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The current status of local porosity theory for transport in porous media is briefly reviewed. 
Local porosity theory provides a simple and general method for the geometric characteriza- 

tion of stochastic geometries with correlated disorder. Combining this geometric characteriza- 

tion with effective medium theory allows for the first time to understand a large variety of 

electrical and hydrodynamical flow experiments on porous rocks from a single unified 

theoretical framework. Rather than reproducing or rephrasing the original results the present 

review attempts instead to place local porosity theory within the context of other current 

developments in theory and experiment. 

1. Introduction 

A two-component porous medium may be characterized as a subset G of a 
d-dimensional Euclidean space which can be decomposed as G = P U M U B 

into three mutually disjoint sets P, M and B. The pore space P and the matrix 
space M are open subsets of Rd and their common boundary B = dP = dM will 
in general be an irregular stochastic manifold. 

Many materials with correlated disorder can be idealized as two-component 
porous media. The particular example of interest in this paper are porous rocks 
[ 1,2] such as sandstones, limestones, dolomites or similar geological forma- 
tions. Experimental investigations of the electrical resistivity [3-121 and specific 
permeability [7-151 for a given geological formation often find power law 
behaviour for the electrical formation resistivity factor F as a function of 
porosity 4, 

F= 2 zaF4-“‘, 

and similarly for the specific permeability k, 

k = ak4’, 
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in the limit 4 + 0. Eqs. (1) and (2) imply an algebraic relationship of the form 

(3) 

between permeability k and electrical formation resistivity factor F. In these 
equations p0 denotes the resistivity of a nonshaly rock sample filled with brine, 
pw is the resistivity of brine, uk and uF are empirical constants and the porosity 
4 is defined as 4 = VP/V, the ratio of pore volume VP and sample volume V,. 

Eq. (1) is known as Archie’s law. The exponent m is called cementation index 
and its empirical value is often found to be m = 2 but it may scatter widely 
between 1 and 3. Archie’s law makes two independent statements: Firstly, the 
conductivity is finite for all nonzero values of 4 and, secondly, the cementation 
index assumes nontrivial values. 

Dullien [ll] defines porous materials as materials for which the permeability 
k is nonzero. It is clear then that the permeability k is the most important 
physical property of porous media. The permeability k is defined [ll] as the 
proportionality constant in Darcy’s law which establishes a linear relationship 
between the current density and an applied external pressure gradient driving a 
viscous flow through the medium. Darcy’s law is obtained from the Stokes 
equation for viscous flow in a porous medium at low Reynolds numbers by 
applying well known homogenization techniques [16-191. Relation (2) is 
similar to Archie’s law (1) and the exponent b is often found to have values 
around 4. The exponent h = b/m in relation (3) on the other hand scatters 
experimentally between 1.3 and 2.8 [8,9,20,21] but its value is most often 
found around h = 2. 

Going from dc conductivities and permeabilities to the corresponding fre- 
quency dependent transport coefficients the experimental situation becomes 
very asymmetric. While there exist many measurements of frequency depen- 
dent formation factors or dielectric susceptibilities [ 1,6,22-261 comparatively 
little work has been done on measuring frequency dependent permeabilities 
[27]. The dielectric response of clayfree water saturated sandstones shows 
strong dispersion at low frequencies although neither rock nor water is 
dispersive in the same frequency range. The values of the dielectric constant at 
zero frequency for the water-rock composite often exceed those of both 
constituents. This phenomenon is called dielectric enhancement. 

Let me formulate a number of questions raised by these experimental 
findings before defining the objective of this paper. An obvious question is why 
there should exist any kind of correlation between transport quantities such as 
F or k and geometric quantities such as 4. After all the porosity C$ contains no 
information about pore throats or pore space connectivity. Why should the 
correlations follow power laws? What is the meaning of the exponents? Are 
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they characteristic for different geometries? Are they dynamic exponents? Why 
is there such a large scatter in their numerical values? Is there some form of 
universality or are there universal classes of porous media? What are the 
mechanisms for dielectric enhancement? 

The objective of this contribution is to give a brief overview of local porosity 
theory [28-311 which has recently been developed to address some of these 
questions. The present paper will begin with a brief review of the electrical 
problem and then continue on to the flow problem. The discussion will remain 
verbal and qualitative. However, the reader is advised to consult refs. [28,30] 
for original results whenever the discussion requires it. 

