S)
]αdr

, (15a)

kdr
O(S) = Ke

Odr

[
1 − Sdr

e (S)
]βdr

, (15b)

P dr
c (S) = Pbdr

{[
Sdr

e (S)
]−1/γdr − 1

}1−γdr
, (15c)

Sdr
e (S; SWi,SOr) = S − SWi

1 − SWi − SOr
, (15d)

where Ke
Wdr, Ke

Odr, and Pbdr are the end points; αdr, βdr, and
γdr are the exponents; and the effective saturation depends on
the irreducible saturation of the wetting SWi as well as on SOr.

The reversible scanning curves for the relative permeabili-
ties are defined as linear interpolations

ksc
W(S) = bW − aW

δ

[
S −

(
A − δ

2

)]
+ aW, (16a)

ksc
O(S) = bO − aO

δ

[
S −

(
A − δ

2

)]
+ aO (16b)

between the points (A − δ/2,aW) and (A + δ/2,bW) in the
(S,kr

W) plane and (A − δ/2,aO) and (A + δ/2,bO) in the
(S,kr

O) plane. The scanning curves in the capillary pressure
are defined as cubic interpolations

P sc
c (S; A,δ,ac,bc,cc,dc) =

4∑
k=1

ψkS
4−k, (17a)

ψ1 = cc + dc

δ2
− 2

bc − ac

δ3
, (17b)

ψ2 = bc − ac

δ2
− cc

δ
−

(
3A − δ

2

)
ψ1, (17c)

ψ3 = bc − ac

δ
− 2Aψ2 −

(
3A2 + δ2

4

)
ψ1, (17d)

ψ4 = ac −
(

A − δ

2

)
ψ3 −

(
A − δ

2

)2

ψ2 −
(

A − δ

2

)3

ψ1

(17e)

between the points (A − δ/2,ac) and (A + δ/2,bc) in the
(S,Pc) plane and (A − δ/2,cc) and (A + δ/2,dc) in the (S,pc)

plane. The cubic interpolation ensures osculation in Pc and pc

and continuity in D. The parameters that define the reversible
scanning curves in the δ-model are

aW = kdr
W(S = A − δ/2), (18a)

bW = kim
W(S = A + δ/2), (18b)

aO = kdr
O(S = A − δ/2), (18c)

bO = kim
O (S = A + δ/2), (18d)

ac = P dr
c (S = A − δ/2), (18e)

bc = P im
c (S = A + δ/2), (18f)

cc = pdr
c (S = A − δ/2), (18g)

dc = pim
c (S = A + δ/2), (18h)

where pc(S) = dPc(S)/dS.

IV. METHODS OF SOLUTION

A. Rankine-Hugoniot conditions

Analytical arguments based on Rankine-Hugoniot
conditions were introduced and discussed in [1,2]. These
will be employed here again to discuss the propagation of
an overshoot. A nonmonotone saturation profile propagating
in the positive z direction consists of an imbibition front
followed by a drainage front. The propagation velocity of
a shock front with saturations S1,S2 and S1 � S2 can be
calculated with the Rankine-Hugoniot condition

cG(S1,S2) = fG(S2) − fG(S1)

S2 − S1
(19)

for a process G. Below G = G im or G = Gdr ∪ Gsc and S1,S2 ∈
{Sout,S in,SP}, where Sout is the constant saturation to the right
of the overshoot, S in is the saturation to the left, and SP is the
plateau value of the overshoot. One has SP > S in > Sout and
SP � SWelge, where SWelge is the saturation at which the Welge
tangent touches the fractional flow function (see [25], Fig. 6-4).

B. Numerical methods

The numerical solutions of Eqs. (1)–(18) were computed
with Open∇FOAM, an open source toolkit for computa-
tional fluid mechanics [26]. In order to solve Eq. (1) with
Open∇FOAM, the solver routine derived from the solver
scalarTransportFoamwas employed [2]. The second-order
term had to be regularized by a maximum function replacing
DG(S) with maxS∈[0,1]{DG(S),Dc} with a constant Dc to avoid
oscillations at the imbibition front due to small values of the
capillary flux functions (Dc = 0.05 m for problems A, C, and
D and Dc = 0.025 m for problem B).

