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nucleation 

The paper introduces and discusses an idealized compet- 
itive growth model with nucleation for the microstruc- 
ture formation during dense branching phase separation 
in thin A1/Ge films. Grain size and grain length distribu- 
tions for the new model are obtained analytically and by 
simulation. These distributions exhibit a characteristic 
scaling form similar to cluster size distributions in many 
other growth models. The cutoff functions in these scal- 
ing forms and their influence on the determination of 
effective exponents are studied in detail. It is found that 
nucleation introduces a new length scale into the other- 
wise selfsimilar competitive growth model. This length 
scale appears only inside the cutoff function and diverges 
algebraically as the nucleation rate vanishes. We find 
both analytically and by simulation that the cutoff func- 
tions can exhibit stretched exponential behaviour 

exp ( - x  ~) for large arguments. Our analytical and sim- 
ulation results for grain size and grain length distribu- 
tions are in excellent quantitative agreement. 

1. Introduction 

A considerable interest in growth processes occuring far 
from equilibrium has developed in recent years. Such 
processes are commonly characterized by fractal geom- 
etries [1] and power law size distributions. These char- 
acteristics of nonequilibrium processes can often be un- 
derstood in terms of scaling models. But in most cases 
the scaling forms are phenomenological and the scaling 
exponents cannot be calculated in a systematic fashion. 
Examples of the successful application of simple scaling 
ideas include the cluster size distribution in deposition 
processes (diffusion limited deposition [2, 3] and ballistic 
deposition [4]), the kinetics of cluster-cluster aggregation 
[5, 6] and the size distribution in fragmentation processes 
[7]. Because of the scientific and practical importance of 
such processes it is important to develop a better under- 

standing of the scaling laws that describe them. An im- 
portant step in this direction is to study simple examples 
for which an analytical understanding can be obtained. 
Such an analytical description not only allows the quality 
and validity for familiar scaling models to be assessed 
but leads also to a better understanding of the role played 
by fluctuations in growth processes and how these fluc- 
tuations may influence fractal geometry, size distribu- 
tions and growth kinetics. 

Model studies such as the one presented here must be 
guided by experiment. Our experimental motivation 
stems from observations of growth in A1,Ge 1 -~ thin films. 
Such films exhibit an unusual growth morphology during 
phase separation from the amorphous into the crystalline 
state. A circular crystalline region grows from a nuclea- 
tion center inside of which a branched, centered, dendritic 
structure of polycrystalline Ge embedded in monocrys- 
talline Al is observed [8]. Many features of the unusual 
growth mode observed in the experiments have been ap- 
proached theoretically by formulating and analysing a 
nonlinear moving boundary problem which gives a mac- 
roscopic description of the growth of the crystalline 
A1/Ge regions [9, 10]. The interesting features that have 
been explained in this way include the absence of the 
Mullins-Sekerka instability [9] for the circular growth 
shape as well as the linear growth law and the mechanism 
selecting the growth velocity. 

Despite these encouraging results the theoretical ap- 
proach has fallen short of a complete understanding 
mainly because the branched, poly-crystalline structure 
of the Ge-aggregate is left out of consideration. This is 
an important aspect if we want to understand the strongly 
temperature dependent length scale found in the experi- 
ment. A first step in this direction was taken in [ 11 ]. These 
authors studied diffusion limited aggregation (DLA) [13] 
with surface tension and nucleation. Surface tension leads 
to a finite finger width. But this finding is not relevant 
for systems with a dense branching morphology because 
upon renormalization the model still flows into the self- 
similar DLA fixed point [14-17]. Introducing nucleation 
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on the other hand allows us to study a new quantity, the 
grain size distribution, that might be relevant in the ex- 
perimental system. For  this reason we consider in the 
present paper a simple growth process with nucleation 
(but without branching) and try to extract a characteristic 
length scale from it. 

Given the goal above we have chosen the simplest 
possible growth model, namely that of  growing a flat 
surface by adding one layer after another. The only new 
ingredient is the possibility of  nucleating new crystallites 
during the growth. We follow our previous work [ 11 ] on 
the more complicated DLA growth in the analysis of the 
resulting grain size distribution. 

Let us assume for simplicity that grain ripening proc- 
esses can be neglected, In other words temperature is 
considered to be so low that the grain structure resulting 
from growth process remains completely frozen, and there 
are no ripening processes of the microstructure on the 
time scale of the experiment. 

