
Rescaling Relations between Two- andThree-Dimensional Local Porosity Distributionsfor Natural and Arti�cial Porous MediaB. Virgina, E. Haslunda and R. Hilfera;b;caDepartment of Physics, University of Oslo, 0316 Oslo, NorwaybInstitut f�ur Physik, Universit�at Mainz, W-55099 Mainz, GermanycICA-1, Universit�at Stuttgart, Pfa�enwaldring 27, 70569 Stuttgart, GermanyAbstractLocal porosity distributions for a three-dimensional porous medium andlocal porosity distributions for a two-dimensional plane-section through themedium are generally di�erent. However, for homogeneous and isotropicmedia having �nite correlation lengths, a good degree of correspondencebetween the two sets of local porosity distributions can be obtained byrescaling lengths, and the mapping associating corresponding distributionscan be found from two-dimensional observations alone. The agreement be-tween associated distributions is good as long as the linear extent of the1



measurement cells involved is somewhat larger than the correlation length,and it improves as the linear extent increases. A simple application of thecentral limit theorem shows that there must be a correspondence in thelimit of very large measurement cells, because the distributions from bothsets approach normal distributions. A normal distribution has two inde-pendent parameters: the mean and the variance. If the sample is largeenough, LPDs from both sets will have the same mean. Therefore corre-sponding distributions are found by matching variances of two and threedimensional local porosity distributions. The variance can be indepen-dently determined from correlation functions. Equating variances leads toa scaling relation for lengths in this limit. Three particular systems areexamined in order to show that this scaling behavior persists at smallerlength-scales.
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1 IntroductionThe study of porous and heterogeneous media is scattered throughout many �eldsof science, including mathematics, solid state physics and chemistry, materialsscience, geology, hydrology, environmental technology, petroleum engineering andseparation technology. The central problem is the speci�cation of the randommicrostructure, which is needed to predict macroscopic physical properties ( see[1][2][3][4][5] for overviews).A complete speci�cation of the random microstructure is both impractical andunnecessary. It is therefore important to have a general statistical description ofthe microstructure available. Such a decription should meet four criteria: itshould be well-de�ned in terms of geometrical quantities, it should involve onlyexperimentally accessible parameters, it should be of economical size and it shouldbe usable in exact or approximate solutions of the underlying equations of motion.Currently there are only two statistical methodologies available which ful�ll allfour requirements; these are correlation functions [6][7][8][9][10][11][12][13][14][15]and local geometry distributions [16][18][17][19][3].The recently developed local geometry distributions are a functional general-ization of the correlation-function approach[3]. The aim of the present paper isto increase the practical applicability of local geometry distributions. Interest inthese distributions arises from their potential use in distinguishing between dif-ferent microstructures[17]. Increasing their practical applicability is particularly3



important because local geometry distributions can be used in mean �eld theorycalculations of the dielectric and transport properties of various porous media,for instance porous rock �lled with brine[16][18]. Preliminary comparisons of thetheory with experimental results have already been carried out, and show goodagreement[19][20].Two main objectives will be pursued in the present paper. First, we showthe feasibility of obtaining three-dimensional local porosity distributions(LPDs),by presenting data from a real sandstone specimen. Second, we show to whatextent three-dimensional LPDs can be obtained from purely two-dimensionalobservations. The dependence of LPDs upon the dimensionality of the system is aconsequence of their dependence on a measurement cell or observation region overwhich geometric observables, such as porosity, are averaged. The possibility ofextracting three-dimensional distributions from two-dimensional data arises fromlimit theorems which guarantee that the asymptotic LPDs become independentof the shape of the measurement cell[3].We begin our discussion with a de�nition of LPDs. Next we present a simpleargument based on the central limit theorem showing that for large measurementcells, three-dimensional LPDs can be mapped onto two-dimensional LPDs by asimple rescaling of lengths. Then, we show that this mapping becomes exactfor the percolation model. Subsequently, we analyse the overlapping sphere (orcontinuum percolation) model, where the mapping holds only asymptotically.Finally we present the �rst measurement of three-dimensional LPDs. These are4



