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[1] The paper compares a theory for immiscible displacement based on distinguishing
percolating and nonpercolating fluid parts with experimental observations from multistep
outflow experiments. The theory was published in 2006 in Physica A, volume 371, pages
209–225; the experiments were published in 1991 in Water Resources Research, volume
27, pages 2113. The present paper focuses on hysteretic phenomena resulting from repeated
cycling between drainage and imbibition processes in multistep pressure experiments.
Taking into account, the hydraulic differences between percolating and nonpercolating fluid
parts provides a physical basis to predict quantitatively the hysteretic phenomena observed
in the experiment. While standard hysteretic extensions of the traditional theory are
nonlocal in time the theory used in this paper is local in time. Instead of storing the pressure
and saturation history, it requires only the current state of the system to reach the same
quantitative agreement.

Citation: Doster, F., and R. Hilfer (2014), A comparison between simulation and experiment for hysteretic phenomena during two-
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1. Introduction

[2] A quantitative prediction of fluid saturation profiles
during immiscible displacement remains a fundamental open
problem in the physics of porous media. Despite its well-
known limitations regarding hysteresis and trapping phenom-
ena, the traditional approach [Buckingham, 1907; Richards,
1931; Muskat and Meres, 1936; Wyckoff and Botset, 1936]
has remained the most popular mathematical model for more
than 70 years in applications such as reservoir engineering
[Lake, 1989] or groundwater hydrology [Bear, 1972].

[3] Many authors have emphasized the importance of
hysteresis between drainage and imbibition [Wei and Dew-
oolkar, 2006; Gerhard and Kueper, 2003; Parker, 1989;
Mualem, 1973]. Ad hoc extensions of the existing two-
phase flow model [Parker, 1989; Stauffer, 1978; Mualem,
1974; Land, 1968] yield reasonable agreement with labora-
tory measurements. However, the physical foundations for
such hysteresis models are not clear.

[4] A recent macroscopic theory of capillarity in porous
media [Hilfer, 2006a] proposes to take into account the dif-
ferent hydrodynamic properties of percolating (5 con-
nected) and nonpercolating (5 not connected) fluid parts.
This provides the physical basis for hysteresis in our
approach. In the residual decoupling limit, the traditional

constitutive relations between relative permeability and sat-
uration as well as between capillary pressure and saturation
are recovered including hysteresis [Hilfer, 2006a, 2006b].
Approximate analytical results for a quasi-static displace-
ment have been calculated in Hilfer [2006c]. In Hilfer and
Doster [2009] and Doster et al. [2010], numerical solutions
were calculated for experiments with a closed homogene-
ous column in gravity. Further, analytic and quasi-analytic
solutions for the theory were developed in Doster and Hil-
fer [2011], Doster et al. [2012], and Hönig et al. [2013].
However, an explicit comparison with experimental data is
pending.

[5] The objective of this paper is to close this gap. We
show that the theory is able to model a laboratory experi-
ment [Lenhard et al., 1991] with a porous column that
shows hysteretic behavior.

[6] The paper is structured as followed. First, we illus-
trate the experimental setup [Lenhard et al., 1991] that has
been used to illustrate hysteretic phenomena in fluid distri-
butions in porous media flow. Section 3 briefly presents the
theory of percolating and nonpercolating phases and its
mathematical formulation for incompressible immiscible
two-phase flow. In section 4, we discuss the numerical rep-
resentation of the experiment and its implementation. The
results are presented and discussed in section 5. The paper
closes with concluding remarks.