2. Formulation of  the model 

The models used in this work employ a square lattice 
with a coordinate system whose axes are parallel to the 
diagonal directions of  the squares. Each square represents 
a mesoscopic region of  the size of  a critical nucleus. The 
linear dimension of  such a region is much smaller than 
the average crystallite but much larger than atomic di- 
mensions. 

The growth process consists of adding layers of squares 
to a base (initial) layer of width (lateral extent) W. The 
layers are taken to be parallel to one of  the coordinate 
axes, say to the x-direction. At each step in the growth 
process a single layer of W squares is added. In this way 
a rectangular strip of  width W is grown along the y- 
direction. Each square in the strip carries a number iden- 
tifying the different "grains". Every grain carries a dif- 
ferent number. Alternatively we can imagine the grains 
to be colored and the numbers would then identify dif- 
ferent colors. With the addition of  each new layer of  
squares each square receives its number according to the 
following specific growth and nucleation rules. 

At the start of  a simulation an initial layer is set up 
by assigning "color" numbers to all of  the squares in it 
to represent the grain orientations. In actual simulations 
the last layer of a previous equilibration run can be used 
as the initial layer. A new layer of squares is then added. 
Each square in the added layer has two neighbours in 
the previous layer (called "parents"). The parent squares 
are defined as those squares that have a common edge 
with the squares in the added layer. A color number is 
assigned to each added square according to the following 
rules: 

a) With probability p~ a new color nmlaber is chosen 
(i. e. a number not existing in all numbered squares). 
b) With probability 1 - p ,  a color number is chosen ac- 
cording to the colors of  the parent squares as follows: 
�9 if the two parent squares have identical colour numbers 
the same color is also assigned to the newly added square; 

�9 if the two parent squares have different color numbers 
one of them is selected at random with probability 1/2 
as the color number for the new square. 

In these models it is assumed that the nucleation prob- 
ability p~ is the same for each nucleus in the added layer. 
In most simulations we employ a more realistic version 
in which we modify rule a) by distinguishing between 
nucleation probabilities pg for grain boundaries (i.e. 
where the two parents have different colours) and p{ for 
free boundaries (i.e. when the parents belong to the same 
grain). 

Each grain in this model originates with a nucleation 
event and the grain continues to grow as long as it remains 
part of the surface of the strip. The active growth surface 
of  each grain increases or decreases as a result of  the 
nucleation of new grains and the growth of competing 
grains. Thus the model represents a competitive growth 
model with nucleation as an additional "screening" 
mechanism. 

We have been unable to find analytical solutions for 
this model in the general case where both p{ and pg are 
nonzero. However for the case p { =  0 exact analytical 
results have been obtained which will be presented below. 
In all other cases we have studied the model by computer 
simulation. 

3. Simulations 

In the simulations we generally distinguish three different 
cases: 1) no nucleation at free boundaries, i.e. p { = 0 ,  
2) no nucleation at grain boundaries, i.e. p g = 0 ,  and 
3) equal nucleation probabilities at free boundaries and 

�9 ,~ f at grain boundaries, 1. e. p~ =p~.  
The simulations were all performed for strips of width 

W =  2500 with periodic boundary conditions in the di- 
rection perpendicular to the growth direction of  the strip. 
Starting from a single base layer we first grew 2000 to 
10 000 layers to equilibrate the grain structure. After 
equilibration between 10 000 and 40 000 layers were added 
and used in the statistics obtained from one run. In most 
cases data from a single run were used. 

Two different distributions are extracted from the sim- 
ulation data. One is the grain size distribution Ps (s), i.e. 
the probability density for finding a grain of size s. The 
second distribution, p~ (l), is the probability density that 
a grain will have a length of l layers along the growth 
direction (here the y-axis). 

3.1. Nucleation only at grain boundaries 

Consider first the case p{= 0 and p~g = v, i.e. nucleation 
occurs only at grain boundaries. In Fig. 1 we show a 
subregion of  100 by 100 squares from an actual simula- 
tion run. The zig-zag lines result from the choice of  the 
coordinate system and represent the grain boundaries. 
For  the texture shown in the figure the nucleation prob- 
ability was v = 0.1. The resulting pattern is strongly an- 
isotropic with grains elongated along the growth direc- 
tion (y-axis). This effect increases with the grain size. A1- 
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Fig. 1. Grain boundary configuration in a simulation of the grain 
boundary nucleation model with nucleation probability (p~) of 0.1 
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Fig. 2a, b. Grain length and grain size distributions of the grain 
boundary nucleation model, a shows the results for p~= 0.0t and 
b for p)'=0.07. The ragged curves are the simulation results, the 
smooth curves are the theoretical results, a has been drawn on the 
same scale as Figs. 5a and 7a to facilitate visual comparison 

though  a very wide distribution o f  sizes can be seen the 
distribution appears to be cut off  at some large charac- 
teristic size. Fo r  larger values o f  v this cu tof f  becomes 
even more  apparent.  