obtained from the pore-space reconstruction of a real sandstone specimen.The main result of our investigation is the fact that the mapping betweentwo- and three-dimensional LPDs can be determined from purely two-dimensionalobservations if the medium is homogeneous and isotropic. For general anisotropicmedia however, the family of three-dimensional LPDs can only be determinedfrom a three-dimensional measurement.
2 Basic Concepts and an Expression for Vari-anceThe discretized porous medium is considered to occupy a set S � Zd, whereZ is the set of integers. Pore-space is denoted by P, where P � S. Consider-ing for simplicity only two-component media, we de�ne matrix-space M as thecomplement of P in S, M = S�P. The characteristic function of a set A is�A(r) = 8>>><>>>: 1; r 2 A0; otherwisewhere r 2 Zd. To describe the state of each point in the system, we label eachpoint in S with an index i and de�ne the random variablesXi � X(ri) = �P(ri)A speci�c geometry is then speci�ed by the N -tupleg = (X1; : : : ; XN); N = jSj5



where jSj is the number of elements in S.The probability space for the system is the triple (G; E ; P ). G is the samplespace consisting of all possible geometries g. The event space E is a Booleanalgebra of subsets of G. The probability P of �nding a geometry1 g is a �nitelyadditive non-negative set function de�ned on E , such that P (;) = 0 and P (G) =1. A stochastic medium is homogenous if P is invariant under translations.Isotropy is de�ned analogously as invariance under rotations. The expectationvalue of a random variable f(g) ishf(g)i = Xg2G f(g)P (g)and in the following, we will use the notationSn(r1; : : : ; rn) = h nYi=1�P(ri)iCn(r1; : : : ; rn) = h nYi=1�P(ri)� h�P(ri)iifor the moment functions Sn(r1; : : : ; rn) and cumulant functions Cn(r1; : : : ; rn) oforder n. For homogeneous media, S1(r) = h�i is the expected bulk porosity.Given a measurement cell denoted as K (K � S), we de�ne the local porosityof K as the random variable�(K) = jP \KjjKj = 1jKj Xr2Zd �P(r)�K(r)1Strictly speaking, P is de�ned on sets of geometries E 2 E . However, we assume thatfgg 2 E for all g 2 G. 6



The local porosity distribution(LPD)[16] for K can be de�ned as[3]�(�;K) = h�(�� �(K))iwhere �(�� �(K)) is the Dirac delta function, and the �rst moment of this LPDis � (K) = Z 10 ��(�;K) d�Using the de�nition of �, and changing the order of summation gives� (K) = Xg2G�Z 10 � �(�� �(K)) d��P (g) =Xg �(K)P (g) = h�(K)i= * 1jKj Xr2Zd �P(r)�K(r)+ = 1jKjXr h�P(r)i�K(r)where we have also used the de�nition of �(K). Thus, we obtain the expression� (K) = Z 10 ��(�;K) d� = h�(K)i = 1jKjXr S1(r)�K(r) (1)For homogeneous media, S1 = h�i, the bulk porosity, so that � (K) = h�i. Simi-larly, we can show that the local porosity variance var[� (K)] = R 10 ��� � (K)�2 �(�;K) d�is given by var [�(K)] = 1jKj2 Xr;r02Zd C2(r; r0)�K(r)�K(r0) (2)If the medium is homogeneous we can perform one of the sums. In this caseC2(r; r0) = C2(0; r0�r). De�ning y = r0�r, and using the fact that �K(r+ y) =�K�y(r), where K� y is the set K translated by the vector �y, we obtainvar [�(K)] = Xy2Zd jK \ (K� y)jjKj2 C2(0;y) (3)7