2. Experimental Setup

[7] The experimental setup of Lenhard et al. [1991] con-
sists of a vertical cylindrical, 72 cm long column, whose
side walls are impermeable, filled with a homogeneous,
isotropic and incompressible porous medium, an unconsoli-
dated sandy material comprising approximately 97.5, 0.8
and 1.7% sand, silt, and clay-sized particles, respectively.
The two fluids considered here are water and air and water
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is the wetting fluid. The top of the column is connected to
the atmosphere so that only air can enter the top of the col-
umn. The bottom of the column is connected to a water tank
and only water can enter from the bottom. The pressure in
the tank is adjustable. Initially, the porous column is com-
pletely water saturated and the pressure PW in the water tank
is chosen such that it compensates the water column
PWðt50Þ572 cm H 2Oð57:06 kPa Þ. Hence, the capillary
fringe is located at the top of the column. The pressures in
this section are given in centimeters column of water because
this translates one to one to the position of the water table in
the column. In section 5, SI units are used. Figure 1 gives a
conceptual picture of the experiment. The column is drained
by lowering the pressure in the reservoir by DP55 cm H2O
every Dt510 min 13 times until the water pressure reaches
PW57 cm H 2O. After a relaxation period of Dt550 min ,
the water pressure is raised again in seven steps by DP55
cm H2O every Dt510 min and the column is imbibed again.
After Dt550 min , the water pressure is again lowered by DP
55 cm H2O every Dt510 min for five times and the column
is drained again. Finally, Dt550 min later, the water pressure
is raised again by DP55 cm H2O steps every Dt510 min
until it reaches its initial value PWðt > 8hÞ572 cm H2O.
However, the original water content in the column is not
recovered because a fraction of air remains trapped in the
medium [Gerhard and Kueper, 2003].

[8] In the laboratory, water saturation and water pressure
have been measured at height x50:4 m, x50:5 m, x50:6 m,
and x50:7 m from the bottom of the column. It may safely
be assumed that the air pressure is essentially hydrostatic
and atmospheric for two reasons: First, because of the high
viscosity and density contrast (lW50:001 kg m21s21,
lO51831026 kg m21s21, and .W51000 kg m23, .O5
1:2 kg m23) and second, because the column is short. It is,
therefore, concluded that the measurement of water satura-
tion and water pressure suffices to determine the capillary
pressure-saturation relationship.

3. Definition of the Model

[9] In this section, a brief summary of the mathematical
model is given. The following equations are based on vol-
ume, mass, and momentum balance equations analogous to
the foundations of the traditional theory (see e.g., Hilfer
[2006b] for a succinct but detailed parallel development).

It is assumed that both fluids are incompressible and
immiscible and that the lateral dimensions of the column
are small with respect to the capillary fringe. Hence, a one-
dimensional description is an appropriate approximation.
The mass balances for the four fluid phases (percolating
water is identified by the index 1, nonpercolating water by
2, percolating oil by 3, and nonpercolating oil by 4) read as
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where t denotes time, x denotes position or height along the
column, / denotes porosity, .W; .O denote the density of
water, respectively, air, Si is the saturation, qi is the volume
flux, and Mi is the mass exchange term of the phase i. The
mass exchange term accounts for the fact that percolating
and nonpercolating phases of the same fluid exchange mass
by breakup and coalescence. The mass exchange terms
take the form
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with the parameter functions

S�W5 12min SOim ; ð12�MÞSOð Þð ÞH @tSWð Þ

1min SWdr ; ð12�MÞSWð Þ 12H @tSWð Þ½ �;
(3a)

S�25min SWdr ; ð12�MÞSWð Þ 12H @tSWð Þ½ �; (3b)

S�45min SOim ; ð12�MÞSOð Þ 12H @tSOð Þ½ �; (3c)

where the parameter SOim is a limiting saturation for the
nonpercolating air, SWdr is a limiting saturation for nonper-
colating water, and Hð�Þ denotes the Heaviside step function.
Water saturation is given by SW5S11S2 and the air satura-
tion by SO5S31S4. The parameter �M � 0 is a mathematical
regularization parameter. It allows to simulate also primary
processes. The volume fluxes of the phases take the form
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where P1;P3 denote the averaged pressures of the percolat-
ing phases, g is the gravity acceleration, and a; b; c; d;Pa;

