
in : Porous Media: Physics, Models, Simulation, A. Dmitrievsky

and M. Panfilov (eds.), World Scientific Publ. Co. Singapore, 2000,

p. 133

Old Problems and New Solutions for

Multiphase Flow in Porous Media

by

Helge Besserer 1and Rudolf Hilfer 1,2

1 Institut für Computeranwendungen, ICA-1,Universität Stuttgart,

Pfaffenwaldring 27, D-70569 Stuttgart, Germany

2 Institut für Physik, Universität Mainz,

D-55099 Mainz, Germany

Abstract

The existing macroscopic equations of motion for multiphase flow in porous

media are unsatisfactory in two general respects. On the one hand character-

istic experimental features, such as relationships between capillary pressure

and saturations, cannot be predicted. On the other hand the theoretical

derivation of the equations from the well-known laws of hydrodynamics has

not yet been accomplished. In this paper we discuss these deficiencies and

present an alternative description which is based on energy balances. Our
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description includes surface tensions as parameters and interface areas as a

new macroscopic state variable. The equations are obtained from general

multiphase mixture theory by explicitly accounting for the pairwise charac-

ter of interfacial energies. For the special case of two immiscible fluids in

a porous medium the most important ingredient is the distinction between

a connected and a disconnected subphase of each fluid phase. In this way

it becomes possible to handle also the spatiotemporal variation of residual

saturations. The connection between the new approach and the established

formulation is given by identifying a generalized Darcy Law with generalized

relative permeabilities. The new equations reproduce qualitatively the satu-

ration dependent behaviour of capillary pressure in gravitational equilibrium.

1 Introduction

The theoretical understanding of displacement processes between incom-

pressible fluids in porous rock is of great interest in fields such as oil reservoir

engineering or environmental physics [15], [14], [18]. The established multi-

phase flow equations based on generalizations of Darcy’s Law are known to

be incomplete [11], [20]. In Section 2 we discuss the main approaches within

which macroscopic equations of motion can be derived and we exhibit some

of their problems.

In addition to their theoretical difficulties the known two-phase flow equa-

tions describe only inadequately some of the essential features of experiments

on fluid displacements in porous rock [10], [2], [15], [16]. We mention relative
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permeabilities and capillary pressure which are treated as material param-

eter and parameter functions respectively although they are nonunique and

hysteretic functions of the state variables [4], [25]. Within the traditional

approach the residual saturations are constant parameters although experi-

ments have shown that they vary in space and time and depend on the flow

velocity [3],[19], [30]. Surface areas and surface tensions which are known to

control capillary action and wetting properties do not appear in the mathe-

matical formulation of the traditional theory [7].

In Section 3 we explain an alternative approach [16], [17], [7] which is

based on energy balances within the theory of multiphase mixtures with

volume fractions. The traditional theory includes only mass and momentum

balance but fails to incorporate the energy balance. The interfacial energy

depends on the interfacial area and interface tension and hence the set of

macroscopic observables describing the state of the mixture must be enlarged

to include surface areas and surface tensions. Hereby the elementary driving

forces of capillary action are explicitly taken into account. This also means

that the dependence of the results on wetting properties can be expressed

through interface areas instead of phenomenological relative permeabilities.

In Section 4 we show that with some simple assumptions the traditional

theory can be recovered from our new approach. For gravitational equi-

librium the new equations predict relationships between capillary pressure

and fluid saturations which are in qualitative agreement with experimental

results.
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2 Problems with Macroscopic Approaches

A tool for axiomatically deriving flow equations in porous media is furnished

by the theory of immiscible mixtures (see for example [5]). Each phase α of

the mixture is attributed a mass density ρα(x, t) and velocity field vα(x, t),

where x and t are macroscopic space and time variables respectively. The

general global form of the mass balance for phase α is then given by

d

dt

∫

Vα

ραdVα =
∫

V

MαdV , (1)

where Mα denotes mass transfer of all phases into phase α. The integral on

the left-hand side is defined over the domain exclusively occupied by phase

α with partial volume Vα. Introducing volume fractions φα := dVα/dV with

∑

α
φα = 1, the partial volume integral can be changed to an integral over the

macroscopic mixture volume V . Then from (1) we get the local form

Dα

Dt
(φαρα) + φαρα∇ · vα = Mα , (2)

where Dα/Dt := ∂/∂ t+vα ·∇ denotes the material derivative following phase

α.