The time derivative was discretized with an implicit Euler
scheme, the divergence with an explicit Gauss cubic scheme,
and the second-order term with an implicit Gauss linear
corrected scheme. The discretized system was solved with an
incomplete Cholesky conjugate gradient solver (ICCG) [26].
The spatial discretization is 
z = 1/16 000 m = 0.0625 mm
and the temporal discretization is 
t = 0.01 s. It was checked
that the results are visibly independent of this choice. The
error bars of plotted saturation profiles are of the order of the
linewidth.
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TABLE I. Model parameters, their symbols, units, and values. The last two columns list published experimental values and the publication
from which they are taken.

Parameter Symbol Unit Value Expmt. value Reference

porosity φ – 0.348 0.348 [27], Tables 2 and 3
permeability k m2 2 × 10−10 2 × 10−10 [15], Table 1
density W �W kg/m3 1000 1000 [15], Table 2
density O �O kg/m3 1 0 [15], Table 2
viscosity W μW Pa s 0.001 0.001 [15], Table 2
viscosity O μO Pa s 0.00003 0.00003 [15], Table 2
imbibition expt. relative permeability W αim – 7
imbibition expt. relative permeability O βim – 1.9
drainage expt. relative permeability W αdr – 1.8
drainage expt. relative permeability O βdr – 2
end point relative permeability Ke

W im – 0.5
end point relative permeability Ke

Oim – 1
end point relative permeability Ke

Wdr – 0.5
end point relative permeability Ke

Odr – 0.75
imbibition expt. capillary pressure γim – 0.9206 0.8413 [15], Table 3
drainage expt. capillary pressure γdr – 0.906 0.9057 [15], Table 3
imbibition capillary pressure Pbim Pa 690 555 [15], Table 3
drainage capillary pressure Pbdr Pa 700 1000 [15], Table 3
end point saturation SWi – 0.12
end point saturation SOr – 0.04
gravitational acceleration g m/s2 9.81
total flux Q m/s 5 × 10−5

V. COMPARISON OF HYSTERESIS MODELS

To compare the two hysteresis models from Sec. III B
consider a nonmonotone saturation profile similar to that
shown in Fig. 5 but with slightly different parameters

SP = 0.83, (20a)

S in = 0.5, (20b)

Sout = 0.01 (20c)

for the overshoot plateau SP, the saturation S in at the inlet,
and the saturation Sout at the outlet. Assume the values given
in Table I to compute the fractional flow functions fGim for
the imbibition process at the leading step and fGdr∪Gsc for the
drainage process at the trailing step. The resulting imbibition
function fGim (S) is plotted as the solid curve and the drainage
function fGdr∪Gsc (S) as the dashed curve in Fig. 3.

The imbibition curves fGim (S) in Fig. 3 are identical for
both hysteresis models (the jump-type hysteresis is shown in
the right panel and the δ-model is shown in the left panel). The
imbibition curves (solid line) start at S = 0 and end at S =
1 − SOr = 0.96 in both hysteresis models. This corresponds
to a primary imbibition process.

The drainage curves, however, agree only on a subinter-
val starting at S = SWi = 0.12 and ending at S = 0.78. In
this interval [0.12,0.78] the drainage curves coincide with
a secondary drainage process. In the jump-type hysteresis
model the process changes abruptly and discontinuously from
primary imbibition to secondary drainage at S = 0.83. As
a consequence, the drainage curve fGdr (S) of the jump-type
hysteresis still agrees with a pure secondary drainage process
on the interval [0.78,0.83]. In the δ-model, however, the

drainage curve fGdr∪Gsc (S) for S ∈ [0.78,0.83] interpolates as
a continuous scanning curve between the imbibition value
fGim (0.83) at S = 0.83 and the drainage value fGdr (0.78) at S =
0.78. This corresponds to the parameters δ = 0.5, A = 0.805,
and S∗ = 0.83 for the dashed drainage curve of the δ-model
shown in the right panel of Fig. 3. The points (SP,fGim (SP)),
(SP,fGdr (SP)), (Sout,fGim (Sout)), and (S in,fGdr (S in)) are marked
respectively as ©1, © 2,, and � in Fig. 3 using the values
in Table I and Eq. (20).

