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Abstract A sequence of drainage and imbibition shocks within the traditional theory of two-
phase immiscible displacement can give rise to shallow non-monotone saturation profiles
as shown in Hilfer and Steinle (Eur Phys J Spec Top 223:2323, 2014). This phenomenon
depends sensitively onmodel parameters and initial conditions. The dependence of saturation
overshoot on initial conditions is investigated more systematically in this article. The results
allow to determine regions in the parameter space for the observation of saturation overshoot
and to explore limitations of the underlying idealized hysteresis model. Numerical solutions
of the nonlinear partial differential equations of motion reveal a strong dependence of the
overshoot phenomenon on the boundary and initial conditions. Overshoot solutions with
experimentally detectable height are shown to exist numerically. Extensive parameter studies
reveal different classes of initial conditions for which the width of the overshoot region can
decrease, increase or remain constant.

Keywords Saturation overshoot · Dependence on initial conditions · Two-phase flow ·
Hysteresis

1 Introduction

Analytical approximations and numerical solutions have recently predicted the existence
of a class of travelling and non-travelling saturation overshoot profiles within the standard
traditional two-phase flow equations for immiscible displacement in porousmedia (Hilfer and
Steinle 2014). Displacing a lighter fluid with a heavier fluid is expected to cause instabilities,
preferential flow paths and saturation overshoot (Hilfer and Steinle 2014; Xiong 2014).

Mathematical arguments, however, seem to exclude non-monotone profiles within the
Richards approximation to the standard two-phase flow equations (Alt and Luckhaus 1983;
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Alt et al. 1984; Otto 1996; Egorov et al. 2003). Accordingly, “there is a wide spread belief
(mainly as a result of anomalous experimental results) that the standard multiphase model
is incomplete” (di Carlo 2013, p. 4541). If the standard multiphase model were indeed
incomplete (see Hilfer 2006a, b), then this would imply “the necessity of extensions to the
multiphase flow equations to describe the unstable flow” (di Carlo 2013, p. 4531). One exten-
sion proposes various additional terms in the Richards equation to accommodate saturation
overshoot (Eliassi and Glass 2002). Relaxation terms are proposed in Egorov et al. (2003) to
produce unstable flows and fingering. Extensions from static to so-called dynamic capillarity
were investigated in Beliaev and Hassanizadeh (2001), Duijn et al. (2007, 2013) and Rätz
et al. (2014). Multiphase flow equations based on a phase field approach were suggested in
Cueto-Felgueroso and Juanes (2008, 2009).

Despite the widespread belief that the standard multiphase model is incomplete, recent
investigations have reported solutions of the standard two-phase flow equations exhibiting
saturation overshoot (Hilfer and Steinle 2014). Evidence for travelling and non-travelling
overshoot profiles, albeit shallow ones, was presented in Hilfer and Steinle (2014) on the
basis of analytical considerations and numerical simulations. It was found that the existence
of saturation overshoot depended sensitively on the initial and boundary conditions.

2 Problem and Objective

Given that the computations reported in Hilfer and Steinle (2014) have found travelling
non-monotone saturation profile with a very small overshoot height �S = 0.0554, the
problem arises how to observe such small overshoots in experiment. Lest one has to wait for
precision experiments to test this prediction, the present article explores the parameter space in
search for larger overshoot. Occurrence of overshoot was found in Hilfer and Steinle (2014)
to depend sensitively on the initial conditions. Roughly two-dozen parameters specifying
the constitutive assumptions enter into the mathematical model. It is not possible to carry
out a complete, exhaustive or even systematic study of the full parameter space due to its
high dimensionality. As a result, the primary problem here is to elucidate first the known
sensitive dependence on the parameters in the initial data. More systematic explorations of
the multidimensional parameter space are only useful, if the sensitive dependence on initial
conditions has been understood and can be reliably predicted.

These problems motivate the twofold objective of this article. The first objective is to find
a set of parameters allowing for a sufficiently high saturation overshoot to be unambiguously
observable in experiment. The second objective is to fix these parameters for a sufficiently
high overshoot and explore the parameter space of the initial conditions systematically. This
will help to understand and identify the regions where overshoot is possible, at least within
a low-dimensional subspace of all admissible initial conditions.

