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Abstract 

Local porosity distributions and local percolation probabilities have been 
proposed as well defined and experimentally observable geometric charac- 
teristics of general porous media. Based on these concepts the dielectric 
response is analysed using the effective medium approximation and perco- 
lation scaling theory. The theoretical origin of static and dynamic scaling 
laws for the dielectric dispersion and enhancement including Archie’s law 
in the low porosity limit are elucidated. These well known experimental 
facts are unified within a theoretical framework based on a quantitative 
characterization of the pore space geometry. In the high porosity limit 
the zero frequency real dielectric constant is predicted to diverge as 
~’(0) E (1 - 4)-” where # denotes porosity and m’ is analogous to the 
cementation exponent. 

An improved theoretical understanding of the physics of 
porous media is important scientifically and technologically. 
A much investigated physical question is the dielectric 
response arising in the study of propagation of electromag- 
netic waves in heterogeneous media [l-251. This paper is 
concerned with the dielectric response of water saturated 
rocks. The effective, complex and frequency-dependent 
dielectric function 40) of water wet clay free rocks shows 
experimentally three interesting features [l-71: 

(1) large values of the real dielectric permittivities ~’(0) at 
zero frequencies, sometimes exceeding those of both constit- 
uent phases; 

(2) dielectric dispersion in the low frequency regime 
where the constituent phases are dispersion free; and 

(3) Archie’s phenomenological law for the real conduc- 
tivity o’(0) cc 4”’ where 4 is the porosity of the medium 
defined as the volume of pore space divided by the total 
volume. 
The exponent m is called the cementation index and it 
ranges experimentally between m x 1 and m x 4. In the 
absence of electrochemical effects all three features arise 
from the randomness in the pore space geometry [6,7]. 

My objective in this paper is to discuss a recent mean 
field approach [27, 281 inside which the above experimental 
facts can be understood. The approach is based on a novel 
geometric characterization of porous media via local por- 
osity distributions (LPD’s) and local percolation probabil- 
ities (LPP’s) which will be defined below. These geometric 
quantities are conceptually well defined and experimentally 
observable. The dielectric properties are calculated directly 
from the geometric characteristics using effective medium 
theory and scaling theory. The results are intended to be 
applicable to the physics of water or brine saturated clay 
free rocks where electrochemical effects are absent. 

Despite numerous efforts over many years the theoretical 
understanding of the experimental situation is not coherent 
and usually limited to individual aspects. Theoretical 

approaches during the last decade [8] can be divided into 
two categories: The first class [9-171 attempts to calculate 
the dielectric properties starting from highly simplified or 
indirect geometric models for the pore space. The second 
category [18-231 does not attempt to incorporate the pore 
space geometry, but concentrates instead on a sometimes 
sophisticated phenomenological approach. This shows that 
the fundamental problem of the physics of porous media lies 
in their geometric characterization. 

Geometrical characterization of porous media is in prac- 
tice often limited to a determination of the porosity 4. 
Clearly 4 alone, being just a single number, cannot suffice to 
characterize the complex pore space geometry. On the other 
hand a complete mathematical description of the pore space 
boundary considered as a random two dimensional contin- 
uous manifold contains too much (possibly irrelevant) geo- 
metrical information. It is often suggested to use a “pore size 
distribution” as a possible geometric characterization for 
porous media, and mercury injection is suggested to 
measure it. It is well known, however, that the pore size 
distribution is mathematically ill defined [24, 251. 

Let me therefore take a different approach by considering 
the porosity itself instead of the “pore size” as the funda- 
mental random variable. This leads immediately to suggest 
local porosity distributions (LPD’s) and local percolation 
probabilities (LPP’s) as partial geometric characterizations 
of the pore space, and these quantities will be defined next. 
Starting from these new geometric characterizations the 
validity and theoretical origin of static and dynamic scaling 
laws for the dielectric response of porous media (e.g. 
Archie’s law) will be discussed. 

The geometric characterization is based on viewing the 
local geometry and its porosity on a mesoscopic scale as the 
fundamental random quantity. To define “local geometries” 
consider a porous medium with a homogeneously and iso- 
tropically disordered pore space. The points of Bravais 
lattice (in practice a simple cubic lattice) are superimposed 
on the porous medium and an arbitrary (in practice cubic) 
primitive cell is chosen. The local geometry around the 
lattice point R is defined as the intersection of the pore 
space and the primitive cell at R. The volume of the primi- 
tive (or measurement) cells is VMc = l/p where p is the 
density of Bravais lattice points. This defines the length scale 
of resolution L as L = p-’I3 = (vMc)1’3. For the simple 
cubic lattice with cubic’primitive cell L is the lattice con- 
stant. The preceding definition of local geometries is valid 
for topologically and continuously disordered pore spaces. 
For a porous medium with substitutional disorder the 
measurement lattice is given by the underlying lattice. 