The existence o f  a cu tof f  in the grain size is confirmed 
by a study o f  the grain size distribution p ,  (s) and the 
grain length distribution p~(l). These two distributions 
are shown in Fig. 2 for the case where the nucleation 
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Table 1. Dependence of the parameters a,, b,, a~ and b t in the size 
and length distribution functions f,(s) and f~(l) (3.2) on the nu- 
cleation probability (p~) for the grain boundary nucleation model. 
The exponents are assumed to take their theoretical values 

p~ a b~ a t b / 

0.05 0.317 0.00472 0.590 0.00202 
0.07 0.327 0.00795 0.610 0.00420 
0.10 0.351 0.0176 0.645 0.00729 
0.15 0.390 0.0396 0.671 0.0198 
0.30 0.559 0.162 0.859 0.0866 

probabil i ty is v =0 .01  and 0.07. In  the figure we have 
plotted in (13/2pz(l)) versus In (l) as well as In (s3/2p, (s)) 
versus in (s). For  the case v = 0.01 the size distribution 
appears to follow a power law over almost  three decades, 
while for the length distribution there is at best a range 
o f  about  one decade if a power law regime exists at all. 
The scaling form 

p s ( s ) = s - r ' ~ L ( s  ) (3.1a) 

appears to provide a satisfactory description o f  the size 
distribution p ,  (s) and we assume a similar form for the 
length distribution p~ (l) 

p, (l) = l ~,f~ (l) .  (3.1 b) 

For  most  values o f  the nucleation probabilities v (see 
Fig. 2b for example) (3.1 a) was difficult to justify f rom 
the simulation data  alone. We will see below however 
that  it is justified by the theoretical analysis. 

Next  we tried to determine the form of  the cutoff  
functions fs and fz. To this end we plotted the data  in a 
semilogarithmic plot. We found that  the cu tof f  funct ion 
fl  seems to be well represented by an exponential  
function in the limit I--+ ~ ,  suggesting the existence o f  a 
characteristic length scale. We also tested a stretched ex- 
ponential  form for the cu tof f  functions and found that  
this sufficiently improves the fits for the size distribution 
to justify the use o f  an addit ional parameter.  

Consequently we assume that  the cu tof f  functions are 
given generally are stretched exponentials, i.e. 

s  e x p [ - b s s  ~s] (3.2a) 

and 

f t (  l ) =  alexp [ - bl l /~'] . (3.2a) 

These forms for the cutoff  functions will receive full 
justification in Sect. 4 below. The results f rom fitting to 
(3.2) are summarized in Table 1 for the parameter  values 
v = 0 . 0 5 ,  0.07, 0.1, 0.15 and 0.3. G o o d  fits to the data  
could always be obtained by using the values r s =  4/3 ,  
fl~ = 2 /3  r t = 3 /2  and i l l=  1 suggested by theory. 

F r o m  these fits we can tentatively conclude that  the 
size distribution decays first as a power  law with an ex- 
ponent  in the range 1.3... 1.4, and is then cutof f  expo- 
nentially at large sizes. 

The data  shown in Table 1 reveal another  impor tant  
aspect o f  the characteristic inverse sizes b s and inverse 
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Fig. 3. The dependence of the cutoff parameters b s and bt for the 
grain size and grain length distributions (3.2a) and (3.2b) on the 
nucleation probability pg for the grain boundary nucleation model 

lengths bt. Both of  these quantities exhibit an a lgeb ra i c  
dependence on the nucleation probability with an expo- 
nent of  about  2.0. This is illustrated in Fig. 3 where the 
dependence of  ln(b~) and ln(bl) on In (v )  is shown. 
Figure 3 corroborates the scaling forms of  (3.1) and sug- 
gests that there exists a characteristic length scale intro- 
duced by the nucleation probability which diverges quad- 
ratically as the limit v = 0 is approached. 

