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I. INTRODUCTIONAn accurate geometric characterization of the correlated random microstructures foundin disordered heterogeneous materials is generally di�cult. One possible method consistsin using globally well-de�ned morphological descriptors (e.g. volume fraction or speci�c in-ternal surface area) as local descriptors. While local volume fraction uctuations have beendiscussed previously in the context of porous media and photographic granularity [?,?,?]the idea of local morphological descriptors has only recently been applied systematicallyin the form of local porosity theory [?,?,?,?,?,?,?,?,?]. Local porosity theory generalizesthe successful and widely used e�ective medium approximation to correlated random mi-crostructures.Microstructural information of a di�erent kind can be obtained by applying the Gibbs-Shannon entropy concept from information theory to distributions of locally uctuatingmorphological descriptors. Such \local geometry entropies" were introduced independentlyin [?] and [?]. It is the primary purpose of the present paper to clarify the similarities anddi�erences between the two di�erent local geometry concepts. Furthermore we resolve thenormalization problem of [?], and provide examples of the usefulness and microstructuralsensitivity of the local geometry concept. We begin with a discussion of the \local porosityentropy" introduced in [?] in the next section. Subsequently we present the de�nition of the\con�gurational entropy" as introduced in [?]. In section ?? we establish the relationshipbetween the two concepts, and in section ?? we show that, for su�ciently high resolution,they give rise to the same \entropy length". Finally we apply our entropic analysis toseveral examples including percolation models, Poisson grain models, thin �lms and poroussandstones.
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II. LOCAL POROSITY ENTROPYDistributions of local morphological descriptors of random microstructures were intro-duced in [?,?]. The local geometry approach was recently reviewed and extended in [?]. Inthe present study we consider for simplicity only two component media in two dimensions.Such media are of practical importance as granular metal �lms for composite coatings. Theyarise also as surface morphologies when sectioning a three-dimensional medium.Given a two-component random microstructure in the plane R2 let the subset P �R2 denote the set occupied by one of the two components (phases), and M = R2 n P itscomplement occupied by the second component. For microstructures obtained by sectioninga porous medium the set P represents the uid-�lled pores while the set M is the solidmineral matrix. The local volume fraction occupied by the set P within an observationregion K is then de�ned as [?,?,?]�(K ) = V (P \ K )V (K ) (2.1)where V (G ) denotes the volume (=area) of a set G � R2 . The local porosity distribution isde�ned as the probability density [?,?,?]�(�; K ) = h�(�� �(K ))i (2.2)where �(x) is the Dirac �-distribution, and h:::i denotes an average over the underlyingprobability distribution governing the con�gurations of the random microstructure. Notethat the local porosity distribution depends on the size and shape of the observation regionK . Recently [?] it was found that this dependence disappears in a suitable macroscopicscaling limit. In the following it will be assumed that for each K the function �(�; K ) isa given continuous probability density with support on the unit interval. This assumption2



can be justi�ed by arguing that possible discrete components are always smeared becauseof �nite image resolution.Local porosity entropies I(K ) are obtained by calculating the Gibbs-Shannon entropy ofthe family of local porosity distributions �(�; K ) as in [?]I(K ) = Z 10 �(�; K ) log �(�; K ) d� (2.3)which assumes, as usual, a uniform distribution as the a priori weight. Examples of localporosity entropies were given in [?] for synthetic images, and in [?] for experimental systems.III. \CONFIGURATION" ENTROPYIn [?,?] the two-dimensional image is discretized into black and white picture elements(pixels) forming a quadratic lattice with lattice constant a. The black and white image isthen analyzed using a quadratic observation region K (sliding cell) of sidelength L whichcontains M = (L=a)2 pixels. The observation region is moved to N di�erent positions, andthe number Nk(M) is de�ned as the number of cells of size M containing k active (=black)pixels. Using the relative frequenciespk(M) = Nk(M)N (3.1)as estimators for probabilities the \con�guration" entropy has been de�ned as [?]H�(M) = H(M)log(M + 1) = � 1log(M + 1) MXk=0 pk(M) log pk(M): (3.2)whereH(M) represents the usual Gibbs-Shannon entropy of the discrete probabilities pk(M),and M = (L=a)2. 3