Note that the variance var[� (K)] is simply related to the granularity conceptwhich is used for photographic materials[21]. The relations above are applicableto in�nitely large realizations of homogeneous stochastic media.
3 The Central Limit Theorem and ScalingConsider again the class of homogeneous media in which spatial correlations ofthe random geometry decay with a �nite correlation-length �. For such systems,we can apply the central limit theorem to measurements of local porsity for verylarge measurement cells. To do this, we partition a d-dimensional hypercubicmeasurement cell K of side L into n = (L=a)d hypercubic subcells fKig; i =1; 2; : : : ; n, of side a so thatK = n[i=1Ki; Ki \Kj = ; for i 6= jand rewrite �(K) as the average�(K) = 1nXi �(Ki)over all the subcell porosities �(Ki). If we choose L and a such that � � a� L,then n� 1, and the central limit theorem becomes applicable, because the �(Ki)are weakly correlated random variables. The central limit theorem ensures theexistence of a number � such that�(�;K) ' (L=a)d=2p2�� exp "�(�� �)2 (L=a)d2�2 #8



were the accuracy of the approximate equality improves as L=a increases. In thelimit L=a!1 subject to a� �, one has �! �(���), independent of dimensionand independent of K. Hence, for L=a su�ciently large but still �nite, the formof �(�;K) depends only on the bulk porosity � and the variance var[�(K)] =�2=(L=a)d, but not on the shape of K. If the medium is also isotropic, then asu�cient condition for the equality of two such limiting distributions for d andd0-dimensional measurement cells in the same medium is thus L0a0 ! =  �0� !2=d0 �La�d=d0 (4)because � will be the same in both cases.Thus we �nd that for homogeneous isotropic systems with �nite correlation-length, two- and three-dimensional LPDs for large L are simply related by arescaling of lengths. We now examine the site percolation model, for which thescaling relation is exact.
4 The Percolation ModelIn the site percolation model, each lattice site has a probability h�i of beingoccupied and (1 � h�i) of being empty that is independent of the other sites.Therefore, if we consider occupied sites to be pore and empty sites as matrix,�(�;K) depends only on h�i and jKj, and is given by the binomial distribution. Ifthe underlying lattice is hypercubic, then the LPD for a d-dimnesional hypercubic9



measurement cell K of side L is�(�i;K) = Ld![Ld �i]! [Ld (1� �i)]! h�iLd�i (1� h�i)Ld(1��i)where �i = i=Ld and i = 0; 1; : : : ; Ld. Measurement cells consisting of the samenumber of points must have identical LPDs. Therefore, if K0 is a d0-dimensionalmeasurement cell of side L0�(�i;K0) = �(�i;K) if L0d0 = LdThe scaling relation L0 = Ld=d0 (5)is not solvable in Z for all L; L0 . Nevertheless, there exist in�nitely many so-lutions, since each positive integer i yields the solution L0 = id and L = id0Therefore, for the site percolation model, two- and three-dimendional LPDs are,within the constraints imposed by the discrete nature of the model, simply relatedby a rescaling of lengths.
5 The Overlapping Sphere ModelAn often useful grain model for porous media is obtained by randomly distributedoverlapping spheres. The spheres represent grains of matrix material. A modelcon�guration is typically created by randomly distributing point-centers with con-stant point-density in a given volume and attaching a sphere of radius r0 to eachpoint-center. The system analyzed below was obtained by randomly distributing10



8000 point-centers in a volume of 256x256x256 voxels. A value of r0 = 9:45 voxelshas been used, and periodic boundary conditions have been implemented. Thebulk porosity of the overlapping sphere model is h�i = exp h��43�r30i, where �is the point-density. The point density and sphere radius were chosen such thath�i = 0:1855, matching the porosity of a real sandstone specimen discussed below.A plane-section showing the degree of discretization is displayed in Figure 1.Three-dimensional LPDs for L 2 f1; 2; : : : ; 64g have been measured, and theresulting family of distributions is shown in Figures 2a. Two-dimensional LPDswere obtained for L0 2 f1; 2; : : : ; 150g by averaging the measured distributionsfor all cross-sections perpendicular to the z-axis. The results are displayed inFigure 2b. To investigate the degree of correspondence between two- and three-dimensional LPDs we calculate the quantity�(L; L0) = Z 10 j�3d(�;L)� �2d(�;L0) j d�as a quantitative measure of the deviation between two distributions. For �xedL, we minimize �(L; L0) by varying L0 . The matched distributions selected bythis criterion are shown in Figure 3 for a choice of (L; L0)-values indicated inthe �gure for each matching pair. The agreement between the matched two-and three-dimensional distributions is satisfactory. The agreement for large Lstipulated by the central limit theorem improves with better system-statistics.This is seen from the matched LPDs shown in Figure 4, for a system of 64000instead of 8000 spheres, having the same voxel-dimensions and bulk porosity. The11