Figure 1. Conceptual picture of the experimental setup
and the pressure protocols in the upper and lower reservoir
versus time.
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Pb;P�2;P
�
4 are the constitutive parameters. The parameters

a; b;Pa;Pb are associated with capillary potentials and c; d;
P�2;P

�
4 with the energy stored in the interface between the

nonpercolating phases and the surrounding percolating
phases of the other fluid [Hilfer, 2006b]. A generalized
mobility matrix is denoted by K with the coefficients

Kij5/2SiSj½~R
21�ij; (5)

where ½~R21�ij denote the components of the inverse of the
viscous coupling parameter matrix. A comparison with the
classical two-phase Darcy equations yields that ~R11 � lW=
k and ~R33 � lO=k, where k denotes the permeability of the
porous medium. The system of equations is closed with the
volume conservation for incompressible fluids and incom-
pressible porous media

S11S21S31S451 (6)

plus a special form of the general selfconsistent closure
condition [Hilfer and Doster, 2009; Doster et al., 2010]
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4
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(7)

for the pressures of the percolating phases.

4. Simulation Setup

[10] In this section, we discuss how the experiment is
represented mathematically. The four mass balance equa-
tions (1) are solved numerically. First, equations (6) and (7)
are used to eliminate S4 and P3. The primary variables are
S1; S2; S3, and P1. The mass balances are discretized in
space by cell centered finite volumes with upwind fluxes.
They are discretized in time with a first-order implicit fully
coupled scheme. The corresponding system of nonlinear
equations is solved with the Newton-Raphson method. The
whole scheme is implemented in Matlab. The simulation is
run with a resolution of one cell per centimeter, i.e., with N

572 collocation points. Details of the algorithm are given
elsewhere [Doster, 2011].

[11] Dirichlet boundary conditions for the pressure P1 of
the percolating water phase are imposed at the lower
boundary ðx50 mÞ, where pressure is determined by the
water reservoir. Dirichlet boundary conditions for the
atmospheric pressure P3 of the percolating air phase are
chosen at the upper boundary ðx50:72 mÞ of the column.
All the other boundaries are impermeable so that the flux
across them must vanish.

[12] The initial conditions are S1ðx; 0Þ50:997; S2ðx; 0Þ5
0:001; S3ðx; 0Þ50:001; and S4ðx; 0Þ50:001 for all
x 2 ½0 cm; 72 cm �. Initial conditions for the pressures are
not required because of the implicit formulation. Before the
protocol for the pressure is started, the system is given 1
day under hydrostatic water pressure conditions to
equilibrate.

[13] The parameters for the simulation are given in Table
1. They were obtained by fitting the primary drainage curve
of the capillary pressure-saturation relationship obtained in
the residual decoupling approximation [Hilfer, 2006b] to the
primary drainage curve of van Genuchten parameterization
that Lenhard et al. [1991] obtained by a fit to data of the first
drainage process in the experiment. The van Genuchten
parameters in Lenhard et al. [1991] are adr 54:283
1024Pa 21, aim 58:5631024Pa 21, ndr 55:52, nim 55:52,
mdr 50:82, mim 50:82, Swi50:17, and Snr50:25. The result-
ing capillary pressure curves are compared in Figure 2. The
viscous resistance coefficients were obtained through R11

� lW=k and R33 � lO=k, where k533:7212 m2 was again
taken from Lenhard et al. [1991]. The viscous resistance
coefficients for the nonpercolating phases are assumed to be
much larger than those for the percolating phases
R22;R44 � R11;R33. For the time scale of the experiment,
the results do not depend on the numerical values of the
resistance coefficients given in Table 1 [Doster, 2011].

