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1 Introduction

It is not possible to repeat an experiment in the past. The underlying philosophical
truth in this observation is the difference between certainty of the past and potentiality
of the future. This difference is discussed, for example, in C.F. von Weizsäcker’s
papers [1, 2], and it was often pointed out by him in our discussions in the years
1983–1986 in the Starnberg institute. The perennial philosophical problem related to
this difference between past and future is the question whether time is real or not.
Compared to the difference between past and future, the dogmatic time reversibility
of mechanical processes in physics appears as a secondary and derived property. Let
us therefore assume for the purposes of this paper that the asymmetry of time is
more fundamental than the reversibility of time implied by the limited validity of
mechanical equations.

If the asymmetry of time is placed above all other laws of physics (e.g. also
above the law of energy conservation) then the so called problem of irreversibility
becomes reversed (see [3]): Instead of explaining how irreversible behaviour (such
as diffusion) arises from reversible mechanical laws, one must now explain why
time reversible equations appear so frequently in physics. In this paper I intend to
show that this “reversed irreversibility problem” can be solved, and that, surprisingly,
the answer has nothing to do with statistical mechanics or the second law, thereby
avoiding the ongoing debate [4] about Boltzmann’s views.

Let me therefore postulate the following statement as an empirical and funda-
mental law of nature:

Every time evolution of a physical system is irreversible.

in: Time, Quantum and Information, L. Castell and O.Ischebeck (eds.),
Springer-Verlag, Berlin 2003, p. 235
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The mathematical structures corresponding to irreversible time evolutions are abstract
Cauchy problems and operator semigroups [5]. In fact postulating irreversibility as
the starting point of physics stands in stark contrast to most fundamental theories
of physics including Weizsäcker’s “Urtheorie” [6, 7]. In these theories one starts
from a symmetry group containing the time translations as a subgroup. In this way
one postulates, by Noether’s theorem, energy conservation and reversibility as the
fundamental starting point.

In the following I want to show that there is no contradiction between time
translation invariance of physical observations and the fundamental nature of time
irreversibility. On the contrary, both facts can be reconciled. Let me first discuss basic
requirements for time evolutions in physics. Next some mathematical consequences
will be drawn that have been discussed earlier in [3, 8]. Finally I shall attempt to
interpret the consequences in the light of the deliberations of C.F. von Weizsäcker
exposed e.g. in [1, 2].

2 Requirements for time evolution operators

2.1 Semi-group property

A physical time evolution {T(Δt) : 0 ≤ Δt < ∞} is defined as a one-parameter
family (with time parameter Δt) of bounded linear time evolution operators T(Δt)
on a Banach space B. This family of operators is a representation of the semi-group
of nonnegative real numbers (R+,+) (time durations), i.e. it fulfills the conditions

T(Δt1)T(Δt2) f(t0) = T(Δt1 + Δt2) f(t0) (1)

T(0) f(t0) = f(t0) (2)

for all Δt1,Δt2 ≥ 0, t0 ∈ R and f ∈ B. The elements f ∈ B represent time
dependent physical observables, i.e. functions on the time axis R. In the following B
is chosen as the set B = L1(R) of Lebesgue-integrable functions on the time axis in
a vector space (e.g. Rn) with norm ‖ f ‖ = ∫ | f(t)|dt. Note that the argument Δt ≥ 0
of T(Δt) has the meaning of a time duration, while t ∈ R in f(t) means a time instant.

Equations (1) and (2) define a physical time evolution as a representation of the
semigroup (R,+) of real numbers, not as a group. The inverse elements T(−Δt) are
absent. This reflects the fundamental difference between past and future, in the sense
that it is not possible to evolve into the past.

The linear operator A defined by

D(A) =
{

f ∈ B : s-lim
Δt → 0+

T(Δt) f − f

Δt
exists

}
(3)

and

A f = s-lim
Δt → 0+

T(Δt) f − f

Δt
(4)

is called the infinitesimal generator of the semigroup. Here s-lim f = g is the strong
limit and means lim ‖ f − g‖ = 0 as usual.
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2.2 Continuity

A physical time evolution should be continuous. This requirement is realized mathe-
matically by the assumption that

s-lim
Δt → 0

T(Δt) f = f (5)

holds for all f ∈ B, where s-lim is again the strong limit. Semigroups of operators
satisfying this condition are called strongly continuous or C0-semigroups.