3 Mathematical Model

The mathematical model describes two-phase immiscible displacement in a narrow column
oriented parallel to the direction of gravity. The equations of motion govern the unknown
saturation field S(z, t) of a wetting phase, called waterW. Here 0 ≤ z < ∞ is the coordinate
along the vertical one-dimensional column, and t ≥ 0 denotes time. The nonlinear partial
differential equation for S(z, t) reads
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where φ is the porosity of the medium and Q denotes the total volume flux of (wetting and
non-wetting) fluids. The projector function Ξ : R → {0, 1}
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switches between imbibition and drainage. The nonlinear constitutive parameter functions
are the fractional flow functions
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for drainage (i = dr) and imbibition (i = im), and the capillary flux functions
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with i ∈ {im, dr}. Here �W, �O denote the densities andμW,μO the viscosities of the wetting
phaseW (called water) and the non-wetting phase O (called oil). The acceleration of gravity
is g, and the absolute permeability of the porous medium is k. The relative permeability
functions kr

Wi , k
r
Oi

are assumed to be algebraic functions

kr
Wi (Sei ) = Ke

Wi Se
αi
i (6a)

kr
Oi

(Sei ) = Ke
Oi

(1 − Sei )
βi (6b)

of the effective saturation

Sei = S − SWi
i

1 − SOr
i − SWi

i
(7)

with i ∈ {im, dr}, where Ke
Wi , K

e
Oi

are the endpoints, αi , βi the exponents, SWi
i is the

irreducible wetting phase saturation and SOr
i the irreducible non-wetting phase saturation.

The capillary pressure functions are assumed to be of the form

Pci (Sei ) = Pbi
(
Se

−1/γi
i − 1

)1−γi
(8)

as in Hilfer and Steinle (2014) with i ∈ {im, dr}.
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Initially, the medium is assumed to be homogeneously saturated with non-wetting fluid.
The initial condition for Eq. (1) is then a small constant wetting saturation

S(z, t = 0) = Sout (9)

for all z ≥ 0 throughout the porous medium. Constant Q and constant Sin are assumed for
the boundary conditions at the left boundary. The boundary conditions at the inlet z = 0 and
the outlet z → ∞ then read

S(z = 0, t) =
{
SP , 0 ≤ t < tP

Sin , t ≥ tP
(10a)

S(z → ∞, t) = Sout , t ≥ 0 (10b)

with Sin = 0.35 and Sout = 0.01 (see Table 1). Note that the boundary conditions at the inlet
are time dependent and that they differ from experiments where the flux of the wetting phase
and the pressure of the non-wetting phase are controlled at the boundary.

The initial value problem with time-dependent boundary values specified in Eq. (10) can
be viewed also as an initial value problem with time-independent constant boundary values
(Sin at the inlet and Sout at the outlet) if one uses t = tP instead of t = 0 as the initial instant.
This point of view will often be used in the following discussions.

4 Fractional Flow Functions and Graphical Solutions

The initial and time-dependent boundary value problems specified inEqs. (1)–(10) are closely
related to the initial and boundary value problems studied in Hilfer and Steinle (2014).
Following the analysis in Hilfer and Steinle (2014), graphical solutions can be found in the
Buckley-Leverett limit (Di → 0).

For large tP → ∞, one expects to find a leading imbibition front followed by a drainage
front. The two shock fronts are expected to be well separated and to move independently of
each other with different speeds. For small tP → 0, one expects to find a single Buckley-
Leverett imbibition shock.

For 0 < tP < ∞ and t < tP, the solution is a single imbibition shock front that propagates
into the medium as in conventional Buckley-Leverett theory. Below the saturation SWelge of
the Welge tangent construction, i.e. for SP ≤ SWelge ≈ 0.6619, the shock has height SP. For
SP > SWelge, the solution is a shock front with jump height SWelge followed by a rarefraction
wave. The rarefaction wave connects SWelge and SP. This is a typical imbibition front that
moves with velocity cim(SP) or cim(SWelge) as predicted by the traditional Buckley-Leverett
theory. In the following, SP ≤ SWelge will be assumed for simplicity.

For 0 < tP < ∞ and t ≥ tP, the inlet saturation is held constant at Sin < SP. A
trailing drainage front now follows the leading imbibition front resulting in a saturation
overshoot. Whether or not the overshoot region persists for long times depends sensitively
on the parameters (SP, tP) as discussed next.