The local geometry inside the measurement cell will 
become increasingly complex as the length scale of 

Physica Scripta T44 



52 R.  Hilfer 

resolution L is increased. A full geometric characterization 
at arbitrary L is difficult. However, at every L the local 
geometry may be partially characterized by two simple 
properties. One is the cell porosity, the second is whether 
the pore space percolates or not. 

Consider first the local (or cell) porosity. The local poro- 
sity +(R, L) at the lattice position R and length scale L is 
defined as +(R, L) = p xMc(r; R, L)xw(r) d3r where xMc(r; 
R, L) is the characteristic function of the measurement cell 
at R having size L, xdr) is the characteristic function of the 
pore space and the integration extends over the porous 
medium. The characteristic (or indicator) function xA(r) of 
an arbitrary set A is defined as xA(r) = 1 if r E A and 
xA(r) = 0 if r 4 A.  One can now define LPD functions in 
analogy to atomic distribution functions. Thus, ,U(+, R ;  L) 
measures the probability density to find the local porosity 4 
in the range from 4 to 4 + d 4  in a cell of linear dimension 
L at the point R. The assumption of homogeneity implies 
that p(#, R ;  L) =,U(+; L) must be independent of R. The 
function p ( 4 ;  L) will be called the LPD at scale L. The bulk 
porosity 6 can be thought of as the integral over a large 
volume or as the average over a statistical ensemble of mea- 
surement cells, and thus 

b = 4(R, L + 00) = 4/49; L) d 4  (1) s,‘ 
independent of R and L. Higher order distribution functions 
can be defined similarly. The n-cell local porosity distribu- 
tion function p,,(d1, R I ;  +,, R,;  . . .; 4,,, R,;  L) at scale L 
measures the probability density to find in the cell at R I ,  
4, in the cell at R , ,  etc. The full information about the 
statistical properties of the porosity distribution at scale L is 
contained in the local porosity probability functional 
,U(+; L }  at scale L which is obtained as the limit n --f 00 of 
P”. 

The local porosity distribution p(4; L) depends strongly 
on L. There are two competing effects. At small L the local 
geometries are simple, but they are highly correlated with 
each other, and the one-cell-function ~ ( 4 ;  L) does not 
contain these complex geometric correlations. At large L the 
local geometries are statistically uncorrelated but each one 
of them is nearly as complex as the geometry of the full pore 
space. There must then exist an intermediate length scale L* 
at which on the one hand the local geometries are relatively 
simple, and on the other hand the single cell distribution 
function has sufficient nontrivial geometric content to be a 
good first approximation. In this paper this length will be 
taken as a length of the order of the characteristic pore or 
grain size of the porous medium. More precisely, a porosity 
correlation length 5 is determined from the 2-cell distribu- 
tion function , ~ , ( 4 ~ ,  RI;  d,, R, ;  L) as described in Refs [27] 
and [29]. In the following the “local porosity distribution” 
is defined as p ( 4 )  = p ( 4 ;  () the single cell LPD at scale 5. 
Simultaneously with this convention it will be assumed, that 
the local geometries at scale ( are “simple”. This is called 
the “hypothesis of local simplicity”, and it will be made 
more precise below. For systems with an underlying lattice 
symmetry the length 5 has to be replaced by the lattice con- 
stant. 

The definition of LPDs as p ( 4 ;  5 )  is optimal in the sense 
that it contains the maximum amount of information based 
purely on the porosity concept. If the cells were chosen 
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much larger than 5 then the simple form p(4 ;  L 9 e )  = 
ij(4 - 6) is expected to result. The geometric information in 
this case is reduced to 6, and the local geometries are nearly 
as complex as the bulk geometry. If on the other hand the 
cells are chosen very small, i.e. L 6 {, then the measurement 
is expected to yield p ( 4 ;  L 6 5 )  = @(4 - 1) + (1 - 6)6(+). 
Again the geometrical information in p ( 4 )  is reduced to a 
single number. 

The most important aspect of p ( 4 )  = p ( 4 ;  () is that it 
is readily measurable using modern image processing 
equipment. It can be measured from photographs of two- 
dimensional thin sections through the pore space, as dis- 
cussed elsewhere in more detail [29]. 

