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1. INTRODUCTION

A derivative or integral of fractional order is usually defined by analytically
continuing a suitable definition of the derivative or integral of integer order
n ∈ N to real or complex values of n.

My purpose here is to give some of the definitions and then to review brief-
ly recent applications of fractional derivatives and integrals in physics with
emphasis on static and dynamic scaling.

Derivatives of fractional order have recently emerged in physics as generators
of time evolutions in ergodic theory [1, 2, 3, 4, 5, 6], and as a tool for classifying
phase transitions in thermodynamics by generalizing the classification scheme
of Ehrenfest [1, 7, 8, 9, 10].

Given the fact that a fractional integral is, loosely speaking, a convolution
operator with a power law kernel it is perhaps not too surprising that fractional
integrals and derivatives are useful tools in scaling theory.
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2. FRACTIONAL DERIVATIVES

Let f : [a, b] → R be a real function and recall that its n-th order integral is
given by

(In
a+f)(x) =

∫ x

a

∫ y1

a

...

∫ yn−1

a

f(yn) dyn...dy1 (x > a)

=
1

(n − 1)!

∫ x

a

(x − y)n−1f(y) dy (1)

as is readily proven by induction. Generalizing equation (1) to noninteger n
defines the Riemann-Liouville fractional integral of order α > 0 as [11, 12]

(Iα
a+f)(x) =

1
Γ(α)

∫ x

a

(x − y)α−1f(y) dy (2)

for x > a and f ∈L1([a, b]) to ensure that the integral will be finite. A dual
form is the right-sided integral

(Iα
b−f)(x) =

1
Γ(α)

∫ b

x

(x − y)α−1f(y) dy (3)

for x < b. The Riemann-Liouville integral (2) is perhaps the most commonly
employed definition [13, 14]. For 0 < a < 1 these definitions are extended to
the whole real axis R as

(Iα
+f)(x) =

1
Γ(α)

∫ x

−∞
(x − y)α−1f(y) dy (4)

(Iα
−f)(x) =

1
Γ(α)

∫ ∞

x

(x − y)α−1f(y) dy (5)

for f ∈Lp(R) with 1 ≤ p < 1/α. Formula (5) is often referred to as the Weyl
fractional integral of order α [15].

The definition of fractional derivatives is frequently based on that of fractio-
nal integrals through

(∂α
i f)(x) =

dn+1

dxn+1
(In+1−α

i f)(x) (6)

where i ∈ {a+, b−, +,−} and n = [α] is the largest integer less than or equal
to α. An alternative would be to interchange the orders of differentiation and
fractional integration in (6).

Another approach to define a fractional derivative tries to replace α with −α
directly in the definitions (2)–(5). However the resulting integral is divergent
and needs to be regularized. The traditional regularization uses Hadamards
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finite part. Starting from (6) and (4) and proceeding formally one arrives at
[15, 16]

(∂α
+f)(x) =

d

dx
(I1−α

+ f)(x)

=
1

Γ(1 − α)
d

dx

∫ x

−∞
(x − y)−αf(y) dy

=
1

Γ(1 − α)
d

dx

∫ ∞

0

t−αf(x − t) dt

=
α

Γ(1 − α)

∫ ∞

0

f ′(x − t)
∫ ∞

t

1
z1+α

dzdt

=
α

Γ(1 − α)

∫ ∞

0

f(x) − f(x − t)
t1+α

dt (7)

where the last equality serves to define (∂α
+f) for 0 < α < 1. Here f ′ denotes

the first derivative of f with respect to its argument. Similar definitions can be
given for α > 1. The main difference between the definitions (7) and (6) is that
(7) allows more freedom for the behaviour of f at infinity. Thus (7) is defined
for f(x) = const while (6) is not.

The preceding definitions define fractional differentiation as an inverse ope-
ration to fractional integration, i.e. as integration of order −α. A more direct
approach arises from the fact that derivatives are limits of difference quotients.
Let T h denote the translation

(T hf)(x) = f(x − h) (8)

by h. The finite difference of order α is defined as

(Δα
hf)(x) = (1− T h)αf(x) =

∞∑
k=0

(−1)k

(
α

k

)
f(x − kh) (9)

with 1 = T 0 the identity, and(
α

k

)
=

(−1)k−1αΓ(k − α)
Γ(1 − α)Γ(k + 1)

(10)

It reduces to the familiar finite difference of integer order for α ∈ N. The
Grünwald fractional derivative of order α is then defined as [17, 18]