The expression (??) does not use the Gibbs-Shannon expression H(M) but divides itwith log(M+1) similar to multiplicative renormalization in the theory of critical phenomena.The normalization was introduced because the underlying probability space changes whenthe number M of pixels inside the measurement cell is changed. The choice 1= log(M + 1)for the normalization factor however renders H�(M) nonadditive. The next section willshow that this can be avoided by using the de�nition (??), and that a precise relation existsbetween I(K ) and H�(M).IV. RELATION BETWEEN THE TWO ENTROPIESThe relationship between I(K ) and H�(M) is established by applying the de�nitions ofsection ?? to the same discretized quadratic observation region K of sidelength L which wasused in section ??. For such a choice of K the unit interval [0; 1] of porosities is convenientlysubdivided into subintervals bounded by the porosities�k = kM + 1 (4.1)where 0 � k � M + 1 and M = (L=a)2. If �(�; K ) is given as a continuous function theintegral in equation (??) can be approximated as I(K ) = limM!1 I(M) whereI(M) = MXk=0�(�k; K ) log �(�k; K )(�k+1 � �k)= 1M + 1 MXk=0�(�k; K ) log �(�k; K ): (4.2)Identifying the probabilities�(�k; K )M + 1 = pk(M) (4.3)
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with the relative frequencies pk(M) of section ?? givesI(M) = MXk=0 pk(M) log[pk(M)(M + 1)] (4.4)and thusI(M) = log(M + 1)(1�H�(M)) (4.5)provides a rigorous relationship between the entropies which becomes exact in the limit(L=a)!1.Note, however, that in the continuum limit a! 0 at �xed L the normalization of H�(M)gives rise to a peculiar behaviour of this quantity. While in this limit lima!0 I(M) = I(K )becomes a number depending on the local porosity uctuations as described by �(�; K ),equation (??) shows that lima!0H�(M) = 1 which is independent of the microstructure. Inother words the \con�guration" entropy H�(M) should not be used to distinguish di�erentmorphologies in the continuum limit. We suggest calling I(K ) \local geometry entropy".The generalized name accounts for the fact the I(K ) is readily generalized to morphologicaldescriptors other than porosity, such as local speci�c internal surface areas or local curvatures[?]. V. ENTROPY LENGTHAn interesting quantity associated with local geometry distributions is the entropylength. The entropy length L� is de�ned as the length at which I(M) becomes extremal,@I(M)=@LjL=L� = 0 [?]. Di�erentiating (??) yieldsI 0(M) = 1M + 1(1�H�(M))� log(M + 1)H�0(M) (5.1)5



where the prime denotes the derivative with respect to M . For large M , e.g. in the limitof high resolution a! 0 at �xed L, the �rst term becomes negligible, and thus the entropylength can be determined equally from the condition @H�(M)=@L = 0. This is illustratedin Figures ?? and ?? and ??. Figure ?? shows the microstructure of a Poisson grain modelobtained by placing circles of equal radii around centers which are distributed at randomand with constant number density. The corresponding entropy curves I(M) and H�(M) areshown in Figures ?? where, to facilitate the comparison, the curves have been shifted alongthe ordinate to have the same maximum value 0. We have assumed a = 1 which allows oneto plot the curves as function of the size L of the observation square. Note that the curvesshow two extrema, of which the ones at large M coincide, while the extrema at smallM aredi�erent. The entropy length is an accurate measure of the typical linear size of the di�erentphases, pores or components. VI. APPLICATIONSTo illustrate the usefulness of the local geometry concept as a morphological descriptor weapply it to several random microstructures. We use two computer generated images of simplemodels for disordered systems, and two experimentally obtained disordered microstructures.The two synthetic images are generated from the percolation model on a lattice and fromthe Poisson grain model consisting of uniformly distributed overlapping spheres. The twoexperimental morphologies are observed when a thin �lm of gold is deposited on a glasssubstrate, and when slicing through a natural sandstone.A. Simulated Bernoulli site percolation modelPerhaps the simplest model of a random microstructure is the site percolation model [?].In this model, each lattice site has a probability h�i of being occupied and (1�h�i) of being6