poorer sphere-resolution of r0 = 4:73 pixels makes this con�guration less suitablefor analyzing � at smaller length-scales, so we shall not discuss this con�gurationfurther.The matching of distributions based on �(L; L0) is shown as the solid linein Figure 5. Another matching of distributions is obtained from the criterion ofequal variances established in section 3. The mapping L0(L) obtained from theequal variance criterion is shown as the dashed curve in Figure 5. For lengthsthat are not too large relative to the size of the system, both criteria give moreor less the same rescaling of lengths L0(L). Note, however, that the discretizationcan a�ect L0(L) at small L.In practical applications, it is important to estimate the three-dimensionalLPDs from observations on two-dimensional cross-sections alone. In the match-ing above, however, it was assumed that the three-dimensional LPDs are known.A way out of this dilemma is provided by equations (3) and (4). The agreementbetween the dashed and the solid lines in Figure 5 validates the matching crite-rion based solely on the variances expressed in equation (4). On the other hand,equation (3) allows us to estimate the variance from C2(0; r) measured on two-dimensional cross-sections as long as the system is isotropic. The results of sucha matching procedure are shown as the dotted and the dash-dotted curves in Fig-ure 5. The dotted curve uses a direct measurement of C2 from two-dimensionalsections, while the dash-dotted curve uses the exactly known analytical form ofC2. The direct measurement of C2 uses the same series of planar-sections as the12



measurement of the two-dimensional LPDs; the correlation function is �rst cal-culated in each plane and subsequently averaged over all planes. The necessityto average over all planes, and the inuence of discretization e�ects were re-cently discussed systematically[22]. The resulting averaged two-point correlationfunction G(0; r) = C2(0; r)C2(0; 0) = S2(0; r)� S1(0)S1(r)S2(0; 0)� S1(0)S1(0)is shown in Figure 6. Because the model of overlapping spheres is homogeneousand isotropic G(0; r) = G(r). The exact analytical expression for S2(0; r) is givenas S2(0; r) = S2(jrj) = exp "�� �3d3 � V3(B(0; d2) \B(r; d2)!#� is the density of point-centers, d is the sphere-diameter, V3(A) is the volume ofthe setA andB(r; c) = fx : jx� rj �cg is the ball of radius c around r. The exactG(r) vanishes for r � d, and is shown as the dashed curve in Figure 6. Visiblediscrepencies between the measured and analytical curves are due to insu�cientsystem-statistics.The satisfactory agreement of the dotted and the dash-dotted curves in Fig-ure 5, results from the isotropy of the overlapping sphere model. The isotropycondition G(r) = G(r) guarantees knowledge of the full function G(r) from ameasurement along any ray. Knowledge of the full function is a prerequisite forcalculating the three-dimensional variance from (3). Hence, the above precedureis not applicable for general anisotropic media.13