(∂α
±f)(x) = lim

h→0+
h−α(Δα

±hf)(x) (11)

as the limit of a fractional finite difference quotient. There are several possibi-
lities to define this limit, e.g. pointwise, almost everywhere, or in the norm of
a Banach space. The choice depends upon the question at hand. It is possible
to show that, in a suitable sense, the definitions (11) and (7) coincide.
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As equation (9) suggests it is also possible to define fractional derivatives
as fractional powers of the differentiation operator, i.e. ∂α

+ = (d/dx)α [19, 18].
More generally one considers fractional powers of the infinitesimal generators of
strongly continuous semigroups. A strongly continuous semigroup on a Banach
space X is a one parameter family of maps T (t) : X → X fulfilling

1. T (t)T (s) = T (t + s) (12)
2. T (0) = 1 (13)
3. lim

t→s
||T (t)f − T (s)f || = 0 for all f ∈ X (14)

whose infinitesimal generator A is defined by

Af = lim
t→0+

1
t
(T (t) − 1)f (15)

The fractional power (−A)α can be defined analogous to eq. (11) or analogous
to eq. (7) through

(−A)αf =
1

Γ(−α)

∫ ∞

0

t−α−1(T (t) − 1)f dt (16)

for 0 < α < 1 and f within the domain of A. Equation (16) is known as
Balakrishnan’s formula. Obviously, (16) generalizes (7) and (11).

Finally, fractional derivatives may also be defined through analytic continua-
tion in Fourier space. If

f̂(k) =
∫ ∞

−∞
eikxf(x) dx (17)

denotes the Fourier transform of f then a fractional derivative of order α can
be defined as the operator

(∂α
±f)(x) =

1
2π

∫ ∞

−∞
(∓ik)αf̂(k)e−ikx dk (18)

for functions f such that the integrals exist (e.g. smooth with compact support).

3. SCALING IN THERMODYNAMICS

Fractional derivatives have been employed in thermodynamics to generalize
the Ehrenfest classification scheme for phase transitions [1, 7, 8, 9]. It is found
that this generalization gives rise to a generalized form of static scaling at the
transition point.

To be concrete consider the pressure p(T, μ) as a function of temperature T
and chemical potential μ. Let p(T, μ) have a phase transition (i.e. a singular
point) at (Tc, μc). Let furthermore C : σ → (T (σ), μ(σ)) be a thermodynamic
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process parametrized by σ such that σ = 0 corresponds to the critical point,
i.e. (T (0), μ(0)) = (Tc, μc). Let ps denote the singular part of p, i.e. p = pr + ps

where pr is the regular part. Let

F (C, q; σ) =

{
(∂q

0+ps)(σ) : for σ > 0

(∂q
0−ps)(σ) : for σ < 0

(19)

denote the q-th order derivative of the function ps(σ).
Ehrenfest [20] suggested to classify phase transitions according to their order.

The phase transition at σ = 0 is defined to have Ehrenfest order n ∈ N if and
only if F (C, n; σ) has a jump discontinuity at σ = 0, i.e. iff

lim
σ→0+

F (C, n; σ) �= lim
σ→0−

F (C, n; σ) (20)

In [1, 7, 8, 9] Ehrenfests classification was generalized to allow noninteger
orders and slowly varying confluent behaviour. The phase transition at σ = 0
is defined to be of order λ± > 0 if and only if [1, 7, 8, 9]

lim
σ→0±

F (C, λ±; bσ)
F (C, λ±; σ)

= 1 (21)

for all b > 0, i.e. iff F (C, λ±; σ) is a slowly varying function in the sense of
Karamata [21].

It follows readily from this definition that ps(σ) is regularly varying of order
λ±(C). Note that the order depends on the choice of the curve C. Hence

ps(T (σ), μ(σ)) =

{
Λ+(C; σ)σλ+(C) : for σ > 0

Λ−(C; σ)σλ−(C) : for σ < 0
(22)

where the functions Λ±(C; σ) are slowly varying functions at σ = 0.
These results show that phase transitions with noninteger Ehrenfest order

exhibit algebraic scaling behaviour with an exponent that is in general path
dependent.

What is the interest of this new classification ? First of all classifying phe-
nomena is an important task of science. An exhaustive classification of fixed
points in renormalization group theory of phase transitions does not exist [22].
An exhaustive classification allows to predict that certain cases cannot occur
or that new cases beyond known ones must be expected. Secondly the gene-
ralized Ehrenfest scheme has led to a wealth of new predictions ranging from
new classes of phase transitions [1] to the prediction of scaling functions and
universal amplitude ratios for finite size scaling [23, 24]. Finally the same ideas
giving rise to a classification of static macroscopic phenomena are also useful
to classify macroscopic dynamics as discussed next.
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4. SCALING IN MACROSCOPIC DYNAMICS

First order time derivatives play a fundamental role as the infinitesimal gene-
rators of time evolution for a dynamical system. A growing number of publica-
tions uses fractional time derivatives to describe the time evolution of physical
systems [6, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38]. This raises the
question whether fractional time derivatives are also infinitesimal generators
of time evolution. Recent work has given a positive answer to this question
[3, 4, 5]. The purpose of this section is to present this result.