Thepropagationvelocities of the two shock fronts are obtained from theRankine-Hugoniot
condition as

cim(S) =: fim(S) − fim(Sout)

S − Sout
(11a)
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Table 1 Parameter values, their
symbols and units

Parameter Symbol Value Units

Porosity φ 0.38 –

Permeability k 2 × 10−10 m2

Density W �W 1000 kg/m3

Density O �O 1 kg/m3

Viscosity W μW 0.001 Pa s

Viscosity O μO 0.0003 Pa s

Imb. exp. rel.p. W αim 5 –

Imb. exp. rel.p. O αdr 3 –

Dr. exp. rel.p.W βim 3 –

Dr. exp. rel.p. O βdr 5 –

End pnt. rel.p. Ke
Wim 0.35 –

End pnt. rel.p. Ke
Oim

1 –

End pnt. rel.p. Ke
Wdr 0.35 –

End pnt. rel.p. Ke
Odr

0.75 –

Imb. exp. cap press. γim 0.85 –

Dr. exp. cap press. γdr 0.98 –

Imb. cap. press. Pbim 1 Pa

Dr. cap. press. Pbdr 1000 Pa

End pnt. sat. SWi
im 0 –

End pnt. sat. SWi
dr 0.07 –

End pnt. sat. SOr
im 0.045 –

End pnt. sat. SOr
dr 0.045 –

Outlet saturation Sout 0.01 –

Inlet saturation Sin 0.35 –

Welge sat. SWelge 0.6619 –

Total flux Q 10−5 m/s

for the imbibition front and

cdr(S) =: fdr(S) − fdr(Sin)

S − Sin
(11b)

for the trailing drainage front. Equating the velocities results in the condition

cim(S) = cdr(S) (12)

whose solution is the saturation S = S∗ at which both fronts move with the same speed. The
solution depends on the inlet and outlet saturations S∗ = S∗(Sin, Sout). Equation (12) can
have no solution, one solution or several solutions (Hilfer and Steinle 2014).

The initial and time-dependent boundary value problems (1)–(10) are studied for the
parameters given in Table 1. The resulting fractional flow functions fromEq. (4) are displayed
in Fig. 1a. Figure 1b shows the shock front velocities fromEq. (11). The solution S∗(Sin, Sout)
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Fig. 1 a Fractional flow
functions for imbibition (solid)
and drainage (dashed) with
parameters from Table 1. The two
secants (solid/dashed) show the
graphical construction of the
travelling wave solution with
cim = cdr = 9.7. Subfigure b
shows the graphical solution of
Eq. (12) as the intersection of the
imbibition front velocity (solid)
with the drainage front velocity
(dashed)

(a)

(b)

of Eq. (12) is computed as S∗ = 0.5989. The two secants in Fig. 1a represent the imbibition
shock (solid secant) connecting fim(S∗) with fim(Sout) and the drainage shock (dashed
secant) connecting fdr(S∗) with fdr(Sin). If these two secants are parallel and Sin < S∗ ≤
SWelge then choosing SP = S∗ in Eq. (10) produces an overshoot profile that propagates as
a travelling wave as long as tP is not too small. Figure 1b also shows that Eq. (12) has only
one solution for the parameters given in Table 1.

In general, for SP 	= S∗ in Eq. (10), a non-monotone overshoot profile propagates with
distinct imbibition and drainage velocities cdr(SP) 	= cim(SP). As a result, the width of the
overshoot region changes linearly with time. For cdr(SP) < cim(SP) the leading imbibition
front is faster than the drainage front and the overshoot width broadens. For cdr(SP) >

cim(SP), the leading imbibition front is slower than the trailing drainage front and the width
shrinks until a monotone saturation profile is left.

5 Discretization and Numerical Methods

The numerical solutions were computed using Open∇FOAM (version 2.1.1), an open-source
toolkit for computational fluid mechanics (http://www.openfoam.com/). To solve Eq. (1)
required a new solver routine. It was derived from the solver scalarTransportFoam.
A direct discretization of ∇z · fi (S)=̂∂ fi (S)/∂z in Eq. (1) using the fvc::div-operator
has been implemented. A second discretization based on differentiating the flux function as
f ′
i (S)T∇z S=̂ f ′

i (S) × ∂S/∂z and using the fvc::grad-operator was also implemented to
check the accuracy. Both discretizations gave identical results within numerical accuracy. All
results reported here were obtained with the first direct discretization using the fvc::div-
operator.