To assess the relative reliability of our rescaling procedure for isotropic sys-tems, we compare in Figure 7 the two- and three-dimensional variances computedfrom the exact and measured correlation functions G(r) with those computedfrom the local porosity distribution �(�;K). Solid lines are variances computedfrom �(�;K), dashed lines are variances computed from the measured G(r) anddotted lines are variances computed using the analytical G(r). The overall agree-ment is satisfactory, given that the side length of the whole system is only 256voxels.
6 A Sandstone specimenIn this section, we analyse experimental data. The three-dimensional pore-spacefor a specimen of Savonnier oolithic sandstone was reconstructed from serial thinsections[23]. The data-set consists of 99 binary images, each of 1904x1904 pixels,representing planar cross-sections through the medium. The distance between theplanes of consecutive images is 10�m. This is also the pixel size. Each section wasobtained by thresholding a digitized micrograph into a black and white image.The threshold value was chosen to match the experimentally-known bulk porosityof � = 0:1845. Figure 8 shows part of a typical image measuring approximately1 cm along each side. In Figure 9 we show a three-dimensional cubic subset witha side length of 1 mm, in which the pore-space is shown in black, the matrix istransparent and the pore-space boundary is gray.14



Figure 9 shows that the pore-space is anisotropic. This is corroborated inFigure 10, where the correlation function Gk(r), measured in the plane of thethin sections is shown together with G?(r) measured in the direction normalto the thin sections. The anisotropy is at least partly caused by the misalign-ments of individual images and variations in lighting and thresholding during thereconstruction. The correlation function Gk(r) also shows the existence of large-scale heterogeneities. Given these imperfections we do not expect to be able toreconstruct the three-dimensional LPDs from two-dimensional information alone.The family of three-dimensional LPDs is displayed in Figure 11a. The fam-ily of two-dimensional LPDs is displayed in Figure 11b. The three-dimensionaldistributions have been measured on a sub-system of 1881x1881x99 voxels formeasurement cell sizes L 2 f1; 2; : : : ; 96g. The bulk porosity of the sub-systemis 0.1861. The results displayed in Figure 11a are, to our knowledge, the �rstmeasurements of three-dimensional LPDs on a natural rock sample. The two-dimensional LPDs shown for L0 2 f1; 2; : : : ; 240g were obtained, as before, byaveraging the distributions for each plane.Figure 12 shows the two- and three-dimensional variances computed directlyfrom the distributions as solid lines. The dashed lines are variances obtainedusing Gk in (3). The poor agreement for d = 3 is to be expected, since Gk 6= G?,as seen in Figure 10. Hence, we cannot make an independent determination ofthe three-dimensional variance from the two-dimensional data, and are unable toconstruct the mapping L0(L) based on two-dimensional correlation functions.15



Nevertheless, a matching between two- and three-dimensional LPDs can beobtained based on �(L; L0) as discussed above. The results of the �-matchingprocedure are shown in Figure 13 for a selection of (L; L0)-pairs indicated in the�gure. The agreement is of similar quality as that for the overlapping spheremodel.
7 ConclusionThe present paper has investigated the dimensional dependence of local porositydistributions, which formalise the idea of length-scale dependent spatial averag-ing (coarse-graining). We have presented the �rst determinations of LPDs forreal porous media. We have shown that in general, in the limit of large mea-surement cells(averaging regions), the two- and three-dimensional LPDs can bemapped onto each other by a rescaling of lengths L0(L). This result was basedon the central limit theorem and the concept of stationarity. We have foundthat the mapping L0(L) extends below the asymptotic regime to much smallerlength-scales. This result is important for both practical applications and be-cause it agrees with the possibility of intermediate limit laws for LPDs based ongeneralizations of the central limit theorem[3].An equally important result of this paper is the �nding that the mappingL0(L) can be determined from purely two-dimensional measurements. However,this result is restricted to homogeneous isotropic media.16