2. Dielectric response 

Recent theoretical attempts to calculate the dielectric properties of water 
filled porous rocks can be classified into two main categories: One group 
[32-411 attempts geometrical modeling of the pore space P, while the other 
[42-481 develops phenomenological models based on the spectral representa- 
tion of the complex dielectric function E(W) developed by Fuchs [42] and 
Bergman [43]. Only the first group allows to correlate geometrical properties of 
the pore space with its dielectric response. Most works focus either on an 
explanation of Archie’s law or else on dielectric enhancement. In particular, 
when studying different geometrical modeling approaches and comparing them 
with experiments it seems that none of them incorporate Archie’s law in its 
double meaning and dielectric enhancement simultaneously. In this situation it 
was the objective of ref. [28] to develop a theoretical framework which would 
allow a systematic discussion of all aspects of the dielectric response of general 
porous media. 

The main obstacle to achieving this objective is a classical problem in the 
theory of heterogeneous media [49,50]: The basic problem is to give a 
quantitative geometric characterization of the pore space. In the literature the 
geometric characterization is usually based on so-called pore size distributions 
[lo-1251,521 which are determined from mercury injection experiments. 
Unfortunately it is well known that the intuitively appealing concept of pore 
size distributions is mathematically not well defined [lO,ll] and experimental 
determinations of pore size distributions have to be interpreted with care [53]. 
Similar problems arise from network modeling [54-571 where a certain element 
of subjective judgement remains part of the mapping procedure. A mathemati- 
cally well defined geometric characterization is given by correlation functions 
[58-611. A problem with this approach is that important qualitative geometri- 
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cal features of the pore space may be buried in higher order correlation 
functions which are difficult to measure in experiments. Finally, some authors 
have employed fractal geometry to give a geometric characterization of pore 
space [51,62]. However, in view of the limited scaling regime such a characteri- 
zation remains doubtful. 

The basic idea of local porosity theory as proposed in ref. [28] is not to try to 
identify pores, grains, networks or other geometrical objects within the pore 
space as the fundamental carrier of randomness but the porosity itself. More 
precisely, any globally well defined geometric observable such as porosity, or 
specific internal surface area becomes a local geometric observable in local 
porosity theory. 

The details of implementing this idea are described in ref. [28]. The main 
outcome of the analysis are local porosity distributions ~(4) and local percola- 
tion probabilities A(4) as two basic quantitative geometric characterizations of 
general porous media. The geometric characterization using p and A fulfills 
three important requirements: (1) It is generally applicable and mathematically 
well defined. (2) It is experimentally observable. (3) It can be used to calculate 
transport coefficients. Ref. [31] discusses the microstructural sensitivity of local 
porosity distributions. In addition to the above three requirements a useful 
geometric characterization should be sufficiently sensitive to microstructure 
without requiring a full specification of the pore space boundary B. It appears 
from the results of ref. [31] that local porosity distributions contain geometrical 
information which cannot be obtained from simple two-point correlation 
functions. 

The functions ~(4) and h(4) can be employed directly in a simple generali- 
zation of standard effective medium schemes [28] for the calculation of 
transport properties. As a consequence the well-known percolation singularity 
of self-consistent effective medium theory [63,64] appears also in local porosity 
theory. The control parameter controlling the underlying percolation transition 
is given by the interval 

P = I 1-44~) A(4) W. (4) 
0 

Therefore the scaling laws for the conductivity can arise not only for p + p, but 
also for 6-0 where 4 is the bulk porosity defined as 4 = ] c#+(+) d4. The 
control parameter for the underlying percolation transition decouples from the 
average porosity. 

Further analysis along the lines of effective medium theory gives rise to a 
new understanding of Archie’s law. Archie’s law can indeed emerge within 
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local porosity theory in the limit 4 +O. It becomes evident however that 
Archie’s law is not simply a relation between geometric properties and 
transport properties of porous media. Instead its validity is related also to the 
diagenetic history of a geological formation. Local porosity theory predicts the 
frequently observed value m = 2 for the cementation index as a mean field 
result. The large scatter in the experimental values for m reflects the impor- 
tance of diagenetic processes. It arises in the theory in two ways: as a crossover 
from mean field exponents to true percolation exponents, and because the 
behaviour of ~(4) A($) can induce nonuniversal exponents [63,64]. 

There are three mechanisms for dielectric enhancement within local porosity 
theory. One results from the divergence of Re E(O) at the underlying transi- 
tion, the second arises from the width of p(4), and the third from the 
behaviour of A($) for C$ + 1. Thus local porosity theory is the first theory to 
accommodate both Archie’s law and dielectric enhancement for general porous 
media. Recently a comparison between the new approach and some of the 
previous theories has been carried out for the particular case of water saturated 
sintered glass beads [65,66]. The new approach was found to give superior 
agreement with experiment. 

Finally it should be mentioned that local porosity theory makes an interest- 
ing prediction for a new experimental effect. It predicts [28] a power law 
divergence for the real part of the dielectric constant in the high porosity C$ -+ 1 
limit under analogous conditions and restrictions as those required for Archie’s 
law. 