The local porosity distribution p($) is easily calculated for 
ordered or substitutionally disordered porous media, but 
difficult to obtain for topological or continuum disorder. 
For ordered or substitionally disordered cases the measure- 
ment lattice is given by the underlying lattice, and ( is the 
lattice constant. For the ordered case one finds immediately 
p ( 4 )  = ij(4 - +ce,J where q5cell is the porosity in the unit cell. 
For substitutional disorder the LPD follows directly from 
the distribution of the individual geometrical elements 
which occupy the lattice sites. 

The second geometric property to characterize local 
geometries is whether the pore space percolates or not. For 
cubic cells each cell is classified as percolating or non- 
percolating according to whether or not there exists at least 
one face of the cube which can be connected to any of the 
other faces via a path contained completely inside the pore 
space. For noncubic cells the classification has to be modi- 
fied appropriately. Let L(4) denote the fraction of perco- 
lating cells with local porosity 4. A(4) will be called “local 
percolation probability” (LPP). It is an important geometric 
quantity for all physical properties of porous media such as 
conduction or fluid flow because it determines whether 
volume elements are permeable or not. 

Based on the geometric characterization of the pore space 
through p(4) and A(+) it is now possible to study physical 
problems such as the dielectric response. Consider again the 
subdivision of the porous medium into cells of length <. 
Because all cells are statistically independent standard one 
cell effective medium theory [26] can be employed to write 
a selfconsistency equation for the effective dielectric con- 
stant &(U) of the medium which reads 

Here &(a) = &’(U) + i[a’(o)/o] where E‘ is the effective real 
dielectric constant, and 0’ is the effective conductivity, and 
&do; 4) and EAU; 4) are the frequency-dependent, complex, 
local, effective dielectric constants. The index C stands for 
conducting (percolating) local geometries, and the index B 
for blocking (non-percolating) cells. To use eq. (2) it is 
assumed that the local geometries are “simple” and there- 
fore the local dielectric constants can be obtained from 
simple model geometries. This “hypothesis of local simpli- 
city’’ underlies every effective medium approach. It will be 
assumed that this hypothesis can be cast into mathematical 
form by requiring that a’(o = 0; 4) can be expanded into a 
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power series as a:(O; $) = $(Cl + C, $ + 9 a )  for small $, 
and that the inverse real dielectric constant has the expan- 
sion [ E ~ ( O ;  $)]-I = (1 - $)[Bl + B,(1 - $) + around 
$ = 1. The divergence of E; for blocking geometries of large 
porosity is the well known thin plate effect. 

The most interesting consequence of eq. (2) is that it 
implies the existence of a percolation transition underlying 
porous media. This does not contradict the fact that most 
porous media appear to remain connected to arbitrarily 
small $ (Archie’s law) because the control parameter is not 
the porosity $ but the total fraction of percolating local 
geometries 

(3) 

The percolation threshold, p ,  = 4 has its usual effective 
medium value. In the rest of this paper some of the conse- 
quences of the underlying percolation transition will be 
reviewed briefly. A more detailed account is given elsewhere 
[27,28]. 

Using the scaling theory for the percolation transition 
and assuming that the effective medium approximation 
remains asymptotically exact in more than one dimension 
[30] the well known result for the d.c. conductivity a’(0) a 
a’+ I p - pe I t  is obtained. Here a’+ is defined through 

(4) 

and t is the universal conductivity exponent. The real d.c. 
dielectric constant diverges with the superconductivity expo- 
nent s as ~’(0) a E‘- I p - p ,  I-’ where 

1 

6’- = s, $)Cl - 44)1P(4) d$. (5 )  

Because of the hypothesis of local simplicity these formulas 
are valid whenever A($) and p($) are such that 

l$-lA($)p($) d$ exists. 

The interest in these consequences lies in the fact that 
they shed new light on the question of universality and 
scaling in porous media. Most publications on the electrical 
properties of porous media discuss the phenomenological 
scaling law [ 8 ]  between d.c. conductivity and bulk porosity 

a’(0) cc 6‘“ (6) 
called “Archie’s law”, which is usually written in terms of 
the formation factor F = [o’(O)] - The widespread accep- 
tance of eq. (6) as a fundamental law for the physics of 
porous media is rather surprising in view of the fact that 
most experimental data [l-3,7, 171 rarely span more than a 
decade in porosity. Correspondingly the cementation expo- 
nent m is found to scatter widely between m x 1 and m x 4. 
Equation (6) should not be interpreted as a relation between 
conductivity and pore space geometry, as it is often done in 
the well logging literature [l]. Instead it is shown next that 
within the present approach eq. (6) must be viewed as a 
statement about physical processes which reduce the bulk 
porosity. 