The second-order term had to be regularized by amaximum function replacing Di (S)with
maxS∈[0,1]{Di (S), 0.009m} to avoid oscillations at the imbibition front. Such oscillations can
arise from small values of the capillary flux functions Di (S).

The time derivative was discretized with an implicit Euler scheme. The gradient term
was discretized with an explicit least-squares scheme, the divergence with an explicit Gauss
cubic scheme, and the second-order term with an implicit Gauss linear corrected scheme.
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Fig. 2 (SP, tP)-parameter plane of initial data in Eq. (10a) divided into four regions I–IV with different
asymptotic (t → ∞)-behaviour of numerical solutions. In Region I and Region IV, the initial overshoot
SP − Sin decays as t → ∞, while in Region II and Region III the overshoot persists and the overshoot region
broadens. On the straight vertical and solid line at SP = S∗ = 0.5989, the overshoot region has constant
width and the profile is a travelling wave with constant velocity cdr(SP) = cim(SP). In Region II, the plateau
saturation for t → ∞ equals the initial saturation SP; for Region III, the final saturation for t → ∞ is smaller
than SP. The vertical dashed line marks the Welge saturation SWelge ≈ 0.6619

For more details on discretization, see (http://www.openfoam.org/archive/2.1.1/docs/user/
fvSchemes.php#x20-1070004.4). Finally, the discretized system was solved with an incom-
plete Cholesky conjugate gradient solver (ICCG) supplied in Open∇FOAM.

In all computations reported here, the spatial discretization is �z = 0.5mm and the tem-
poral discretization is�t = 0.1s. It was checked that the results arewithin limits independent
of this choice.

6 Numerical Solution

As specified in Sect. 2, the primary objective of this article is to explore systematically
the parameter space of the initial data, because it was found in Hilfer and Steinle (2014)
that the existence or non-existence of saturation overshoot depends sensitively on the initial
condition. The parameter space of the initial condition Eq. (10a) is the (SP, tP)-plane.

More than two hundred numerical solutions with SP ∈ [0.55, 0.9], tP ∈ [50s, 4000 s]
were performed and analysedmanually, because an automated analysis was not practical with
available resources. During these runs, all other parameters were kept fixed at their values
given in Table 1. The results of these computations are summarized in Fig. 2. There are four
different regions I–IV in Fig. 2. Region II and Region III indicate non-monotone solutions for
t → ∞, i.e. a saturation overshoot persists. Region IV andRegion I correspond to parameters
for which the initial overshoot decays into a monotone profile without overshoot.

A straight vertical line (solid) at SP = S∗ = 0.5989 separates Region I from the rest,
because for SP < S∗ = 0.5989 one has cdr(SP) > cim(SP) as seen in Fig. 1b. In Region I, the
trailing drainage front catches up with leading imbibition front and annihilates the overshoot.
Exactly on the straight vertical and solid line at SP = S∗ = 0.5989, the leading imbibition
front and the trailing drainage front have the same velocity cdr(SP) = cim(SP).

The boundaries between different regions in the (SP, tP)-plane are rough and approximate
numerical estimates from numerous simulation runs. The straight vertical and solid line at
SP = S∗ = 0.5989 separating Region I from the rest has the smallest numerical inaccuracy.

123

http://www.openfoam.org/archive/2.1.1/docs/user/fvSchemes.php#x20-1070004.4
http://www.openfoam.org/archive/2.1.1/docs/user/fvSchemes.php#x20-1070004.4


376 R. Steinle, R. Hilfer

Fig. 3 Travelling saturation
overshoot profile S(z, t) solving
Problem a) at times t = 150 s
(dashed), t = 500 s (dashed)
and t = 1000 s (solid). The
profile travels with constant
velocity Qcim(0.5989)/φ =
Qcdr(0.5989)/φ = 0.0255cm/s

On the right for SP > S∗, the leading front is faster than the trailing one and the overshoot
plateau broadens linearly with time except in Region IV. In Region IV, the initial width of
the overshoot plateau is so small that the broadening of the trailing drainage front leads to
its decay due to capillary effects. In Region II, the plateau broadens and the value of the
plateau saturation stays constant at the initial saturation SP for all t . In Region III, the plateau
broadens, but the final saturation for t → ∞ is smaller than SP.

