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Abstract 

We report preliminary results for the application of local porosity theory to dielectric 
response measurements on two classes of inhomogeneous systems. One class of systems are 
mixtures of insulators and conductors realized experimentally as sintered glass bead porous 
media saturated with salt water. In this case the response arises from the Maxwell-Wagner 
effect. The second class are mixtures of insulators realized experimentally in polymer 
blends where the response arises from the relaxation of atomic or molecular dipole 
moments. For the case of water saturated sintered glass bead systems two-dimensional 
local porosity distributions have been determined from digital image analysis. These 
measurements allow for the first time semiquantitative comparisons to previous theoretical 
approaches and with experiment. The dielectric measurements are used to extract the total 
fraction of percolating cells in the mixture. For the polymer case we show that recent 
concentration fluctuation models for the dielectric a-relaxation arise as special cases of 
local porosity theory. Furthermore it is exemplified how information from static Monte- 
Carlo simulations of polymer blends may be useful in comparing theoretical calculations to 
experiment. 

1. Introduction 

Almost any physical system is inhomogeneous when viewed at an appropriate 

length scale. The theoretical problem of calculating the effective electrical 

properties of a mixture has a long history. The reader is referred to [15] and [14] 

for reviews. 

Mixing laws express the effective frequency dependent dielectric function E,(O) 

of a heterogeneous mixture in terms of the dielectric functions E*(W) and ~~(0) of 

the two pure materials. Of course the “pure” materials may themselves be 
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heterogeneous at some smaller length scale, and in such a case Ed, c2 are 
themselves effective dielectric functions. 

Dielectric mixing laws often employed in practice are the Clausius-Mossotti 
approximation [ 151 

the symmetrical effective medium theory [1.5] 

and the unsymmetrical effective medium theory [15,17] 

E -E2 E, 1’3 e- _& 
c 1 El - 62 % 

Here 4 denotes the volume fraction (or porosity) of component 1 defined as the 
volume occupied by component 1 divided by the total volume. All dielectric 
functions are in general complex, ej(w) = E;(W) + i$(w) ( j = 1,2, e) and frequency 
dependent where E;(W), $(w) denote the real and imaginary part. 

Given an independent measurement of the volume fraction 4 the mixing laws 
(l)-(3) can be utilized directly in comparisons with experiment. Some of us 
[11,16] have prepared porous media by sintering glass beads with diameters 
between 50 km and 300 km to different porosities between 4 = 0.30 and 4 = 
0.03. The pore space was then filled with salt water resulting in a heterogeneous 
mixture of glass and water. Measuring the real part E:(W) of the effective 
dielectric function in the frequency range between 10 kHz and 13 MHz yields a 
dispersion similar to the filled circles displayed in Fig. 1 [6]. The experimental 
results displayed in Fig. 1 have been obtained from a specimen of 250 pm beads 
with 4 = 0.107 for the volume fraction of water and a&(O) = 12.4 mS/m for the 
real part of the water conductivity. The results are displayed as a function of 
w/w, where wW = CT\;/&,, = HIT x 2.82 MHz is a characteristic water frequency, 
E& is the real part of the dielectric constant of water and l 0 is the dielectric 
permittivity of the vacuum. 

Lines of Fig. 1 represent the theoretical predictions from Eqs. (l)-(3). The 
dot-dashed line gives the prediction of the unsymmetrical effective medium theory 
Eq. (3) and the dotted line is the symmetrical effective medium theory Eq. (2). 
The two remaining lines are both obtained with the Clausius-Mossotti approxi- 
mation (1). For the solid line water is considered as the background medium, 
while for the dashed line glass has been chosen as the background medium. 
Clearly, the traditional mixing laws (l)-(3) fail in describing the dielectric 
dispersion seen in the experiment. 
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Fig. 1. Comparison of traditional mixing laws (l)-(3) with experiment. Solid circles represent the 

experimentally measured real part of the dielectric function for a water-glass mixture with bulk 

porosity (= volume fraction of water) 4 = 0.107 and water conductivity a&(O) = 12.4mS/m as a 

function of reduced frequency w/w, with ow = 2n x 2.82 MHz. The solid line is Eq. (1) with water as 

the background medium, the dashed line represents Eq. (1) with glass as the background medium. 

The dotted line gives the prediction of Eq. (2), the dash-dotted line the prediction of Eq. (3). 