Table 1. List of Parameters With Units and Their Numerical
Values Used for Simulating the Experimenta

Parameters Units Values

/ 0.36
�M 0.01
W O W O
.W .O kg m23 1000 1.2
SWdr SOim 0.13 0.21
g2 g4 6 4
a b 0.42 1.6
Pa Pb Pa 2700 3
c d 2.4 2.9
P�2 P�4 Pa 11,000 3000
R11 R33 kg m23 s21 3.83 3 106 6.99 3 104

R22 R44 kg m23 s21 1016 1016

Rij, i 6¼ j kg m23 s21 0

aNote that �M is a mathematical regularization parameter, i.e., the limit
�M ! 0 is implicit and it has been tested that the numerical results do not
change in this limit.

Figure 2. Illustration of the capillary pressure-saturation
relationship in the residual decoupling approximation of
our theory for the parameters given in Table 1 (solid lines)
for primary and secondary drainage and imbibitions,
respectively. Also shown are the primary and secondary
drainage and the secondary imbibition curve of the hystere-
sis model used in Lenhard et al. [1991] (dashed curves).
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5. Results

[14] The results of the simulations are compared with the
experimental data and the most sophisticated model of Len-
hard et al. [1991] (previously developed in Parker and
Lenhard [1987]; Lenhard and Parker [1987]) in Figures 3
and 4. Figure 3 shows the computed time evolution of SW

ðx; tÞ; S2ðx; tÞ; S4ðx; tÞ at x50:4 m, x50:5 m, x50:6 m, and
x50:7 m as continuous and dashed lines. The experimen-
tal data for SW are shown as plus signs and circles and the
simulation results with the most sophisticated model of
Lenhard et al. [1991] are represented by dash-dotted and
dotted curves. There is a good qualitative agreement at all
four positions.

[15] During the first 2 h of the experiment, the saturation
decreases because of the lowered pressure in the water res-

ervoir. The instants at which the capillary fringe passes the
measurement points agree at all four points between simu-
lation and measurement. The decrease in water saturation
induces a production of nonpercolating water. The corre-
sponding decrease in nonpercolating air is not visible in the
graph because of the small amount of initial nonpercolating
air. The pressure does not change between t52h and
t53:5h. Hence, the rate of saturation change decreases and
saturation reaches an almost stationary value. The calcu-
lated water saturations of that plateau are slightly smaller
than the experimental ones. Measured and predicted values
during the first increase of the reservoir pressure at around t
� 4h show good agreement excluding x50:70 m. In con-
trast to the simulated saturation, the measured saturation
decreases at x50:70 m after an increase of the pressure at
the lower boundary. This surprising effect was not dis-
cussed in the experimental work [Lenhard et al., 1991] and
the lack of error bars makes an interpretation difficult

a

b

Figure 3. Comparison of the water saturation SWðx; tÞ at
x50:4 m and x50:5 m (blue curves), and x50:6 m and x5
0:7 m (red curves) from simulation and experiment. Solid
and dashed curves show our simulations and dotted and
dash-dotted curves the simulation of Lenhard et al. [1991].
Experimental data are illustrated by red pluses (x50:7 m and
x50:6 m) and blue circles (x50:5 m and x50:4 m). Also
shown are the results for S2ðx; tÞ (the first dashed and solid
curves from the bottom of each graph) and 12S4ðx; tÞ (the
first dashed and solid curves from the top of each graph).

a

b

Figure 4. Comparison of measured and simulated capil-
lary pressure-saturation relationship PcðSWðx; tÞÞ at
x50:4 m, x50:5 m (blue curves) and x50:6 m, x50:7 m
(red curves). Solid and dashed curves show our simulations
and dotted and dash-dotted curves the simulation of Len-
hard et al. [1991]. Experimental data are illustrated by red
pluses (x50:7 m and x50:6 m) and blue circles (x50:5 m
and x50:4 m).
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(similar experiments Lenhard et al. [1993] by the same
authors suggest error bars of order DSW � 0:1). The
increase of water saturation induces a decrease of nonper-
colating water and a production nonpercolating air.