The following five initial and boundary problems are selected as representatives for the
different classes of sensitive dependence on the initial data:

Problem a): (SP, tP) = (0.5989, 150 s)
Problem b): (SP, tP) = (0.63, 150 s)
Problem c): (SP, tP) = (0.659, 150 s)
Problem d): (SP, tP) = (0.59, 150 s)
Problem e): (SP, tP) = (0.63, 80 s).

The time-dependent solutions S(z, t) to these five problemswill nowbe plotted and discussed.

6.1 Problem a)

The numerical solution of Problem a) is illustrated in Fig. 3 at three different times t =
150, 500, 1000 s. It exhibits a pronounced overshoot of height SP − Sin = 0.5989− 0.35 =
0.2489 that can be detected in an experiment. The width of the overshoot region remains
constant. Because SP = S∗ = 0.5989, it falls on the vertical straight line and the overshoot
travels as a travelling wave solution with fixed constant velocity. The dimensionless value
cdr(SP) = cim(SP) = 9.7 from the graphical solution in Fig. 1 agrees perfectly with the
dimensional value Qcim(SP)/φ = 0.0255cm/s found from the numerical solution in Fig. 3.

The solution to Problem a) is shown also for all (z, t) in Fig. 4a as a three-dimensional
surface plot. Figure 4a exhibits clearly the constant width of the overshoot region and the
constant speed of the leading and trailing shocks.

6.2 Problem b)

The parameters of Problem b) fall into Region II, and its numerical solution is illustrated in
Fig. 4b. Now cdr(SP) < cim(SP), and the overshoot region broadens. Again, the front veloc-
ities are seen to be constant. Their numerical values measured directly from the numerical
solutions, Qcdr(SP)/φ = 0.01369cm/s for drainage resp. Qcim(SP)/φ = 0.02834cm/s for
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Fig. 4 Numerical solutions of Problems a–e representative for the domains I–IV in the (SP, tP)-plane from
Fig. 2. Figure 2 is reproduced as the top left subfigure for convenience. Numerical solutions are visualized
as three-dimensional surface plots with �z = 0.5mm and �t = 0.1s. To aid the eye gridlines with spacing
1.5cm and 50 s are overlaid as solid black lines. Subfigure a shows travelling overshoot wave with overshoot
saturation S = S∗ = 0.5989. Subfigure b shows a non-monotone saturation profile with overshoot saturation
S = 0.63 and increasing width. Subfigure c shows a non-monotone saturation profile with increasing width
and decreasing height. Subfigure d shows the decay of an overshoot solution with decreasing width. Subfigure
e shows an overshoot profile annihilated rapidly by capillary diffusion effects. Note the different scale of the
t-axis in Subfigure e
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imbibition, agree perfectly with the analytical predictions cdr(SP) = 5.204 and cim(SP) =
10.77. It is seen that the height of the plateau value stays fixed and constant at SP for all t . In
Fig. 4b, the region 0 ≤ t ≤ 250 s is shaded darker to facilitate the comparison with Fig. 4e
where only this region is plotted.

6.3 Problem c)

The numerical solution of problem c) is typical for initial and boundary value problems with
parameters in Region III. The non-monotone profile exhibits fronts with unequal velocities.
The overshoot saturation SP is not stable and decreases, because it is typically larger than
SWelge. The numerical solution of Problem c) for t → ∞ and t � tP shows a non-travelling
non-monotone saturation profile approaching a saturation S ≈ 0.631 < SP. For t > tP, the
saturation of the overshoot region starts to decrease slowly (see Fig. 4c), until a non-monotone
profile with overshoot saturation S ≈ 0.631 is reached. In general, the saturation approaches
a value between S∗ and min{SP, SWelge}. During the decrease in saturation, the plateau
region undergoes drainage. As the drainage region advances, it approaches the imbibition
front from behind. When the drainage region reaches the imbibition front, abrupt transitions
to imbibition are unavoidable. These are clearly seen as front fluctuations in Fig. 4c. For
a more realistic hysteresis model with continuous scanning curves, these front fluctuations
are expected to be absent. The width of the overshoot region increases linearly with time,
because the difference cim(S ≈ 0.631) − cdr(S ≈ 0.631) > 0 is constant.