2. Local porosity theory 

As an alternative to the classical mixing laws (l)-(3) one of the authors has 
proposed a simple generalization of the symmetrical effective medium theory 
[7,8,10]. Local porosity theory replaces the characterization of the random 
microgeometry in terms of volume fraction or porosity 4 by local porosity 
distributions ~(4) and local percolation probabilities h(4) [lo]. The local porosity 
distribution ~(4) gives the probability density to find a local porosity C$ inside a 
local measurement cell of linear extension L* [7,1]. The length L* may be 
calculated from the requirement of maximizing the geometric information 
contained in ~~(4) viewed as a function of L where ~~(4) is the local porosity 
distribution for measurement cells of linear extension L. Several alternative 
methods of determining L* have been discussed [l]. The local percolation 
probability A(+) is the fraction of percolating cells with given local porosity 4. 
The generalization of the mixing law (2) may then be written as 

+ o dw; 4) + 2E,(W) I [1 - A(4)1/44) W = 0 2 (4) 
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where 

EB(W; 4) = E*(W) 1 - ( + 
[l - l 1(w)/Ez(o)]-1 - $(l - 4) > . 

(5) 

Similarly to the classical mixing laws (l)-(3) the local porosity mixing law (4) 

does not contain free fit parameters because the local porosity distribution ~(4) 

and the local percolation probabilities A(+) are accessible to an independent 

measurement. 

It should be noted that both ~(4) and A(+) are in general three-dimensional 

quantities. Measuring them from two-dimensional pore space images requires 

additional precautions for the interpretation of the results. Recently we have 

found [18] that in certain limiting cases the relationship between two-dimensional 

and three-dimensional local porosity distributions is given by a simple length scale 

resealing transformation. Below we assume that such a resealing of lengths is 

indeed justified at least in an approximate sense. 

3. Waterfilled porous glass 

The local porosity distribution ~(4) has been measured from two-dimensional 

sections for the sintered glass bead system discussed in the introduction [16,5,6]. 

Thus far we have not been able to measure also the local percolation probabilities 

directly. Such measurements are required for a full test of local porosity theory. 

In the absence of such measurements different forms for A(4) were employed to 

fit the calculated effective dielectric function to the measured experimental data. 

It was found that these fits do not depend sensitively on the detailed shape of A 

but mainly on the value of the single parameter 

P = ’ ~(4) A(4) W 9 
I 

0 

(7) 

which is the control parameter for the percolation transition underlying equation 

(4) and which gives the total fraction of percolating cells in the specimen. This is 

demonstrated in Fig. 2 where the experimental data of Fig. 1 are compared to the 

new mixing law (4) using the experimentally measured local porosity distribution. 

The measured effective dielectric function is represented as filled circles for the 

real part. The open circles give the conductivity calculated from the imaginary 

part. The left axis refers to the real part, while the right axis applies to the 

conductivity. 
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Fig. 2. Three fits of Eq. (4) to the same experimental data as in Fig. 1 with h(4) = 4’ and y = 0.2035 

for the solid line, A(+) = +‘(I+“) with y = 0.1524 and C = 3.06 for the dashed line, and a piecewise 

linear function h(4) with breakpoint (& p = 0.6155, 4 b p_ = 0.0363) for the dotted line. 

The lines in Fig. 2 represent theoretical fits for different forms of A(+) involving 
one or two fit parameters. For the solid line we used the form h(4) = $’ and 
found y = 0.2035 as the best fit parameter. The dashed line assumes the form 
A(+) = +vU+Cb) giving y = 0.1524 and C = 3.06 as best fits. The dotted line is 
obtained by employing a piecewise linear form for A with an adjustable 
breakpoint (b.p.) found as (A,,,, = 0.6155, 4 b,p, = 0.0363). In all cases A(0) = 0 
and h(1) = 1. It is seen that the fit does not depend on the functional form of A. 
Calculating p from Eq. (7) on the other hand yields nearly identical values in all 
cases. Specifically, we find p = 0.594 for the solid line, p = 0.589 for the dashed 
line, and p = 0.607 for the dotted line. 

These findings suggest that the total fraction of percolating cells can be reliably 
determined by measuring the local porosity distribution and the effective 
dielectric function. In Fig. 3 we display the results of such measurements [5]. The 
results demonstrate that the sintering process is a p,-approaching consolidation 
process in the sense of Ref. [8]. The horizontal line represents the percolation 
threshold value p, = $ within effective medium theory. If Archie’s law holds for 
the sintering process then p( 6) should remain above pC as $4 0. Fitting a 
straight line through the data points fulfills this requirement. On the other hand 
we expect the presence of a percolation transition at a small but finite bulk 
porosity because of the generation of isolated pores from pockets formed by local 
tetrahedra of mutually touching glass beads. For this reason we have fitted a 
power law displayed as the straight line through the data points. We find 
p(4) = 1.51 x (&“.“’ as the best fit. This fit predicts a percolation threshold lower 
than 4 = 0.035 because the effective medium value for p, overestimates the 
percolation threshold. 
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Fig. 3. Control parameter p (Eq. (7)) for the sintering of 90 Frn glass beads as a function of bulk 
porosity 4. 