3.2. Nucleation only at free boundaries 

In Fig. 4 we display the grain boundary texture obtained 
for the case pg = 0 and p { =  0.1. The texture is now very 
different from that shown in Fig. 1. While in Fig. each 
grain was singly connected we find in the present case a 
nesting of  grains inside grains. It  is also evident that the 
nucleation mechanism is now much more efficient than 
before. Figure 4 shows a visibly smaller characteristic size 
than Fig. 1 while having the same value v = 0.1 of  the 
nucleation probability. This is easy to understand. For  
the case of  Fig. 1 a nucleation event occurred within each 
layer on average only at every tenth grain boundary 
square. In the present case however the nucleation occurs 
roughly after ten squares not counting squares adjacent 
to grain boundaries. Clearly this results in much more 
nucleation events per unit length than before. Figure 4 
shows that  it is still possible to deduce the growth direc- 
tion f rom the anisotropy of the grains. 

The grain size and grain length distributions for 
v = 0.01 and v = 0.001 are plotted in Fig. 5a and b. The 
fact that there is now a much smaller cutoff  scale is im- 
mediately confirmed by these plots. Assuming again the 
scaling form of  (3.1) we find exponents which are how- 
ever larger in absolute value. Table 2 presents an overview 
of the results in the present case. It  is seen that the ef- 
fective power law exponents decrease systematically with 
increasing v. This shows that  the true power law scaling 
is still concealed by the cut toff  function at such high 
values of  v. This might have been suspected from the 
small range of  grain sizes visible in Fig. 4. 

As the nucleation probabili ty is lowered the power 
law regimes in p~ and Pl become larger and the effective 
exponents approach their asymptotic values. Figure 5b 
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Fig. 4. A grain boundary configuration from a simulation of the 
free boundary nucleation model with nucleation probability 
pf=0.1 
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Fig. 5a, b. Grain length and grain size distributions from simula- 
tions of the free boundary nucleation model, a shows the results 
forpf=0.0l and b for p{= 0.001. Figures 2a, 5a and 7a have been 
drawn on the same scale 

Table 2. Effective values for the exponents vs and r~ for the free 
boundary nucleation model (p~=0). A star, ,, indicates no de- 
tectable power law regime 

P f ~'1 "g s 

0.0003 1.45 1.32 
0.001 1.42 1.28 
0.003 1.40 1.25 
0.010 1.34 1.22 
0.030 1.26 1.22 
0.100 * 1.17 
0.300 * 1.03 
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Fig. 6. A grain boundary configuration from a simulation of 
the symmetric nucleation model with nucleation probabilities 
pf =pg=O.1 

Table 3. Effective values for the length distribution exponent 2"! and 
the size distribution exponent r~ for simulations with equal free 
boundary and grain boundary nucleation rates (pf=p~ = 0). A star, 
*, indicates no detectable power law regime 

V 2" 1 r.~ 

0.0003 1.47 1.32 
0.001 1.43 1.32 
0.003 1.41 1.28 
0.010 1.36 1.27 
0.030 * 1.25 
0.070 �9 1.28 
O. 150 * 1.29 
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Fig. 7a, b. Grain length and grain size distributions from simula- 
tions of the symmetric nucleation model, a shows the results for 
p{=p~ = 0.01 and b for P{=Pgv = 0.0003. Figures 2a, 5a and 7a have 
been drawn on the same scale 
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shows data for p{=0.001.  The results collected in 
Table 2 and Fig. 5 are consistent with the idea that in the 
asymptotic limit p{~O the exponents r s and r t have the 
same values as in the grain boundary nucleation model. 

3.3. Symmetric nucleation 

f m  g m  The texture for the case p,~-pv-O.1 is shown in 
Fig. 6. The cutoff  scale is even smaller because now the 
nucleation is most  efficient, and on average a new grain 
is nucleated every ten squares. 

The grain size distributions are shown again at two 
values of  the nucleation probability. The results from 
fitting to the scaling forms are collected in Table 3 similar 
to the two previous cases. Again the simulation results 
are consistent with asymptotic values of  3/2 and 4/3  for 
rl and r s respectively. 