2.3 Homogeneity

Homogeneity of time is used here to mean two requirements: First it requires that
observations are independent of the initial instant or position in time, and secondly it
requires arbitrary divisibility of time durations and self-consistency for the transition
between time scales. This second condition will be discussed in detail below in
Sect. 2.5.

Independence of physical processes from the position of initial instant on the
time axis means that physical experiments and processes are not changed if they are
ceteris paribus shifted in time. Sometimes one rephrases this as: All time instants are
equivalent. Or one says that there are no preferred or distinguished time instants. This
formulation can easily be misunderstood. The requirement that the difference between
past and future is fundamental implies that the present is special, and in this sense
the start of an experiment is always special, even though it can be shifted to another
position. Mathematically this distinction of the starting instant t0 is a consequence of
the semigroup properties in (1) and (2). The special character of the initial instant is
familiar in biological systems where it corresponds to the time instant of birth.

The requirement that the initial instant can be shifted to any other instant is ex-
pressed mathematically as the requirement of invariance under time translations. As
a consequence one demands commutativity of the time evolution with time transla-
tions. One demands

T (τ)T(Δt) f(t0) = T(Δt)T (τ) f(t0) = T(Δt) f(t0 − τ) (6)

for all Δt ≥ 0 und t0, τ ∈ R. Here the translation operator T (t) is defined by

T (τ) f(t0) = f(t0 − τ). (7)

Note that τ can also be negative. This means that physical experiments in the past
have the same outcome as in the present. This can be checked in the present with the
help of documents (e.g. a video recording), irrespective of the fact that the experiment
cannot be repeated in the past.

2.4 Causality

Causality of the physical time evolution requires that the values of the image function
g(t) = (T(Δt) f )(t) depend only upon values f(s) of the original function with time
instants s < t.
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2.5 Homogenous Divisibilty

The semigroup property (1) implies that for Δt > 0

T(Δt) . . . T(Δt) = [T(Δt)]n = T(nΔt) (8)

holds. Homogeneous divisibility of a physical time evolution is the requirement that
there exist rescaling factors Dn for Δt such that with Δt = Δt/Dn the limit

lim
n→∞ T(nΔt/Dn) = T(Δt) (9)

exists und defines a time evolution T(Δt). The limit n → ∞ corresponds to two
simultaneous limits n → ∞,Δt → 0, and it corresponds to the passage from
a microscopic time scale Δt to a macroscopic time scale Δt.

3 Consequences from the requirements

The requirement (6) of homogeneity implies that the operators T(Δt) are convolution
operators. Let T be a bounded linear operator on L1(R) that commutes with time
translations, i.e. that fulfills (6). Then there exists a finite Borel measure μ such that

(T f )(s) = (μ ∗ f )(s) =
∫

f(s − x)μ(dx) (10)

holds [9, p. 26]. Applying this theorem to physical time evolution operators T(Δt)
yields a convolution semigroup μΔt of measures T(Δt) f(t) = (μΔt ∗ f )(t)

μΔt1 ∗ μΔt2 = μΔt1+Δt2 (11)

with Δt1,Δt2 ≥ 0. For Δt = 0 the measure μ0 is the Dirac-measure concentrated
at 0.

The requirement of causality implies that the support supp μΔt ⊂ R+ = [0,∞)

of the semigroup is contained in the positive half axis.
The convolution semigroups with support in the positive half axis [0,∞) can

be characterized completely by Bernstein functions [10]. An arbitrarily often dif-
ferentiable function b : (0,∞) → R with continuous extension to [0,∞) is called
Bernstein function if for all x ∈ (0,∞)

b(x) ≥ 0 (12)

(−1)n dnb(x)

dxn
≤ 0 (13)

holds for all n ∈ N. Bernstein functions are positive, monotonously increasing and
concave. The set of all Bernstein functions forms a convex cone containing the
functions that are positive and constant.
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The characterization is given by the following theorem [10, p. 68]. There exists
a one-to-one mapping between the convolution semigroups {μt : t ≥ 0} with support
on [0,∞) and the set of Bernstein functions b : (0,∞) → R [10]. This mapping is
given by ∫ ∞

0
e−uxμΔt(dx) = e−Δtb(u) (14)

with Δt > 0 and u > 0.
The requirement of homogeneous divisibility further restricts the set of admissible