6.4 Problem d)

Solutions of Problem d) show the behaviour typical for Region I in the (SP, tP)-plane.
The drainage front is faster than the imbibition front, and the solution finally approaches
a monotone shock profile without overshoot.

Figure 4d shows that the temporal change of the solution for t > tP can be split into
three phases. During the first phase, until t ≈ 250 s, the numerical solution is stable and
shows the expected decrease in the overshoot width at the rate 48µm/s. Next, for t > 250 s,
the overshoot saturation starts to decrease and abrupt fluctuations due to the discontinuous
change between drainage and imbibition occur as observed in Region III. In the final phase,
for t > 450 s, a simple monotone shock profile propagates with the expected dimensionless
velocity of cim(Sin) = 1.338 corresponding to 0.00352cm/s.

6.5 Problem e)

Probleme) illustrates the importance of the time parameter tP for the propagation of overshoot
solutions.When tP is too small, the initial overshoot region is too narrow.Capillary smoothing
of the drainage front approaches the imbibition front from behind. This results in a decay of
the overshoot. Because the decay implies abrupt changes between drainage and imbibition
at the leading front, abrupt fluctuations again appear as in Regions I and III.

The numerical solution of problem e) is shown in Fig. 4e. It is typical for parameters in
Region IV of the (SP, tP)-plane. As for Problem d), the long- time solution for t → ∞ is a
simple shock of height Sin = 0.35 moving at the identical speed cim(Sin) = 1.338.

To facilitate the comparison of Fig. 4e where t is restricted to 0 ≤ t ≤ 250 s with the other
subfigures, the time interval 0 ≤ t ≤ 250 s is shown in darker shade in Fig. 4b.
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6.6 Influence of Hysteresis on Overshoot Propagation

All numerical simulations show that overshoot propagation and growth depend critically on
hysteresis in the relative permeabilities, but not on hysteresis in capillary pressures. Setting
kr
Wim(S) = kr

Odr
(S), but keeping Pcim(S) 	= Pcdr(S), for given time-dependent boundary

conditions, the leading imbibition front is slower than the trailing drainage front. As a result,
the width of the overshoot shrinks until amonotone saturation profile is left (similar to Region
I shown in Subfigure d) of Fig. 4). On the other hand for kr

Wim(S) 	= kr
Odr

(S), propagation
and growth are both observed independently of whether there is hysteresis in Pc(S) or D(S).
This was checked extensively. The same conclusion follows from a graphical analysis of the
fractional flow functions as in Sect. 4.

7 Summary

Contrary to widespread belief and expectations, the present article finds an abundance of
strongly pronounced saturation overshoot profiles as solutions to the standard two-phase
flow equations with hysteresis in the relative permeabilities. Note that hysteresis of capillary
pressures is not required for saturation overshoot. Hysteresis in capillary pressures enters as
Dim 	= Ddr and causes a difference in steepness or smearing between the leading imbibition
and the trailing drainage front.

The height of the overshoot depends sensitively on the model parameters and the initial
data. It can bemuchmore pronounced than the shallow saturation overshoot first documented
in Hilfer and Steinle (2014). As in Hilfer and Steinle (2014) it is emphasized here again, that
constant Q and constant Sin are assumed for the boundary conditions at the left boundary.
This differs from those experiments, where the flux of the wetting phase and the pressure of
the non-wetting phase are controlled at the boundary.

The subset of initial conditions consisting of step functions has been systematically
explored by means of generating the initial step functions through a time-varying bound-
ary condition. Four different parameter regimes comprising travelling and non-travelling
overshoot profiles were found. Increasing and decreasing width and height of the overshoot
region are possible. The solutions can generally be predicted up to capillary smoothing effect
from the fractional flow functions of the model. The highly idealized jump-type hystere-
sis can lead to abrupt saturation changes when the displacement process switches between
drainage and imbibition. Nevertheless, the results are physically plausible and believed to
be representative also for more realistic hysteresis models with continuous scanning curves.
The systematic exploration of the initial conditions is the first indispensable step towards a
full understanding of saturation overshoot.
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