The general global form of the momentum balance for phase α is written

d

dt

∫

Vα

ραvαdVα −
∫

Sα

Tα · nαdSα −
∫

Vα

ραbαdVα =
∫

V

mαdV , (3)

where bα denotes an external momentum supply and the internal contact

forces of phase α are expressed by a Cauchy stress tensor Tα. The term mα

on the right side stands for the momentum transfer into phase α from all
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other phases. The left side of the equation contains partial volume integrals

and a partial surface integral which is defined over the boundary Sα of the

α-domain, with normal unit vector nα. Using (2) we can write

∫

V

(

φαρα

Dα

Dt
vα

)

dV −
∫

Sα

Tα ·nαdSα−
∫

V

φαραbαdV =
∫

V

(mα − Mαvα) dV .

(4)

Transformation of the momentum balance (4) into a local equation needs

supplementary considerations because the surface integral is related to the

partial surface Sα, whereas the only microinformation entering the macro-

scopic theory are the volume fractions. It is continuingly debated in volume

fraction theories on how to meet that integral. Actually there are two com-

peting ideas. One of them is to apply the Gaussian theorem independently

in each partial domain and then to continue with volume fractions,

∫

Sα

Tα · nαdSα =
∫

Vα

(∇ · Tα) dVα =
∫

V

φα (∇ · Tα) dV . (5)

Using (5) all integration domains in Eqn. (4) become equal and we can go

over to the local form

φαρα

Dα

Dt
vα − φα∇ ·Tα − φαραbα = mα − Mαvα . (6)

Decomposing the stress tensor into spherical and deviatoric parts,

Tα = −Pα1 + D(Tα) , (7)

the pressure term −φα∇Pα appears in the macroscopic momentum balance.

(See for example the works of Murray on a theory of fluidized beds with
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compressible fluid and elastic particles [22], [23] or the works of Soo on two-

phase flow with chemically reacting fluids [28], [29].)

The other community in this controversy defines an “effective” stress

tensor TE
α by assuming

∫

Sα

Tα · nαdSα =
∫

S

TE
α · ndS =

∫

V

∇ ·TE
α dV . (8)

This results in a different local momentum equation,

φαρα

Dα

Dt
vα −∇ · TE

α − φαραbα = mα − Mαvα . (9)

(Compare for example investigations [21] on fluid saturated porous media

with compressible fluid and elastic solid by Morland.) The pressure term

introduced by Eqn. (9) has caused heated discussions, see for example [5],

[8].

Finally there are authors who try to find a compromise as for example in

[26] and [27]. They assumed a pressure term −φα∇P + (1 − βα)P∇φα and

introduced βα as a constitutive function.

Let us turn to the more special problem of incompressible Newtonian

fluids flowing in rigid porous rock. To present the established equations we

give the ideas of Trangenstein [1]. He decides in favour of momentum balance

(6). For single-phase flow he ignores the fluid’s inertial force ρ(Dv/Dt) and

shear stresses D(T) in the momentum balance and assumes a simple drag

force for momentum transfer between rock and fluid,

m = −
µφ

K
v , (10)
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where µ is the viscosity of the fluid, φ the porosity and K the absolute

permeability of the rock. Further he excludes chemical reactions between

rock and fluid setting M = 0 and identifies the external body force with

gravity, b = g. Altogether this 1 yields the famous Darcy Law

v = −
K

µ
(∇P − ρg) . (11)

Multiphase flow equations are then obtained by extending the single-

phase formula. To generalize Eqn. (11) to multiphase systems one must

assume that the flow of either fluid is hydrodynamically independent of the

other fluids [11]. So-called relative permeabilities krα account for the fact that

the flow medium and its permeability for each fluid phase α is altered by the

presence of all other phases. Based on this idea Eqn. (11) is generalized to

the velocity field vα of each phase α giving

vα = −
krαK

µα

(∇Pα − ραg) . (12)

In most applications the relative permeabilities are treated as functions of sat-

urations Sα := φα/φ. In principle a more complicated dependence on physical

quantities like surface tensions, contact angles, viscosities, mass densities, the

pore structure, and flow conditions has to be considered [20]. Experiments

1Actually the derivation in [1] contains two mistakes. The volume fraction φα in the

pressure term arising through the transition from global to local equations is missed and

the volume density of gravity is incorrectly introduced as g instead of φg. This leads to

the erroneous form v = −Kφ−1µ−1 (∇P − ρg). In consequence the phase velocity v and

the so-called Darcy velocity v = φv are exchanged by mistake.
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display hysteretic saturation dependence [11] and a strong influence of char-

acteristic flow regimes [3], which is in clear contradiction to the assumed

dependence on saturation alone.