Bernstein functions. It leaves only those measures μ that can appear as limits

lim
n→∞,Δt→0

μΔt ∗ ... ∗ μΔt︸ ︷︷ ︸
n factors

= lim
n→∞ μnΔt/Dn

= μΔt (15)

Such limit measures μ exist if and only if b(x) = xα with 0 < α ≤ 1 and Dn ∼ n1/α

holds [3, 11, 12].
The remaining measures define the class of fractional time evolutions Tα(Δt)

that depend only on one parameter, the fractional order α. These remaining fractional
measures have a density and they can be written as [3, 8, 13–15]

Tα(Δt) f(t0) =
∞∫

0

f(t0 − s)hα

( s

Δt

) ds

Δt
(16)

where Δt ≥ 0 and 0 < α ≤ 1. The density functions hα(x) are the one-sided stable
probability densities [3, 8, 13–15]. They have a Mellin transform [16–18]

M {hα(x)} (s) = 1

α

Γ((1 − s)/α)

Γ(1 − s)
(17)

allowing to identify

hα(x) = 1

αx
H10

11

(
1

x

∣∣∣∣∣ (0, 1)

(0, 1/α)

)
(18)

in terms of H-functions [17–20]. Their Laplace transform is

L {hα(x)} (u) = e−uα
. (19)

The infinitesimal generators of the fractional semigroups Tα(Δt)

Aα f(t) = −(Dα f )(t) = − 1

Γ(−α)

∫ ∞

0

f(t − s) − f(t)

sα+1
ds (20)

are fractional time derivatives of Marchaud–Hadamard type [21,22]. This fundamen-
tal and general result suggests to generalize physical equations of motion by replacing
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the integer order time derivative with a fractional time derivative as the generator of
time evolution [3, 13].

For α = 1 one gets h1(x) = δ(x − 1), the Dirac-measure at x = 1. In this case
the fractional semigroup T1(Δt) reduces to the conventional translation semigroup
T1(Δt) f(t0) = f(t0 −Δt). This observation provides an answer to the question from
the introduction why ordinary first order time derivatives appear so frequently in
the equations of physics. The theory sketched here can be made more precise and
detailed. From the detailed theory one finds that the special case α = 1 occurs more
frequently in the limit (15) than the cases α < 1, in the sense that it has a larger domain
of attraction. The fact that the semigroup T1(Δt) can often be extended to a group
on all of R provides an explanation for the seemingly fundamental reversibility of
mechanical laws and equations.

4 Philosophical remarks

The homogenous divisibility of time could perhaps be viewed as a mathematical
expression of the philosophical idea that C.F. von Weizsäcker calls “umfassende
Gegenwart” [2, p. 612ff]. Homogeneous divisibility formalizes the fact that a verbal
statement in the present tense presupposes always a certain time scale. For this reason
the present should not be thought of as being a time instant but rather as a certain
time period or duration, no matter how short it is [3, 8].

Fractional time evolutions seem to be related also to the subjective human ex-
perience of time. In physics the time duration is measured with periodic clocks by
counting the number of periods. Contrary to this the subjective human experience
of time corresponds to the comparison with an hour glass, i.e. with a nonperiodic
reference. Correspondingly most humans experience a fixed physical time interval
(e.g. an hour, a day, a year) during senescence as being much shorter than in their
infancy or adolescence. The reason is that the reference process to which the fixed
interval is compared is one’s own life time. It seems that a time duration is considered
“long” if it is comparable to the time interval that has passed since birth. In other
words the rapidity of perception decreases with age. It seems that this phenomenon
is reflected in fractional stationary states defined as solutions of the stationarity con-
dition Tα(Δt) f(t) = f(t). Hence the existence of fractional time evolutions requires
a generalization of concepts such as “stationarity” or “equilibrium”. This outlook
could be of interest for nonequilibrium and biological systems [3, 8, 13–15].

Finally, also the special case α → 0 challenges philosophical remarks. In the
limit α → 0 the time evolution operator degenerates into the identity. This could be
expressed verbally by saying that for α = 0 “becoming” and “being” coincide. For
α = 0 physical states evolve in time by being mapped to themselves, hence without
change. This paradoxical situation reminds me of C.F. von Weizsäcker’s thoughts
in [2, Kap. 13] concerning certainty of the future and potentiality of the past.
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