The straight solid lines in Fig. 3 connect the fractional flow
function values fGim (0.01) at S = Sout = 0.01 and fGim (0.83)
at S = SP = 0.83 for the leading imbibition front. Their slope
is the dimensionless propagation speed

cG(0.01,0.83) = 7.19 (21)

of the imbibition front for G = G im from Eq. (19). The velocity
of the imbibition front is the same in both hysteresis models.

The dimensionless propagation speed of the trailing
drainage front predicted by Eq. (19) differs significantly
between jump-type hysteresis and the δ-model. The numerical
values

cG(0.5,0.83) =
{

14.23 jump-type hysteresis

3.79 δ-model hysteresis
(22)

are found from inserting all parameters. Here G = Gdr ∪ Gsc

for the δ-model hysteresis and G = Gdr for the jump-type
hysteresis. The value 14.23 corresponds to the dashed secant
connecting � and ©2 (jump-type), while 3.79 corresponds to
the dashed secant � and ©1 (δ-model) in the right panel in
Fig. 3.
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FIG. 3. Shown on the left are the fractional flow curves fG(S) for imbibition G = G im (solid line) and drainage G = Gdr (dashed line) for
the jump-type hysteresis model with parameters from Table I. Straight line secants represent the imbibition front (solid line connecting ©1
and ) and the drainage front (dashed line connecting ©2 and �). On the right are fractional flow curves fG(S) for imbibition G = G im (solid
line) and drainage G = Gdr ∪ Gsc (dashed line) for the δ-hysteresis model for the parameters from Table I. Secants represent the imbibition
front (solid line connecting ©1 and ) and the drainage front (dashed line connecting ©1 and �). In both plots the slope of a secant equals
the front propagation speed from Eq. (19).

VI. COMPARISON OF THEORY AND EXPERIMENT

A. Experimental observations and parameters

Systematic water (wetting phase) infiltration experiments
into air saturated quasi-one-dimensional columns were con-
ducted in Ref. [10]. Saturation overshoot profiles, observed by
light transmission, were studied as a function of infiltration
flux, initial water saturation, grain size, and grain sphericity.
It was found that the existence or nonexistence of overshoot
depends sensitively on the experimental parameters. It was
concluded in [10] that saturation overshoot profiles propagate
as traveling waves with a fixed profile and constant velocity.

Two experiments from [10] have been selected to compare
the experimental observations with numerical solutions of
the traditional Darcy model in Eqs. (1)–(18). These are the
infiltration experiments with 20/30 sand and the water flow
rates qW = 0.79 cm/min and 0.079 cm/min shown in Fig. 5
in [10]. The experiment with qW = 0.79 cm/min is called
experiment A and the experiment with qW = 0.079 cm/min
is called experiment B for short. The data sets were selected
because they show the most clearly pronounced overshoot.
The experimentally observed saturation profiles from Fig. 5
in [10] are replotted as the dashed lines in the right panels of
Figs. 5 and 6.

The original unpublished light transmission data of experi-
ments A and B show initially the buildup of a highly saturated
layer at the top of the column. For qW = 0.79 cm/min
(experiment A) its saturation increases slowly until SP ≈ 0.81,
while for qW = 0.079 cm/min (experiment B) SP ≈ 0.62 is
reached. Approximately at tB ≈ 230 s (for experiment A)
after the beginning of the infiltration the saturation in the
top layer drops suddenly to S in ≈ 0.4 and stays around this
value for the rest of the experiment. For experiment B a
sudden drop from SP ≈ 0.62 to S in ≈ 0.2 is observed around

tB ≈ 1800 s after starting the experiment. This sudden drop
induces a nonmonotone saturation profile that propagates for
times t > tB. These overshoot profiles seem to propagate with
almost constant overshoot width and nearly constant front
velocities through the column. The column had a length of
40 cm. These observations for experiments A and B are
summarized in Table II.

In Table I the last two columns provide the values of various
parameters in the infiltration experiments from Tables 2 and
3 in [27] and Tables 1–3 in [15] together with the source
of publication. The values for porosity φ, permeability k,
density of the wetting phase �W, and viscosities are taken from
Tables 2 and 3 in [27] and Tables 1 and 2 in [15]. Experimental
parameters for the main branches of the capillary pressure are
found in Table 3 in [15].