In summary we have seen that the existing axiomatic approaches contain

many ambiguities. Recent work [16], [17], [7] on two-phase flow of incom-

pressible fluids through porous solids favour an approach after Eqn. (8), that

we shall explain in the next section.

3 Energy Balance Approach

Let us consider two immiscible fluids, such as water and oil, flowing in a

solid matrix, such as porous rock. We use the indices W, O, R for the three

phases and denote the surface tension between phases α, β ∈ {W,O,R} by

σαβ and their respective interface area per unit volume by Aαβ . As another

ingredient we distinguish between connected and disconnected fluid phase

by dividing each fluid phase into a percolating (connected) and trapped (dis-

connected) subphase. A subphase is called connected if its interior can be

connected to the boundaries of the sample by a path within the subphase.

The disconnected subphase may be viewed as immobile droplets and ganglia.

It is possible to handle the dynamics of residual phase saturations through

the immobile subphases. For further kinematic details see [17].

The subdivision of W and O into connected and disconnected subphases

results in a total of five phases (four fluid, one solid) with indices as shown

in Table 1. To each phase we attribute a velocity vα(x, t), α ∈ {1, 2, 3, 4, 5},
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and each phase occupies a volume fraction φα(x, t) with

4
∑

α=1

φα = 1 − φ5 = φ , (13)

where φ is the porosity of the rock. The velocities of the immobile subphases

and of the rock phase are set to zero, v2 = v4 = v5 ≡ 0. Mass exchange

occurs only between trapped and percolating subphases of the same fluid

substance. Chemical reactions are excluded. Hence we specify M1 = −M2 =:

MW and M3 = −M4 =: MO. The local form of mass conservation (2) with

given constant mass densities ρW , ρO and ρR yields four equations

ρW

∂

∂t
φ1 + ρW∇ · (φ1v1) = MW (14)

ρW

∂

∂t
φ2 = −MW (15)

ρO

∂

∂t
φ3 + ρO∇ · (φ3v3) = MO (16)

ρO

∂

∂t
φ4 = −MO , (17)

while the corresponding equation for the rock phase turns out to be trivial.

Let us continue with the momentum balance. The stress tensor is specified

by two assumptions. Shear stresses are neglected which leads to a spherical

tensor, and we follow the idea of an effective stress tensor as discussed in

section 2. Thus we specify the stress tensor as

TE
α = −φαPα1 . (18)

The macroscopic pressure fields of the disconnected fluid phases are not ex-

ptected to be continuous when obtained by averaging or homogenization

techniques. Hence only the momentum equations for the connected phases
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α = 1 and α = 3 are considered. Moreover inertial forces are neglected.

Eqn. (9) together with (18) then gives the equations

∇(φ1P1) − φ1ρWg = m1 − MWv1 , (19)

∇(φ3P3) − φ3ρOg = m3 − MOv3 . (20)

Our energy balance contains kinetic and interfacial energies while thermal

effects are ignored. The internal interfacial energy densities are given as

σαβAαβ. The total energy content for the phase α and all adjacent phases β

with Aαβ 6= 0 reads

Ψα =
1

2
φαραv2

α +
1

2

∑

β

Aαβ 6=0

φβρβv2

β +
∑

β

Aαβ 6=0

σαβAαβ . (21)