Let Γ be the microscopic phase or state space of a dynamical system in the
sense of ergodic theory [39, 40], with σ-algebra G, measure μ, and time evolution
T (t) = T t with either t ∈ R or t ≥ 0, i.e.

T (t)μ(G, t0) = μ(G, t0 − t) (23)

for all G ∈ G. Let Γ∗ ⊂ Γ be the microscopic phase or state space associated
with a subsystem. If μ(Γ∗) > 0 then the time evolution T (t) on Γ canonically
induces also a time evolution on Γ∗ [39, 40]. In situations of physical inte-
rest, however, one often has μ(Γ∗) = 0. An example would be the solid phase
in a system of interacting classical particles exhibiting macroscopic solid-fluid
coexistence at low temperatures.

The physically interesting case with μ(Γ∗) = 0 was first discussed in [3, 4, 5]
in the context of ergodic theory with the following result: If the subset Γ∗ is
suitably chosen, then the limit of macroscopic times (ultralong time limit) of
the induced time evolution T ∗(t∗) on Γ∗ is given by a one-parameter family of
semigroups parametrized by 0 < α ≤ 1

T ∗
α(t∗)μ∗(B, t∗0) =

∫ ∞

0

μ∗(B, t∗0 − t)hα

(
t

t∗

)
dt

t∗

=
1
t∗

∫ ∞

0

hα(t/t∗)T (t)μ∗(B, t∗0)dt (24)

with t∗ ≥ 0. Here B ⊂ Γ∗, μ∗ is a measure on Γ∗, and

hα(x) =
1

xα
H10

11

(
1
x

∣∣∣∣ (0, 1)
(0, 1/α)

)
(25)

is a one-parameter familiy of functions with H10
11 defined through its Mellin

transform [41] ∫ ∞

0

H10
11

(
x

∣∣∣∣ (0, 1)
(0, 1/α)

)
xs−1 dx =

Γ(s/α)
Γ(s)

(26)

or through the Laplace transform∫ ∞

0

e−ux

xα
H10

11

(
1
x

∣∣∣∣ (0, 1)
(0, 1/α)

)
dx = e−uα

. (27)
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Obviously
h1(x) = lim

α→1−
hα(x) = δ(x − 1) (28)

and hence from (24)

T ∗
1 (t∗)μ∗(B, t∗0) = μ∗(B, t∗0 − t∗) (29)

is again a translation as in the microscopic evolution (23) except that here the
macroscopic time parameter obeys always t∗ ≥ 0 while the microscopic time
parameter can also obey t ∈ R. This means that the macroscopic time evolution
is always irreversible while the microscopic evolution may be either reversible
or irreversible.

Fractional derivatives appear when the infinitesimal generator, (15), of the
induced time evolution T ∗(t∗), given in (24), is determined as

A∗
α = lim

t∗→0+

1
t∗

(T ∗
α(t∗) − 1) = c+

∫ ∞

0

t−α−1(T (t) − T (0)) dt (30)

where c+ > 0 is a constant. Comparison with Balakrishnans formula (16) shows
that

A∗
α = c∂α

+ (31)

for 0 < α < 1 with c a constant, and

A∗
1 =

d

dt∗
(32)

for α = 1 are the infinitesimal generators of the induced time evolution T ∗
α(t∗).

An immediate consequence of (31) was proposed in [1]. It identifies A∗
α with a

generalized Liouvillian, and suggests to generalize the Liouville equation for the
time evolution of probability measures in phase space into a fractional Liouville
equation

∂α
+μ∗(B, t∗) = A∗

αμ∗(B, t∗) (33)

where A∗
α is interpreted as a Liouville operator. Explicit examples are given by

anomalous fractional diffusion where the right hans side is the Laplacian [33]
or fractional relaxation [1, 31, 32].

A second consequence emerges from the condition of invariance (or stationa-
rity) of a measure under the induced macrotime evolution T ∗(t∗) which reads

T ∗
α(t∗)μ∗(B, t∗0) = μ∗(t∗0). (34)

This becomes infinitesimally a fractional differential equation

∂α
+μ∗(B, t∗) = 0 (35)

whose solution is
μ∗(B, t∗) = C0t

∗α−1
. (36)

Thus algebraic decay in time can be a sign of stationarity for induced dynamics
on subsets of measure zero. The algebraic time decay shows that order α of the
derivative plays the role of a dynamic scaling exponent.
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