Unfortunately, not all experimental parameters are available
from the literature. Reference [10] does not give information
about the relative permeabilities of the various sands filling
the column. Reference [15] (Table 1 therein) does not consider
hysteresis in the relative permeabilities. Therefore, the model
parameters for the main branches of the relative permeabilities
in Eqs. (14a), (14b), (15a), and (15b) and the capillary
pressure parameters in Eqs. (14c) and (15c) have to be
specified inversely such that overshoot solutions are obtained.
It turns out that this is possible for reasonable experimentally
realizable values.

TABLE II. Specifications of experimental overshoot solutions.

Experiment Water flux Sout S in SP tB

A qW = 0.79 cm/min ≈0 ≈0.4 ≈0.81 ≈230 s
B qW = 0.079 cm/min ≈0 ≈0.2 ≈0.62 ≈1800 s
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TABLE III. Initial and boundary values in simulations.

Problem Sout S in SB tB ω δ

A 0.01 0.388 0.81 220 s 0.125 0.05
B 0.01 0.206 0.63 1800 s 0.5 0.05
C 0.01 0.5 0.81 220 s 0.125 0.05
D 0.01 0.25 0.81 155 s 0.125 0.05

B. Initial and boundary values

Initially the one-dimensional porous medium is uniformly
saturated with a constant initial saturation

S(z,t = 0) = Sout. (23)

The experimentally observed initial buildup of a highly
saturated layer at the top of the column is modeled as a transient
time-dependent boundary condition

S(z = 0,t) =
⎧⎨
⎩

SB

(
t

tB

)ω

, t � tB

S in, t > tB
(24)

at the inlet, z = 0, during an initial time interval [0,tB]. The
values of SB, tB, ω, S in, and Sout used in the simulations are
given in Table III. The boundary function at the inlet is chosen
such that for t = tB the profile is a single shock front with
saturation SB to the left of the shock and Sout to the right
of a steep shock front. The column is idealized as infinitely
extended. For the outlet at z = ∞ a constant saturation

S(z → ∞,t) = Sout (25)

is prescribed. Problems A and B are discussed in this section,
while the problems C and D will be discussed in Sec. VII.

C. Quasianalytical results

Consider problems A and B with the parameters from
Tables I and III and the δ-model for δ = 0.05. Figure 4 shows
the fractional flow curves for problem A (left) and problem B
(right). The imbibition curve fGim (S) is shown as a solid line.
The drainage curve fG(S) with G = Gdr ∪ Gsc is the dashed
line. For the drainage scanning curve the values S∗ = 0.81
and A = 0.785 were used in problem A. In problem B the
values S∗ = 0.63 and A = 0.605 were used. For the rest of
this subsection the symbol Gdr is defined to stand for the graph
G = Gdr ∪ Gsc.

For times t > tB the saturation drop at the inlet induces a
nonmonotone saturation profile. Depending on the parameter
values, the overshoot can decay, grow, or stay constant as
it propagates into the medium. It can be characterized using
SP = SB, the plateau saturation; S in, the saturation left of the
overshoot; and Sout, the saturation right of the overshoot.

The imbibition secants connecting the points
(Sout,fGim (Sout)), marked as triangles , with the points
(SB,fGim (SB) = fGdr (SB)), marked as circles ©, represent the
leading imbibition front. The drainage secants connecting the
points (SB,fGim (SB) = fGdr (SB)), marked as circles ©, with
the points (S in,fGdr (S in)), marked as squares �, represent the
trailing drainage front. The slopes of the secants are equal to
the dimensionless propagation velocities of the two saturation
fronts.

Inserting the parameter values and using Eq. (19) gives
identical propagation velocities for drainage and imbibition.
The dimensionless numerical values are

cGim (0.01,0.81) = cGdr (0.388,0.81) = 6.612 (26)

for problem A and

cGim (0.01,0.63) = cGdr (0.206,0.63) = 1.656 (27)

for problem B. This can also be seen graphically in Fig. 4.
Therefore, the nonmonotone saturation overshoot profiles

S

f G
(S

)

0.388 0.81 0.96

0

3

6

9

11
A

S

f G
(S

)

0.206 0.63 0.96
0

3

6

9

11
B

FIG. 4. Fractional flow curves fG(S) for G = Gim (solid lines) and G = Gdr ∪ Gsc (dashed lines) for problem A (left) and problem B (right).
The parameters are given in Tables I and III. The secants connecting the points marked as , �, and © represent the imbibition and drainage
fronts.