We allow for energy exchanges between the phases with Eα denoting the

energy transfer into phase α from the nearest surrounding phases. A flux of

surface energy can be ignored on the macroscopic scale and external energy

supply is excluded. Hence the balance equation for the general energy sum

(21) reads

∇ · (
∑

β

Aαβ 6=0

σαβAαβvβ) +
∂

∂t

∑

β

Aαβ 6=0

σαβAαβ

=
1

2
Mαv2

α +
1

2

∑

β

Aαβ 6=0

Mβv
2

β − mα · vα −
∑

β

Aαβ 6=0

mβ · vβ

−φαPα∇ · vα −
∑

β

Aαβ 6=0

φβPβ∇ · vβ + Eα +
∑

β

Aαβ 6=0

Eβ , (22)

where the equations of continuity and momentum have been inserted. A

detailed derivation of Eqn. (22) within the fundamental postulates of mixture
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theory is given in [7]. Before continuing with the energy balance for the

individual phases we want to give some further specifications. The interfacial

area between a disconnected subphase and its superphase vanishes and the

same holds for the contact between two disconnected subphases. Hence A12 =

A34 = A24 ≡ 0. Of course Aαα = 0 and Aαβ = Aβα also holds. Moreover we

assume constant wetting properties which means that the individual interface

areas with the rock are constant,

A15(x, t) = A1R = const. (23)

A25(x, t) = A2R = const. (24)

A35(x, t) = A3R = const. (25)

A45(x, t) = A4R = const. . (26)

The rock phase is assumed to be a perfectly rigid body and it will dissipate

a certain amount of energy. Hence we evaluate the general energy balance

(22) for the four fluid phases leading to the following equations:

Phase 1 – Connected Water (α = 1, β = 3, 4, 5)

∇ · (σWOA13v3) +
∂

∂t
(σWOA13 + σWOA14 + σWRA15)

=
1

2
MWv2

1
+

1

2
MOv2

3
− m1 · v1 − m3 · v3 − φ1P1∇ · v1 − φ3P3∇ · v3

+E1 + E3 + E4 + E5 (27)

Phase 2 – Disconnected Water (α = 2, β = 3, 5)

∇ · (σWOA23v3) +
∂

∂t
(σWOA23 + σWRA25)
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=
1

2
MOv2

3
− m3 · v3 − φ3P3∇ · v3

+E2 + E3 + E5 (28)

Phase 3 – Connected Oil (α = 3, β = 1, 2, 5)

∇ · (σWOA13v1) +
∂

∂t
(σWOA13 + σWOA23 + σORA35)

=
1

2
MWv2

1
+

1

2
MOv2

3
− m1 · v1 − m3 · v3 − φ1P1∇ · v1 − φ3P3∇ · v3

+E1 + E2 + E3 + E5 (29)

Phase 4 – Disconnected Oil (α = 4, β = 1, 5)

∇ · (σWOA14v1) +
∂

∂t
(σWOA14 + σORA45)

=
1

2
MWv2

1
− m1 · v1 − φ1P1∇ · v1

+E1 + E4 + E5 . (30)

4 Conclusions

We have obtained a closed system of 11 equations (13), (14), (15), (16), (17),

(19), (20), (27), (28), (29), (30) for the 11 variables φ1, φ2, φ3, φ4, P1, P3,

v1, v3, A13, A14, A23. The parameters ρW , ρO, ρR, σWO, σWR, σOR, φ, A1R,

A2R, A3R, A4R describe the properties of the fluid, the rock and the wetting.

The constitutive functions m1, m3, MW , MO and E1, E2, E3, E4, E5 may

in general depend on the variables, parameters and on the other functions.

A crucial assumption is that the exchange of interfacial energies between

the fluid phases is dominated by breakup and coalescence of disconnected
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subphase droplets from and with their connected parent phase, i. e. through

mass transfer [2]. All other mechanisms of energy redistribution between

the phases should be negligible, except for the energy exchange between a

fluid phase and the rock phase. Different functional forms for mass transfer

MW , MO and energy exchange E1, E2, E3, E4, E5 are currently investigated

numerically and analytically.

The momentum exchange mα also appears in the traditional theories [20],

[1]. Usually one invokes a na
..
1ve generalization of the Stokesian formula for

the drag acting on a sphere in a lineal steady flow of a Newtonian fluid. We

proceed here in the same manner and define the momentum transfer mαβ

from phase β to phase α by

mαβ := Rαβ(vβ − vα) , (31)

with the resistivity coefficients Rαβ . Summing up the contributions from the

surrounding phases yields

mα =:
∑

β

Aαβ 6=0

mαβ , (32)

and thus we have

m1 = R13v3 − (R13 + R14 + R15)v1

m3 = R31v1 − (R31 + R32 + R35)v3 .