4.  A n a l y t i c a l  t r e a t m e n t  

The general model is too complicated to be solved ana- 
lyrically. But an exact analytical solution can be found 
for the case where p { = 0  and p { =  v, (i.e. nucleation oc- 
curring only at grain boundaries with probability v). This 
case becomes tractable if attention is focussed on the 
active surface length z of  a single grain as a function of 
the number  of  added layers. The active surface length z 
of  a grain is defined as the number of  elementary squares 
touching the growth front. With each addition of a new 
layer the active surface of a grain can increase or decrease 
by one elementary square. The probabilities for these 
events are obtained from the rules of the algorithm as 

P r o b { z ~ z +  1 } = � 8 8  2 

Prob {z- ,z}  =�89 - v )2+  v (1 - v) 

Prob {z--+z- 1} =~  (1 - v) 2 + v (1 - v) + v 2 . 

For  example in the expression for Prob {z-+z - 1 } the first 
term gives the probability that z decreases if there is no 
nucleation at either one of the boundaries. The second 
term applies if there is nucleation at only one of the 
boundaries, and the third term describes grain nucleation 
at both boundaries. The other two cases are obtained 
similarly. 

For  a strip of  width W the growth of a single grain 
always begins with an elementary square, i.e. initially 
z = 1, and stops when z = 0 for the first time. To calculate 
the grain size distribution or the grain length distribution 
we need to calculate the probability gl,l that a grain will 
have length l (i. e. the grain stops growing after adding l 
layers) if it started from a single nucleus (i. e. f rom z = t). 
More generally if gz, l denotes the probability to find a 
grain of  length l which started from an active surface z 
then g=,l obeys the equation 

gz, l+l  =�88 + v)2gz+ ,,,+�89 - v2)gz,, 

+�88 --v)2g~_l,t (4.1) 
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with boundary values 

go, z = g w, z = 0 (4.2a) 

for l_> 1 and 

go, o = 1 ; g~,0 = 0 (4.2b) 

for 0 < z=< W. Equations (4.1) and (4.2) can be solved 
using the method of generating functions [18]. Let 

co 

G~(s)= ~ g~,ts t 
l = 0  

denote the generating function for the probabilities g~,,t. 
The usual Ansatz G, ( s )=  [/3 (s)] ~ gives the solution 

B w R ~ _  _, w 
1 ~'_ fl~/32 (4 .3)  G ( s )  = ~ 

where 

/3~ ( s ) =  A~ [1 +(1 --Az)  L/2] (4.4) 

/ 32  ( S )  = A  1 [ 1  - -  ( I  - -  A2) '/2] 

and 

2 l + v  
A I - - -  

s ( l - v )  2 1 - v  

A2= (s (1  2 +v)2 1) -2" 

It can then be shown that the final result for the prob- 
ability g~,~ obtained from this solution reads 

1 1 - v  
- -  ( 1  - -  V 2 )  / 

gl,l-- W 1 + v 

sin 2 ;~f 

�9 ( 4 . 5 )  X ~ ~i 
~=~ 1 +cos  - -  

W 

This result shows that nucleation (v . 0 )  enters as an 
exponential prefactor to the sum representing the effect 
of the competkive growth process. Equation (4.5) is the 
exact result for the grain length distribution. 

To understand the result better it is instructive to 
investigate the probabilities gj,z for large values of l. In 
the notation of Sect. 3 we have &(l)  =g~,~ for the prob- 
ability density function. To calculate the asymptotic ex- 
pansion ofp~(/) for large l it is convenient to pass to a 
continuum of possible values for t by replacing the var- 
iable s in the generating function with 1/(1 + u). To find 
the result equivalent to (4.5) the inverse Laplace-Trans- 
form is calculated with respect to u. This leads to Bessel- 
functions whose asymptotic expansion can then be util- 
ized. We find the asymptotic result 

p l ( l )~ l -3 /2e  -~'-t (4.6) 

for l ~  oo. Thus the grain length distribution exhibits a 
characteristic length scale l 0 given by 

l0 = bl- 1 = v - 2 (4.7) 

which diverges quadratically as the nucleation probability 
goes to zero. This result agrees with the scaling forms of 
(3.1) and (3.2) and with the simulation data presented in 
Fig. 3. Similar behaviour, namely the existence of a char- 
acteristic length scale which diverges as a power law, was 
also observed in the diffusion limited aggregation model 
with nucleation [ 11 ]. 

Finally we turn to the distribution of grain sizes which 
we have not found exactly. Instead we calculate it from 
the exact result for the grain length distribution using the 
following argument. The random size S of a grain is given 
by S =  WL where L is the random length whose distri- 
bution has been calculated above, and W is the width. 
For the width we use the root mean square of the active 
surface during the growth, i .e .  W~(~z( l )2))  1/2. We 
therefore have W = B L  l/2 for a grain whose random 
length is L. Therefore the grain size is given by 
S = BL 3/2. The probability density function p, (s) for the 
grain sizes now follows from p~ (l) as 

Ps(s)=~ B -  2/3 s - t / 3p (B-2 /3  s -  2/3). 