043112-7



R. STEINLE AND R. HILFER PHYSICAL REVIEW E 95, 043112 (2017)
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A

FIG. 5. Shown on the left is the numerical solution S(z,t) of problem A using Open∇FOAM for times 0 � t � 500 s. For better visibility
a mesh with 
z = 0.05 m and 
t = 50 s is shown as an overlay. The constant and identical propagation velocities of both fronts and the
constant plateau width of both fronts for t > tB are clearly visible. On the right are the experimental (dashed line) and theoretical (solid line)
saturation profiles S(z,420 s) at time t = 420 s. The experimental profile is from [10] and the model parameters are from Tables I and III.

propagate in both cases as traveling waves of fixed shape
through the porous medium.

D. Simulation results

Figure 5 shows the numerical solution of problem A.
The right panel of Fig. 5 compares snapshots of theory and
experiment at time t = 420 s, similar to Fig. 5 in [10]. The
dashed line represents the measured experimental profile. The
solid line is the theoretical result. The agreement of both
profiles in overshoot height, overshoot width, and steepness
of the saturation fronts is nearly perfect.

The left panel of Fig. 5 shows the full time evolution of
the theoretical result as a three-dimensional surface plot. The
top layer (z → 0) at the inlet saturates until t = 220 s. For
t > 220 s the trailing drainage front enters and propagates in
the porous medium. The time evolution shows clearly that for
the parameters of problem A, the width and velocity of the
profile are constant, as it was claimed in [10] to be the case for
the experiment. The numerical value 6.612 of the propagation
velocity in problem A agrees with the value observed in
experiment A with infiltration rate qW = 0.79 cm/min.

Figure 6 shows the numerical solution of problem B. The
right panel of Fig. 6 shows the comparison between experiment
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0

0.2

0.4

0.6
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B

FIG. 6. Shown on the left is the numerical solution S(z,t) of problem B for times 0 � t � 3000 s. For better visibility a mesh with

z = 0.05 m and 
t = 250 s is shown as an overlay. On the right are the experimental (dashed line) and theoretical (solid line) saturation
profiles S(z,2640 s) at time t = 2640 s. The experimental profile is from [10] and the parameters are from Tables I and III.

043112-8



HYSTERESIS IN RELATIVE PERMEABILITIES . . . PHYSICAL REVIEW E 95, 043112 (2017)

B (dashed line) and the numerical solution (solid line) at
t = 2640 s. Again the agreement of both saturation profiles
is almost perfect.

The left panel of Fig. 6 shows the full time evolution of the
numerical solution. Until t = 1800 s the top layer saturates.
After the saturation drops at t = 1800 s a drainage front enters
the porous medium. Again the width and velocity are seen to
be constant. The numerical value 1.656 of the propagation
velocity in problem B agrees with the value observed in
experiment B with infiltration rate qW = 0.079 cm/min.

In all simulations reported here the numerically mea-
sured propagation velocities of the numerical solution agreed
perfectly with the quasianalytical velocities computed from
the Rankine-Hugoniot condition. This applies also to the
numerical results of the next section.

VII. NONTRAVELING NONMONOTONE
SATURATION PROFILES

The purpose of this section is to illustrate the effect of
increasing or decreasing the boundary saturation S in at the
inlet for problem A. For S in > 0.388 (problem C) one expects
from the left panel of Fig. 4 that this will decrease the speed of
the drainage front. For S in < 0.388 (problem D) one expects
that the drainage front is faster and could catch up with the
imbibition front. The parameters for problems C and D are
listed in Table III and the computed results are displayed in
Fig. 7.

The left panel of Fig. 7 shows the numerical solution of
problem C where S in = 0.5 and the other parameters are the
same as in problem A. It can be seen that cGim (Sout,SP) >

cGdr∪Gsc (S in,SP), so the leading imbibition front propagates
faster than the trailing drainage front. As a consequence, for

time t > tB, the width of the overshoot region increases lin-
early in time. This broadening of the overshoot region as well
as the overshoot height is well pronounced. The observed front
velocities agree quantitatively with the velocities calculated
from the Rankine-Hugoniot conditions (19).