The momentum balance (19), (20) becomes now

∇(φ1P1) − φ1ρWg = R13v3 − (R13 + R14 + R15 + MW)v1 (33)

∇(φ3P3) − φ3ρOg = R31v1 − (R31 + R32 + R35 + MO)v3 . (34)
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Solving (33) and (34) for v1 and v3 leads to a generalized form of Darcy’s

Law,

v1 = kr
WW

K

µW

(∇(φ1P1) − φ1ρWg) + kr
WO

K

µO

(∇(φ3P3) − φ3ρOg) (35)

v3 = kr
OW

K

µW

(∇(φ1P1) − φ1ρWg) + kr
OO

K

µO

(∇(φ3P3) − φ3ρOg) ,(36)

with K being the absolute or Darcy permeability of the rock as defined in

(11). The coefficients kr
ij may be recognized as generalizations of the relative

permeabilities introduced in (12). With the abbreviations

ΘW := R13 + R14 + R15 + MW ,

ΘO := R31 + R32 + R35 + MO ,

Θ13 := R13R31 ,

they are identified here as

kr
WW =

µW

K

ΘO

Θ13 − ΘOΘW

, (37)

kr
WO =

µO

K

R13

Θ13 − ΘOΘW

, (38)

kr
OW =

µW

K

R31

Θ13 − ΘOΘW

, (39)

kr
OO =

µO

K

ΘW

Θ13 − ΘOΘW

. (40)

The non-diagonal coupling coefficients kr
WO, kr

OW are frequently neglected in

the traditional theory ([11]). The functional form of the relative permeabili-

ties are determined through the resistivities Rαβ. They may depend on the

variable saturations and specific surfaces as well as on parameters such as

the wetting conditions AαR.
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Turning to the capillary pressure defined as Pc := P3 − P1 we consider

complete gravitational equilibrium with vα = 0 and all terms involving time

derivatives set to zero. In this special case only eqs. (19), (20) remain non-

trivial, but they nevertheless contain essential features of capillary pressure

relationships that are known from experiment and that cannot be expressed

through traditional descriptions. For the sake of simplicity let us consider

one spatial direction which should be the direction of gravity, denoted by the

positive z-axis. Introducing saturations Sα := φα/φ, α = 1, 3, eqs. (19), (20)

read

d(PαSα)

dz
− ραgSα = 0 . (41)

Let us further assume the depth-dependent saturation profiles Sα = Sα(z)

as being given. With the primitives Σα(z) :=
z
∫

Sα(ζ)dζ , solutions of eq. (41)

are readily written down. Denoting the water saturation by SW = S1 + S2

we find for the capillary pressure

Pc(SW) =
ρOgΣ3

1 − S4 − SW

−
ρWgΣ1

SW − S2

. (42)

By virtue of the primitives the capillary pressure depends on the whole sat-

uration profile SW(z). Since a multitude of profiles is possible in equilib-

rium, Pc(SW) is expected to be multivalued. Assuming further that S2, S4

are constant the capillary pressure function (42) exhibits the characteristic

shape of an S-curve with poles at SW = S2 an SW = 1 − S4. This together

with the multivaluedness of Pc(SW) is in qualitative agreement with experi-

ment. Moreover it suggests to identify S2 and S4 as the irreducible water and

residual oil saturations known from capillary pressure measurements. These
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qualitative results corroborate the specification of the stress tensor given by

(18).

In summary we have presented here novel macroscopic equations of mo-

tion for two-phase flow of immiscible and incompressible fluids through a rigid

porous medium. Compared to the traditional theory the set of macroscopic

state variables is enlarged to include specific internal surface. Simultane-

ously the set of balance laws is enlarged to include interfacial energy balance

in a way that respects the pairwise character of interfacial energies. The

new equations include wetting properties through the specific internal sur-

face areas of the fluids with the rock. The equations can potentially describe

also the dynamics of the disconnected fluid phases and of residual satura-

tions. The theory predicts a capillary pressure behaviour whose dependence

on saturation appears to be in rough agreement with experiment.
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Table Captions

Table 1:

Survey of the nomenclature and indices used for phases and subphases.

TABLE 1

Phase Index Phase Substance

W 1 connected (percolating) fluid water

2 disconnected (trapped) fluid

O 3 connected (percolating) fluid oil

4 disconnected (trapped) fluid

R 5 rigid porous solid rock minerals
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