4. Polymer blends 

In this section we show that the ideas underlying local porosity theory are not 

limited to dielectric dispersion arising from the Maxwell-Wagner effect. Recently 

Fischer and Zetsche [4,19] have suggested a concentration fluctuation model to 

explain the broadening of the dielectric a-relaxation observed in polymer blends 

near the glass transition [20,13,12]. The purpose of this section is to show that 

their model may be viewed as a special case of local porosity theory. Moreover it 

is shown how information obtained from numerical simulations of polymer blends 

[2,3] can be incorporated into such calculations. 

Mathematically the model of Fischer and Zetsche may be formulated as a 

simple non-selfconsistent average 

where E,,,~(w, 4) is an effective local dielectric function depending on the local 

volume fraction 4. The linear extension L* of the measurement cells is taken to 

be the size of “cooperatively rearranging units” near the glass transition. Fischer 

and Zetsche obtain the effective local dielectric function by interpolating all the 

parameters in the traditional Havriliak-Negami fit for the two pure polymers. 

The distribution of concentration fluctuations is assumed to be Gaussian. It is 
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then found that the width of this distribution increases with temperature for 
mixtures with an upper miscibility gap (LCST-behaviour). 

The basic assumption of the concentration fluctuation model, Eq. (8), is 
reminiscent of Eq. (4). Setting l c = eloc = l B in Eq. (4) yields a selfconsistent 

modification of the Fischer-Zetsche model as 

1 

I %c(W; 4) - C(W) p(4) d+ = o 

%C(~; 4) + 2%(W) 9 

0 

replacing Eq. (8). Note that the dependence on the connectivity of the micro- 
structure within the “cooperatively rearranging domains” through A(+) does not 
enter (9). 

Instead of assuming a particular form for ~(4) (in the absence of an 
experimental measurement) we propose to follow the original suggestion [7] and 
to extract ~(4) from measurements of the order parameter distribution in a 
computer experiment. Such simulations have recently been carried out for the 
case of polymer mixtures [2,3]. The order parameter density P(m) of Fig. 2 in 
Ref. [2] is directly related to the local porosity distribution as P(m) = p(+l+, - l), 
where 4, is the critical volume fraction for the unmixing transition. 

As a third modification to the model of Fischer and Zetsche we use the simpler 
Debye form for l loc instead of the Havriliak-Negami form. Thus we have [4,19] 

with 

Eo(4) = &lo + (1 - 4)%0 > (11) 

44) = 4% + Cl- 4bZm > (12) 
for the interpolation of the relaxation strengths. The Vogel-Fulcher-Tammann 
law for the relaxation time 

W = 44) exp( - T ?$)) (13) 

is interpolated in the WLF-parametrization -log(r/rg) = c($)[ T - T,(4)] / [d(4) + 
T - T,(4)] through 

A(+) = ]+ log ~~1 + (I- 4) log ~1 - E+, + Cl- +k,l 3 (14) 

B(4) = [h, + Cl- 4hl[&4 + Cl- 4P,l> (15) 

T,(4) = MT,, + Cl- W,,l - [W, + (I- 4)41, (16) 

as suggested by Fischer and Zetsche. Here r9 is the a-relaxation time at the 
calorimetric glass transition temperature T, and the WLF-parameter d = Tg - T, 
measures the width of the glass transition region. T, is the Vogel-Fulcher- 
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Fig. 4. Model calculation for the imaginary part of the dielectric function of a PVME/PS blend as 

function of temperature and frequency. The local porosity distribution was adapted from Ref. [2]. The 

total volume fraction is b; = 0.5. The values for the parameters of component 1 (PS) are: l I0 = 2.&v, 

l 1C‘ = 3.Oe,, r9 = 1O-‘.98 s, T,, = 373.8 K, c, = 9.33, d, = 61.9 K where ev is the dielectric permittivity 

of vacuum. For component 2 (PVME) the values are: l z0 = 3.2ev, cZx. = 2.Oev, rg = 10-“.‘6s, Tgz = 

255.3 K, c2 = 13.66 and d, = 61.6 K. 

Tammann temperature whose possible significance as an equilibrium phase 

transition temperature has recently become apparent [9]. The validity of the 

linear interpolation scheme has been confirmed experimentally in some cases [ 121. 

In Fig. 4 we present solutions of Eq. (9) with a local porosity distribution ~(4) 

adapted from Ref. [2] to an upper miscibility gap. The broadening of ~(4) is 

consistent with that found by Fischer and Zetsche (cf. Fig. 4 of Ref. [4]). Fig. 4 

shows a model calculation for the frequency and temperature dependent imagin- 

ary part of the dielectric function for a 4 = 0.5 mixture of Polyvinylmethylether 

(PVME) with Polystyrene (PS). The parameters for both substances are taken 

from [19] and reproduced in the figure caption. We have modelled the unmixing 

transition by adapting the order parameter distribution of Ref. [2] to the 

experimental situation with an assumed unmixing temperature around 370 K. 

Qualitatively the model calculation reproduces the observed features of the 

experiment. 
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