The right panel of Fig. 7 shows the numerical solution of
problem D, which is obtained from problem A by changing
ceteris paribus S in to S in = 0.25 and tB to tB = 155 s as
listed in Table III. The time tB was reduced somewhat such
that the time needed to reach constant saturation is not
unnecessarily long. The resulting time evolution for t > tB

is now more complex. It can be split into four stages. First,
for tB < t � 200 s the width of the overshoot decreases
as predicted analytically. During this time the overshoot
height stays constant. Second, for 200 s < tB < 610 s, both
the overshoot height and the overshoot width decrease. Due
to the decrease of the overshoot height, the propagation
velocities of the imbibition and drainage front change. At
t ≈ 610 s the overshoot saturation is SP = 0.6903. Now the
inequality

cGim (Sout = 0.01,SP � 0.6903)

� cGdr∪Gsc (S in = 0.25,SP � 0.6903) (28)

holds for the changed propagation velocities. In the third
stage 610 s � t � 1100 s the overshoot height still decreases
due to diffusive effects, but the overshoot width increases
because the imbibition front is faster than the drainage front.
Finally, in the fourth stage, the saturation profile for t >

1100 s is nonmonotone with overshoot height SP ≈ 0.674 and
increasing overshoot width.

FIG. 7. Shown on the left is the numerical solution S(z,t) of problem C for 0 � t � 500 s. The solution exhibits overshoot saturation
SP = 0.81 and increasing overshoot width. For better visibility a mesh with 
z = 0.05 m and 
t = 50 s is shown. On the right is the numerical
solution S(z,t) of problem D for 0 � t � 2000 s. A mesh with 
z = 0.1 m and 
t = 200 s is shown. For 0 � t < tB = 155 s the solution
is a step function with a single increasing step height. For 155 s � t < 200 s the profile is nonmonotone with decreasing overshoot width.
For 200 s � t � 610 s the overshoot width and height decrease until SP reaches SP ≈ 0.6903 around t ≈ 610 s. For 610 s � t � 1100 s
the overshoot saturation decreases further to SP ≈ 0.674, but the overshoot width starts to increase, because cGim (0.01,SP � 0.6903) �
cGdr∪Gsc (0.25,SP � 0.6903). For t � 1100 s the profile is nonmonotone with constant overshoot SP ≈ 0.674 and increasing overshoot width.
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VIII. SUMMARY

Two hysteresis models have been studied, a jump-type
hysteresis without scanning curves and the δ-model with con-
tinuous reversible scanning curves. The jump-type hysteresis
model from [1,2] has been identified as the case δ = 0 within
the one-parameter family of δ-models. It was shown that both
models can explain propagation of nonmonotone saturation
overshoot profiles in water infiltration experiments.

In both models the existence or nonexistence of saturation
overshoot depends only on hysteresis in the relative perme-
abilities. Hysteresis in capillary pressure is not needed. This
was checked by setting the saturation-dependent capillary
coefficient DG(S) = D to a constant.

It was also checked that the value of δ in the δ-model
has no influence on the existence or propagation of overshoot
solutions as long as S in � A(z,t) − δ/2 for all z and t . The
value of δ influences only the shape of the saturation profiles
and the steepness of the saturation front.

Numerical solutions with realistic model parameters are
found to reproduce the propagation of experimental non-
monotone saturation overshoot profiles quantitatively. The

overshoot height, width, and the time scale of propagation of
the nonmonotone saturation profiles are in perfect agreement
with existing column experiments. The initiation of satura-
tion overshoot solutions was modeled using time-dependent
boundary values during a transient initial time interval.

Additionally, it was predicted that there exist nontraveling
nonmonotone saturation profiles with broadening overshoot
regions. In the case presented here the nonmonotone profile
exhibits decreasing overshoot width at first, but transforms
later into a profile with increasing overshoot width due to
complex nonlinear coupling to a decreasing overshoot height.
Experiments on longer columns are suggested to confirm or
disprove the theoretically predicted existence of overshoot
profiles whose width is not constant.
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