We illustrated our results with three examples. For the percolation model,the analytical form of the mapping L0(L) between two- and three-dimensionalLPDs is exactly known, and the agreement between mapped distributions be-comes perfect. For the homogeneous isotropic overlapping sphere model, theagreement between mapped distributions is satisfactory for measurement cells ofside L � � and improves with increasing L. The mapping L0(L) can be suc-cessfully determined from two-dimensional observations alone for this medium.The three-dimensional pore-space reconstruction for the Savonnier oolithic sand-stone specimen is clearly anisotropic and shows large-scale heterogeneities. Theanisotropy of the reconstructed pore-space does not allow one to construct themapping L0(L) from two-dimensional observations. Nevertheless, the mappedcurves from two- and three-dimensional measurements again show good agree-ment.
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Figure 1: A digitized plane-section from a 256x256x256-voxel digitized con�gu-ration of overlapping spheres, consisting of 8000 randomly distributed spheres,all of radius r0 = 9:45 voxels.
Figure 2: a.) The family of three-dimensional LPDs �3d(�;L) for L 2f1; 2; : : : ; 64g for the overlapping sphere model. Note that the position of thesaddle-point is near L = 18:9, which is the correlation length for the system.b.) The family of two-dimensional LPDs �2d(�;L0) for L0 2 f1; 2; : : : ; 150g. Al-though this surface is not the same as the in the previous one, the previous surfacecan be approximately recreated from this one by rescaling the L0 axis.
Figure 3: A selection of matching two- and three-dimensional LPDs from themapping obtained by minimizing �(L; L0). Solid lines indicate three-dimensionalLPDs and dashed lines show two-dimensional LPDs. The side-length of themeasurement cells for matched LPDs are shown on the �gure as (L; L0)-pairs.
Figure 4: Selected �(L; L0)-matched distributions, similar to those shown in thelower half of the previous �gure, from an ensemble of 64000 spheres of r0 = 4:73voxels, within a volume of 256x256x256 voxels. The matching (L; L0)-pairs areindicated in the �gure. 22



Figure 5: The scaling relation L0(L) associating two- and three-dimensionalLPDs, as determined by four di�erent criteria. The solid line is based on min-imizing �(L; L0). The remaining curves are based on equating variances: thedashed curve is obtained from the actual distribution variances, the dotted curveand the dash-dotted curves are obtained from variances computed from (3) usingmeasured and analytical values for C2 respectively.Figure 6: The 2-point correlation function G as a function of distance r. Thesolid curve shows measured values, while the dashed curve is the analytical resultfor an in�nite sample.Figure 7: Three di�erent determinations of variance for both two- and three-dimensional LPDs. The actual distribution-variances are the solid curves. Thedashed and dash-dotted curves are computed from (3) using measured and ana-lytical values for C2 repectively.Figure 8: Part of a typical planar-section through the Savonnier oolithic sand-stone. The side-length of the image is � 1 cm. The pore-space is shown in blackand rock matrix in white.Figure 9: A roughly cubic sub-volume of 100x100x99 voxels from the same sand-stone shown in the previous �gure. The pore-space is shown in black, matrix istransparent and the pore-space boundary is gray.23



Figure 10: Two-point correlation functions for the sandstone specimen. Gk(r)and G?(r) are shown as the solid and dashed curves respectively. These functionsare shown as functions of r + 1 in order to plot the r-axis in logarithmic scale.Note the presence of several correlation-lengths in Gk.Figure 11:a.) The family of three-dimensional LPDs �3d(�;L) for L 2 f1; 2; : : : ; 96g forSavonnier oolithic sandstone. The spikes at regular intervals for small L are notuctuations, but rather a result of the anisotropy visible in Figures 9 and 10.b.) The family of two-dimensional LPDs �2d(�;L 0) for L0 2 f1; 2; : : : ; 240g.Note that the distributions are much broader than those for the overlappingsphere model shown in Figure 2b.Figure 12: Two- and three-dimensional local porosity variances for the Savonnieroolithic sandstone. The solid curves are variances determined directly from thedistributions and the dashed curves are variances computed from (3) using theGk(r).Figure 13: �(L; L0)-matched two- and three-dimensional LPDs for the Savonnieroolithic sandstone for a selection of (L; L0)-pairs indicated in the �gure. Thetwo- and three-dimensional distributions are shown as dashed and solid curves,respectively. The spikes in Figure 12a are seen here in �3d(�; 8) at � = 1=8; 2=8and 3=8. 24