empty. The occupation of sites is assumed to be statistically independent. A con�guration ofsuch a system in which the occupied (black) sites represent pore space, and the unoccupiedones matrix space is shown in Figure ?? for h�i = 0:3.The local porosity distribution �(�; K ) for the percolation model depends only on h�iand j K j = M = (L=a)d, and is given by the binomial distribution [?,?]. If a hypercubiclattice with lattice constant a is considered, then the LPD for a d-dimensional hypercubicmeasurement cell K of side L readspk(M) = �(�k; K )M + 1 = (6.1)M ![(M + 1)�k]! [(M + 1) (1� �k � 1=(M + 1))]! h�i (M+1)�k (1� h�i) (M+1)(1��k�1=(M+1))where M = (L=a)d, �k = k=(M + 1) and k = 0; 1; : : : ;M . Its local geometry entropyI(M) = log(M + 1)�H(M) = log(M + 1) + MXk=0 pk(M) log(pk(M)) (6.2)is displayed in Figures ?? and ?? as the curve with triangular symbols. The extrema ofthe curve are at the boundaries. This reects correctly the fact that the microstructureis homogenous and statistically independent at the microscopic resolution (i.e. the latticeconstant). The value I(1) = log(2)+h�i logh�i+(1�h�i) log(1�h�i) � 0:08228 is approachedfor M = 1. For M ! 1 the entropy I(L) diverges to in�nity (Note that Figure ?? shows�I(L) which diverges to �1), while H�(M) in Figure ?? approaches a constant.To demonstrate the inuence of �nite system size and statistics we have plotted in Figures?? and ?? also the curves H�(L) and �I(L) determined directly from the image. Thesecurves are shown using circular symbols. The agreement with the exact result is satisfactoryalthough some deviations are apparent.
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B. Simulated Poisson grain modelAnother often used model for random microstructures is the Poisson grain model. Inthis model a constant number density of circles (spheres) is randomly placed with uniformdensity into continuous space. Figure ?? shows a random throw of disks with diameter of15 pixels in two dimensions. The porosity of the image is h�i = 0:5.The entropy functions �I(L) and H�(L) for this image di�er signi�cantly from thosefor the percolation image. Now the curves show a pronounced extremum while those forthe percolation case were monotonic. Both curves exhibit an extremum at L� � 16 corre-sponding roughly to the circle diameter of 15 pixels. From other simulations we �nd thatthe extremum changes with the circle (or sphere) diameter. Hence the position of the ex-tremum in �I(L) or H�(L) is related to a characteristic length scale for the morphology.This interpretation is also consistent for the percolation model where the extremum occursat L� � 1 which corresponds to the pixel diameter.C. Experimental gold �lm morphologyThe image of Figure ?? represents a digitized and thresholded image of a transmissionelectron micrograph of a thin �lm of gold on a glass substrate. The �lm was deposited bythermal evaporation under ultra-high vacuum. The evaporation was stopped before the goldphase, shown in black, begins to percolate. The surface coverage is h�i = 0:413.The curves for the local porosity entropy and the con�guration entropy of the gold �lmmorphology from Figure ?? are shown using square symbols in Figure ?? and ??. Bothcurves exhibit again an extremum, this time at L� � 11. This corresponds roughly to thecharacteristic thickness of black and white regions in the image. The length L� is expectedto decrease down to the size of the elementary metallic grain at percolation [?]. This is the8