[16] The subsequent evolution of the saturation shows
qualitatively similar phenomena upon changing the pres-
sure. Note, that the spatiotemporal evolution of the satura-
tion requires an infinite number of scanning curves in
traditional hysteresis modeling, i.e., when the process
changes between drainage and imbibition as a function of
time and position. Here in our model, a single set of param-
eters is sufficient, and there is no need to know scanning
curves beforehand. At the end of the experiment, water is
almost completely connected at all four measurement posi-
tions, while most of the air is disconnected and trapped.
The trapped air prevents the complete filling of the column
with water and indicates the irreversibility of the process.

[17] Figure 4 illustrates the hysteretic drainage and imbi-
bition processes in the Pc2SW plane. It shows PcðSWÞ
obtained by eliminating x and t from the measurements of
2P1ðx; tÞ and SWðx; tÞ at x50:4 m, x50:5 m, x50:6 m, and
x50:7 m. The lines of the simulations indicate the time
evolution which is compared to the time discrete observa-
tions in the experiment. Experimental and simulated data
agree qualitatively. The values at SW � 0:99 corresponds
to the minimum in the pressure protocol of the water reser-
voir (see Figure 1) at the start of the experiment. The
decrease in water saturation induces an increase in Pc dur-
ing the primary drainage and the curves of all four positions
coincide with the experimental data. The point with the
lowest saturation of each primary drainage branch corre-
sponds to the instant when the pressure in the water reser-
voir is increased again. The deviations between simulation
and experiment at x50:7 m and x50:5 m originate from the
mismatched saturations (see Figure 3). The following imbi-

bition discloses the hysteretic nature of the process as the
curves at the four different positions follow different scan-
ning curves. Also the subsequent drainage yields different
drainage scanning curves. This branch of the curve is diffi-
cult to identify in the experimental data at x50:7 m and x5
0:6 m but matches well at the other two locations. The final
imbibition yields saturation SW � 0:8 and the curves at all
four positions almost coincide again.

[18] The figures show that the quality of our results is
comparable to the most sophisticated model used in Len-
hard et al. [1991]. However, in our theory, the hysteresis in
saturation profiles is due to the natural assumption that
breakup and coalescence rates are proportional to the rate
and direction of saturation change, whereas in their models,
the hysteresis is nonlocal in time and inserted directly by
hand into the constitutive functions. The good quality of
the results is surprising because it is evident that some of
our assumptions such as the incompressibility of air and the
incompressible porous medium are questionable. We
remark also, that the lack of error bars for the experimental
data makes an interpretation difficult.

6. Conclusions

[19] In summary, we presented a comparison of experi-
mental observations with theoretical predictions for a theory
of two-phase flow in porous media based on the hydraulic
differences between percolating and nonpercolating fluid
parts. It was shown that taking into account these differences
renders the modeling of a multistep outflow capillary
pressure-saturation relationship measurement possible with
one single set of parameters. In contrast to most of the hyste-
retic extension of the standard theory for two-phase flow in
porous media, the underlying theory has a physical founda-
tion. We, therefore, conclude that percolation of fluid phases
may be the physical reason for hysteresis between drainage
and imbibition during immiscible displacement.

Appendix A

[20] This appendix considers some computational
aspects of our theory to aid readers simulating experiments
with hysteresis. It clarifies fundamental differences (local-
ity versus nonlocality) between the theory presented here
and a traditional hysteresis model. The natural assumption
in equation (2), that breakup or coalescence of ganglia is
proportional to the rate and direction of saturation changes,
is neither equivalent nor related to the traditional hysteretic
extensions of capillary pressure or relative permeabilities.

[21] The origin of hysteresis in the present theory [see Hil-
fer, 2006b, 2006c] differs fundamentally from traditional hys-
teresis models such as the model utilized in Lenhard et al.
[1991]. Traditional hysteresis models require to store for
each location inside the sample the pressure and saturation
history (i.e., the reversal points, where the process switches
between drainage and imbibition). In our theory, such pres-
sure and saturation histories are not needed. Instead, contrary
to traditional hysteresis models, our theory allows to compute
the future state of the porous medium, given only the knowl-
edge of its present state. In other words, while traditional hys-
teresis models are nonlocal in time (and thus require to
memorize the systems history), our theory is local in time.