3. Permeability 

The problem of viscous flow and the calculation of dc permeabilities from 
local porosity distributions was treated in ref. [30]. In addition to the questions 
raised in the introduction the motivation came from the results obtained for the 
dielectric problem. The objective in ref. [30] was to apply the results of ref. 
[28] to the hydrodynamic flow problem using the analogy between dc per- 
meability and dc conductivity. 

The analogy between hydrodynamic and electrical flow arises from 
homogenizing the Stokes equation [18,19,61,67,68]. As a consequence the 
characterization of local geometries must be expanded to include also the local 
specific internal surface area S. The specific internal surface area is the ratio 
between the area of the pore space surface B and the total volume V,. The 
expectation value s is the average local specific internal surface area. It has 
dimensions of inverse length and is an important geometric quantity charac- 
terizing the pore space geometry. 
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Unlike the electrical conductivity the permeability depends also on the 
absolute length scale of the pores that control the fluid transport. Correspond- 
ingly an important question is that of characteristic length scales associated 
with a porous medium. The traditional answer relates the permeability to the 
so-called hydraulic radius r,, defined as the ratio of pore space volume and pore 
space surface area [lO,ll]. The hydraulic radius arises naturally in capillary 
tube models [lO,ll]. This theory has been modified by incorporating the 
formation factor into k CC rt/ F [20,59]. An interesting aspect of the modified 
approach is that it accounts for the tortuosity of the pore space through F. The 
occurrence of T,, on the other hand makes it less attractive, because T,, contains 
contributions from the dead ends, i.e. from regions of pore space which are not 
dynamically connected. 

An alternative answer to the question of length scales was given as k 0~ If/F 

in refs. [51,59], where the length I, is related to the breakthrough pressure in a 
mercury injection experiment. The length I, is only well defined when the pore 
space can be modeled through a broad distribution of cylindrical pores on a 
lattice. The quantity A introduced in ref. [70] is related to I, as shown in ref. 
[71] and one has k cc AZ/F. The calculation of A requires knowledge of the 
electric field throughout the pore space and thus the length A is of dynamical 
rather than geometrical origin. It seems then that the problem of identifying a 
characteristic length scale for general porous media has not yet found a 
satisfactory answer. 

In this situation the results of ref. [30] provide an additional alternative to 
answer the question of length scales. It is shown in ref. [30] that 

- - 
and thus the characteristic length is identified as 4/S. The length contains the 
local quantity 3, and thus it may be called a “local hydraulic radius”. Because 
it is a local quantity the arguments against hydraulic radius theories no longer 

apply. 
Another important result of ref. [30] is that it provides a possible answer to 

the questions concerning scaling laws and universality. It was already found in 
ref. [28] that the cementation index m not only depends on the underlying 
percolation singularity but also on the diagenetic or consolidation processes. 
This means that the concept of universality remains meaningful only inasmuch 
as it concerns the universality of effective medium theory itself. It turns out 
that the universal regime for the hydrodynamic flow problem is smaller than 
that for the electric flow problem. Thus the scaling laws for k should show a 
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lower degree of universality than Archie’s law. This expresses a higher 

microstructural sensitivity of the permeability and is confirmed by experiment. 

Having established the importance of consolidation processes for the value 

of the exponents in the scaling laws (l)-(3) it is necessary to incorporate such 

consolidation processes into the theoretical treatment. This has been done in 

ref. [30] using two different classes of consolidation processes. The objective 

was to ascertain the typical variability of the exponent values. A general 

requirement for the observation of scaling laws is that the consolidation 

processes are p,-approaching [30]. Preliminary results indicate that the process 

of sintering glass beads is such a p,-approaching consolidation process [66]. 

The value b = 4 emerges as a mean field result whose range of validity however 

is markedly restricted as compared to Archie’s law. This is confirmed by the 

increased scatter of b-values in experiment. 

A second class of consolidation processes is defined using a particular 

physical model, the so-called local porosity reduction model [30]. In the local 

porosity reduction model the consolidation consists in randomly picking a 

volume element and reducing porosity and specific surface area within it. The 

model allows to determine the local porosity distribution exactly and the 

exponents m, b and h = b/m can be correlated with particular changes of the 

local pore geometries. It is found that the cementation index m depends only 

upon changes in local porosity while h is independent of it. The exponent h 

depends only upon changes in local specific surface area. The exponent b 

contains contributions from both effects. 

Within the local porosity reduction model it is predicted that h should vary at 

most within 1 d h c 3. Values around h = 2 indicate consolidation processes in 

which locally the radius of cylindrical pores shrinks. Larger values indicate 

processes which close cracks or fractures as e.g. under the application of 

external pressure. Lower values than 2 indicate the filling of spheroidal pores 

as e.g. when new material is deposited chemically. These theoretical predic- 

tions for the range of h and for the numerical values are again found to be 

confirmed [8,9,20] by experiment. 
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