main reason why in [?,?] it was suggested that the optical properties of these materials haveto be calculated at scale L�.D. Experimental oolithic sandstone morphologyIn Figure ?? we show a slice through a natural oolithic sandstone. The image wasobtained by slicing a sample of Savonnier sandstone whose pore space was made visible by�rst �lling it with a coloured epoxy resin. The cut surface was polished and photographed.The photgraph could then be digitized and thresholded to give a black and white image.The threshold was adjusted to match the measured bulk porosity of h�i = 0:186. In theimage shown in Figure ?? the pore space is coloured black while the rock matrix is shownin white.The entropy functions for the image of Figure ?? are displayed as curves with crosssymbols in Figures ?? and ??. Note that there is again a maximum in �I(L) at L� � 47,but this maximum is much broader and less pronounced than for the other images. Thecurve for H�(L) in Figure ?? also shows a maximum at L� � 55. It is so at that it isdi�cult to distinguish from the �gure.The di�erence between the values of L� obtained from maximizing H�(L) as opposed to�I(L) can be understood from Eq. (??). The equality of the two entropy lengths is obtainedin the limitM !1 in which the �rst term in Eq. (??) becomes negligible. For �niteM thelengths can in general be di�erent. Hence we conclude that for the morphology of Figure??, which represents the most heterogeneous case, the resolution of the image needs to beimproved before I(M) and H�(M) will give the same entropy length.
9



VII. DISCUSSION AND CONCLUSIONIn this paper we have established an exact relationship between the local porosity entropy[?] and the con�gurational entropy of [?]. These two morphological entropies were intro-duced independently by the authors to characterize random but correlated microstructures.We have discussed the advantages and disadvantages of the two entropies and suggest to calltheir common element local geometry entropy. It is argued that local geometry entropiesare a useful morphological indicator for random correlated morphologies.The evaluation of the local geometry entropy for selected morphologies indicates theexistence of a minimum. The position L� of the minimum in the entropy function is calledthe entropy length. The length L� correlates well with a characteristic length scale of themicrostructure. It is, however, di�erent from the pixel-pixel correlation length. Our analysisand past experience indicates that the entropy length L�, as measured here, corrresponds tothat size of measurement cells at which a �nite fraction of measurement cells begin to havevanishing local porosity.Another observation concerns the width (or curvature) of the extremum. More hetero-geneous microstructures such as the one in Figure ?? appear to show a wider extremumthan those microstructures, such as Figures ?? or ??, in which the black and white regionsare more compact. This observation is consistent with the �ndings in [?] for syntheticmorphologies. Hence we conclude tentatively that the width of the extremum correlateswith the complexity or heterogeneity of the microstructure. More analyses of synthetic andexperimental data are desirable to further elucidate the geometrical and morphological in-formation content of the local geometry concept.
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FIGURE CAPTIONS1. (a) FIGURE ??Random microstructure of the (uncorrelated) site percolation model in whichoccupied (black) points represent pore space. The porosity (volume fraction ofpore space) in the image is h�i = 0:3.(b) FIGURE ??Poisson grain model con�guration with constant point density of circles. Totalvolume fraction of h�i = 0:5(c) FIGURE ??Discontinuous thin �lm morphology of gold at volume fraction h�i = :413(d) FIGURE ??Planar thin section through a Savonnier oolithic sandstone with pore space ren-dered black. The side length of the image corresponds to roughly 1 cm, the totalporosity is h�i = :1862. FIGURE ??Comparison of local porosity entropy �I(L) and con�guration entropy H�(L) for thePoisson grain model shown in Figure ?? with disks diameter 15 pixels. Note that thecurves show extrema at the same length L � 26. The curves are shifted to have thesame ordinate �I(L) = H�(L) = 0 at the extremum.3. FIGURE ??Local porosity entropy �I(L) [?] as a function of the side length of the measurementcell calculated for all random microstructures shown in Figures ??, ??, ?? and ??.The circles correspond to the site percolation image shown in Figure ??. The trianglesare the theoretical values for an in�nitely large image at the same bulk porosity. Thediamonds are the result for the Poisson grain model shown in Figure ??. The squares12



represent the experimentally observed gold �lm morphology of Figure ??, while thecrosses correspond to the sandstone cross section shown in Figure ??.4. FIGURE ??Con�guration entropy H�(L) [?,?] as a function of the side length of the measurementcell calculated for all random microstructures shown in Figures ??, ??, ?? and ??.The symbol usage is the same as in Figure ?? and is explained in the �gure captionthere.
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