Table A1. List of Unknowns Needed at a Given Time Instant t to
Compute the Future Time Evolution for the Mathematical Model
in this Paper as Compared to the Mathematical Model of Lenhard
et al. [1991]a

This theory Lenhard et al. [1991]

SWðxi; tÞ Swðxi; tÞ
S2ðxi; tÞ –
S4ðxi; tÞ –
P3ðxi; tÞ hnwðxi; tÞ
– DS w1ðxi; t1Þ51
– Dhnw1ðxi; t1Þ50
– DS w2ðxi; t2ðxiÞÞ
– Dhnw2ðxi; t2ðxiÞÞ
. . . . . .
– DS wlðxiÞ21ðxi; tlðxiÞ21ðxiÞÞ
– DhnwlðxiÞ21ðxi; tlðxiÞ21ðxiÞÞ
– DS wlðxiÞðxi; tlðxiÞðxiÞÞ
– DhnwlðxiÞðxi; tlðxiÞðxiÞÞ

aQuantities corresponding to each other appear in the same row. The
arguments xi denote N discretized positions, i.e., collocation points i51; :::;
N of the numerical simulation. The notation of in the right column follows
Lenhard et al. [1991], the notation in the left column is that of this paper.
The time instants tjðxiÞ; j51; :::; lðxiÞ are the time instant of the jth reversal
at position xi. The number l(xi) of reversals (nested scanning curves)
depends on position xi.
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[22] In practical computations, the locality of our theory
translates into reduced storage requirements and a more
straightforward implementation. Table A1 below lists the
fields (i.e., the position and time-dependent quantities) nec-
essary to compute the future time evolution of the system.

[23] Both approaches need a pressure and saturation field
at the present time instant t. Our theory needs in addition
the unknowns S2; S4 to completely specify the present state
of the system. This amounts to two additional state varia-
bles at each collocation point. Traditional hysteresis models
need in addition 2lðxiÞ historic values, one for pressure and
one for saturation, at each collocation point xi. The number
lðxiÞ is the number of time instants tjðxiÞ; j51; :::; lðxiÞ at
which reversals occur at position xi; i51; :::;N . A reversal
is a switching between drainage and imbibition at the collo-
cation point xi. The number lðxiÞ depends on the nesting or
not of scanning curves. The number lðxiÞ and the time
instants tjðxiÞ are not known in advance. In Lenhard et al.
[1991], it is assumed ad hoc that nested loops do not occur
and that the last two reversals are sufficient to avoid pump-
ing effects. This uncontrolled approximation might fail for
experiments with cyclic pressure changes where nested
scanning loops are expected to occur locally. In the general
case, Lenhard et al. [1991] expect that the last four or five
reversals are sufficient.

[24] Finally, it may be of interest for practical computa-
tions that the model of Lenhard et al. [1991] postulates
explicitly and implicitly numerous functional relations
between the variables and unknowns characterizing the state
of the system. Examples are not only the capillary pressure-
saturation relationship or the relative permeability-saturation
relationship, but also the functional relations between the
various effective, apparent, entrapped, and historic satura-

tions and pressures Sw; Sw; hnw; S nt; Snr;
Dhnwj, and DS wj

appearing in Lenhard et al. [1991]. The functional forms for
these relationships are postulated purely theoretically and
have, apparently, been tested by inverse fitting but not yet by
a direct experimental test. The large number of such func-
tional relations and the freedom to parameterize them results
in so many possible fit parameters for the model of Lenhard
et al. [1991] that a meaningful comparison to other
approaches based on the number of free fit parameters
becomes difficult.

[25] Acknowledgments. The authors gratefully acknowledge finan-
cial support from the Deutsche Forschungsgemeinschaft and thank
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