With this we find the result 

2 1 - v  B_2/3s_l/3(  l_v2) (s /~ /~  
Ps(S)--3 W l + v  

w- ,  sin2 ~ i  

• ~, Wrc i / - ; \ \  - - / ( � 8 9 1 7 6  ~)(s/m~/~ (4.8) 
z=~ 1 +cos  - -  

W 

with the asymptotic expansion 

P s  ( S )  ~'~ S - 4 / 3  e - ~ 2(g /B)2 /3 .  (4.9) 

The exponent for the power law decay has changed and 
the cutoff function is now a stretched exponential rather 
than a simple exponential as for the grain length distri- 
bution. The characteristic cutoff size s o again diverges 
quadratically as the nucleation probability v tends to 
zero. 

SO : b s  i : v - 2 9 2 / 3  . (4.10) 

Again this result is in good agreement with the simulation 
data. 

5. Discuss ion  

In this section we reconsider the simulation results in the 
light of the analytical findings. Although 2.5 • 107 to 10 9 

particles were aggregated for each parameter value the 
scale of the simulations presented here is moderate com- 
pared to those performed in ballistic deposition where as 
many as 10 l~ sites per run have been deposited using the 
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same computer  resources (IBM 3090) as in this work, 
and as many as 1012 using a massively parallel machine 
[191. 

We can use (4.5) to calculate the grain length distri- 
bution for the case displayed in Fig. 2. Note that (4.5) 
contains no adjustable parameter.  T h e  result is drawn as 
the solid line in Fig. 2. It  is evident that the exact cal- 
culation and the simulation are nearly indistinguishable. 
This holds also for other values of  the nucleation prob- 
ability v. 

This result justifies the procedure used in Sect. 3 where 
we fitted the simulation data to scaling forms with ex- 
ponents fixed at their theoretical values. In these fits the 
first 5 to 10 data points are usually discarded because the 
scaling forms of (4.6) and (4.9) apply only at larger values 
of  l resp. s. The results for the grain boundary nucleation 
model are collected in Table 1. Note that the inverse cut- 
off length b~ is found close to the value expected from 
(4.7). This suggests that the parameter  B can be deter- 
mined by using the relation (4.10). We find that 
v 2 b]- 1 = 0.57 _+ 0.05 with 95 % confidence so that B ~ 0.43. 

We can now proceed to consider the grain size dis- 
tribution. As noted above (4.7) for the grain size distri- 
bution is not an exact result. It involves the parameter  B 
and cannot be expected to be accurate at small s. Using 
the value for B obtained above we obtain the fit displayed 
as the smooth curve in Fig. 2. While the deviations for 
small s had to be expected we again obtain good agree- 
ment as soon as s > 50. This shows that 1) the cutoff  
function is indeed a stretched exponential function and 
2) that our determination of  B is selfconsistent. 

For  the free boundary nucleation model and the sym- 
metric nuleation model the effective exponents r~ and r~ 
are smaller than their asymptotic (v ~ 0 )  values. This in- 
dicates that the cutoff  functions s  and f l ( l )  do not 
have the simple monotonically decreasing forms given in 
(3.2). However  our results are consistent with (but do 
not strongly support)  the idea that the distributions Ps (s) 
andp~(/)  can be described by (3.1) and (3.2) in the limit 
v-*0.  

All these results demonstrate that the cutoff functions 
are very important.  We find that in general stretched 
exponential cutoffs can exist. Such cutoffs will only show 
a very slow crossover, and very large scale simulations 
are required to find the correct power law exponent, even 

if it is known theoretically that power law behaviour is 
correct. 

More importantly the comparison with the exact so- 
lution shows that the small size corrections are also im- 
portant.  In fact the true power law is found to appear 
only in an intermediate window. These difficulties in- 
crease the uncertainties in measuring the exponents r ,  
and r l. The uncertainties are exacerbated if p[3=0. In 
these cases the cutoff functions do not have a simple form 
and the uncertainties in determining r s and r / m a y  be as 
large as 0.2 to 0.3. This is illustrated in Tables 2 and 3. 
Such difficulties appear to be characteristic for investi- 
gations of  grain or cluster size distributions in simulation 
and experiment. 
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