Sedimentary and related rocks arise from sedimentation 
and subsequent compactification and cementation pro- 
cesses. The bulk porosity $ changes during the sedimenta- 

tion history of the rock. The physicochemical processes 
during sedimentation change the local dielectric and geo- 
metric properties. Within the present formulation these pro- 
cesses affect primarily A($) and p($). This implies that a’+ 
and p depend upon 6, and consequently a’(0) will change 
with 6. Without a particular physical model it is only pos- 
sible to discuss some general consequences. Clearly a’+($) 
should tend to zero as $ + 0, and it should approach the 
conductivity ok of water filling the pore space for 6 + 1. It 
seems also plausible that p($) should decrease as $ is 
lowered. If one assumes that a’+($) and p($) can be expand- 
ed around $ = 0 as a’+($) = &+(0)4 + j8‘+(0)42 + * * * and 
p(4) = p(0) + HO)$ + where superscripted dots denote 
derivatives then it follows that a’($) cc ir+(O)$Cp(O) - p ,  
+ p(O)$ + . -1‘. This resembles eq. (6). In particular if it 
happens that p(0) x p ,  , i.e. if criticality is approached as 
$ -+ 0 then Archie’s law follows with a cementation expo- 
nent m = 1 + t .  More generally, if A($) and p($) change with 
6 such that a’+($) a and p($) a p ,  + h(O)$‘“p then m = 
m, + mp t .  Even more complicated results for m are obtained 

if the integral 1 $-‘A($)p(c#~) d$ does not exist. It is sur- 

prising that the simplest result for m, namely m = 1 + t ,  pre- 
dicts an exponent in the range from m = 2 for p 9 pc to 
m = 1 + t x 3 for p x p ,  as often found in experience. 
Nevertheless the cementation exponent will in general be 
very different for different compaction processes, and 
without physical models for such processes even a non- 
monotonous behaviour of a’(0; $) is possible. In Ref. [28] a 
general class of compaction models called “local porosity 
reduction models’’ has been introduced. These models 
exhibit a one parameter family of cementation indices which 
depend on geometric details of the compaction process [28] .  
The important result here is that the present approach pro- 
vides for the first time a general framework inside which the 
apparent phenomenological universality and scaling proper- 
ties of porous media in the low porosity limit might be 
understood. 

A second interesting consequence is that the approach 
predicts similar scaling laws for the dielectric constant in the 
high porosity limit $ + 1. This is a consequence of the thin 
plate effect, implicit in the hypothesis of local simplicity, and 
analogous assumptions about the physical process of dilu- 
tion. Dilution plays the same role for E’ as the compaction 
process for a’. In the high porosity limit it is predicted that 
~’(0) a (1 - 4)-‘“’. Here the “dilution exponent” m’ is given 
in the simplest case as m’ = 1 + s where s is the supercon- 
ductivity exponent. In the more general case m’ = mi + mbs. 
The exponents mi and mb characterize the behaviour of E‘- 

and p as $ + 1. The new scaling law predicted for the real 
d.c. dielectric constant might be experimentally observable 
in water filled pore casts of systems obeying Archie’s law. 

Finally, the frequency dependence of E(O) reveals informa- 
tion about p(4) and A($). Scaling behaviour of a@) and 
&’(a) as functions of frequency obtains whenever p is close to 

In summary local porosity distributions and local perco- 
lation probabilities provide a partial geometric character- 
ization of the complex pore space geometry in porous 
media. From these well defined and experimentally acces- 
sible geometric quantities the dielectric response of general 

* 

1 

P, ~ 2 7 1 .  
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porous media resulting from geometrical disorder has been 
analysed using effective medium theory and scaling theory. 
It was found that the theory predicts an underlying perco- 
lation transition, which may or may not appear as a por- 
osity threshold for conduction. This provides a theoretical 
framework inside which Archie’s law can be understood as a 
statement about the sedimentation history of rocks. In par- 
ticular the universal applicability of this phenomenological 
relationship appears as a consequence of the universality of 
the percolation transition. Simplest mean field theory gives 
the value m = 2 for the cementation exponent in the low 
porosity limit. A new scaling law for the divergence of the 
real dielectric constant is predicted in the high porosity 
limit. This law should be observable in conductor filled 
insulating pore casts of systems obeying Archie’s law. The 
present theory contains no adjustable parameters or dis- 
tribution functions. The dielectric response is calculated 
directly from geometrical quantities. Recently also the 
hydrodynamical flow problem has been treated by a similar 
approach [28]. The results corroborate the findings report- 
ed here and indicate good agreement with experimentally 
observed scaling relations [28]. Experimental observation of 
local porosity distributions and local percolation probabil- 
ities must answer the question whether they are suitable 
geometric characteristics for distinguishing different classes 
of porous media or not. 
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