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Abstract

A quantitative comparison of the pore space geometry for three natural sandstones is presented.
The comparison is based on local porosity theory which provides a geometric characterization
of stochastic microstructures. The characterization focusses on porosity and connectivity 
uctu-
ations. Porosity 
uctuations are measured using local porosity distributions while connectivity

uctuations are measured using local percolation probabilities. We report the �rst measurement of
local percolation probability functions for experimentally obtained three-dimensional pore space
reconstructions. Our results suggest the use of local porosity distributions and percolation proba-
bilities as a quantitative method to compare microstructures of models and experiment. c© 1998
Published by Elsevier Science B.V. All rights reserved

PACS: 61.43.G; 81.05.Rm; 47.55.Mh
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1. Introduction

A large number of microscopic models have been proposed to represent the mi-
crostructure of porous media [1–12]. Representative microscopic models are a prereq-
uisite for studying transport properties such as 
uid 
ow or sound propagation in oil
reservoirs, aquifers or other random media.
Microscopic models are not unique, and hence it is necessary to have criteria for

comparing them among each other and with the experimental porous microstructure
[13–17]. This is particularly important for attempts to generate porous microstructures
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in an automatic computerized process [18,7,8,19], or to decide quantitatively whether
the connectivity is percolationlike as is often assumed in models [20,21,11].
Detailed microscopic models contain so many geometrical features that a rough com-

parison based only on porosity and speci�c surface is insu�cient. The problem is to
�nd general geometric characterization methods to test how well a model represents
the microstructure found in reality. Given such tools they can then be used to constrain
the input parameters of the models.
General geometric characterization methods traditionally employ only porosities, spe-

ci�c surface areas, and sometimes correlation functions [2,22,23,7,24]. Recently, novel
tools based on local porosity theory became available for the comparison of stochastic
microstructures [25–27,13,28–30,15]. Local porosity theory is currently the most gen-
eral geometric characterization method because it contains as a special case also the
characterization through correlation functions (see [15] for details).
Local porosity theory contains two geometric characteristics. The �rst is local poros-

ity distributions, the second is local percolation probabilities [15]. While local porosity
distributions have been measured previously on arti�cial and real samples [13,29–31]
no reliable measurement has been made up to now for the local percolation probabil-
ities. The main impediment has been the absence of accurate three-dimensional pore
space representations for real rocks.
The objective of the work reported here was to measure the local percolation prob-

abilities of natural sandstones thereby providing a new geometric characteristic against
which microscopic pore space models can be compared [35].

2. Measured quantities

2.1. Local porosity distributions

Local porosity distributions were originally introduced as a quantitative substitute
for pore size distributions [25]. The idea is to measure porosity or other well-de�ned
geometric observables within a bounded (compact) subset of the porous medium and
to collect these measurements into various histograms (empirical probability
densities).
Imagine a porous medium occupying a subset S⊂Rd of the physical space (d=3

in the following). For the data analysed here the set S is a rectangular parallelepiped
whose sidelengths are M1, M2 and M3 in units of the lattice constant a (resolution)
of a simple cubic lattice. The sample S contains two disjoint subsets S=P∪M with
P∩M= ∅ where P is the pore space and M is the rock or mineral matrix and ∅ is the
empty set. In practice, the sample is discretized, and the con�guration of the two sets
P and M is given as an M1 ×M2 ×M3-array of two numbers representing P and M,
respectively. Let K(x; L) denote a cube of sidelength L centred at the lattice vector x.
The set K(x; L) de�nes a measurement cell inside of which local geometric properties
such as porosity or speci�c internal surface are measured. The local porosity in this
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measurement cell K(x; L) is de�ned as

�(x; L)=
V (P∩K(x; L))
V (K(x; L)) ; (2.1)

where V (G) is the volume of the set G⊂Rd. The local porosity distribution �(�; L)
is de�ned as

�(�; L)=
1
m

∑
x

�(�− �(x; L)) ; (2.2)

where m is the number of placements of the measurement cell K(x; L). The results
presented below are obtained by placing K(x; L) on all lattice sites x which are
at least a distance L=2 from the boundary of S, and hence in the following:

m=
3∏
i=1

(Mi − L+ 1) (2.3)

will be used. �(�; L) is the empirical probability density function (histogram) of local
porosities. Its support is the unit interval.
It is simple to determine �(�; L) in the limits L→ 0 and L→ ∞ of small and large

measurement cells. For small cells one �nds generally [25,15]

�(�; L=0)= ���(�− 1) + (1− ��)�(�) ; (2.4)

where

��=V (P∩S)=V (S) (2.5)

is the bulk porosity. If the sample is macroscopically homogeneous then

�(�; L→ ∞)= �(�− ��) (2.6)

indicating that in both limits the geometrical information contained in �(�; L) con-
sists of the single number ��. The macroscopic limit, however, involves the question
of macroscopic heterogeneity versus macroscopic homogeneity (for more information
see [15]). In any case, if Eqs. (2.4) and (2.6) hold, it follows that there exists a special
length scale L∗ de�ned as

L∗=min{L: �(0; L)= �(1; L)= 0} ; (2.7)

at which the �-distributions at �=0 and 1 both vanish for the �rst time.

2.2. Local percolation probabilities

The local percolation probabilities characterize the connectivity of measurement cells
of a given local porosity. Let

��(x; L)=

{
1 if K(x; L) percolates in “�”-direction;

0 otherwise
(2.8)
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Table 1
Legend for index � of local percolation probabilities
��(�; L)

Index � Meaning

x x-direction
y y-direction
z z-direction
3 (x ∧ y ∧ z)-direction
c (x ∨ y ∨ z)-direction
0 (¬(x ∨ y ∨ z))-direction

be an indicator for percolation. What is meant by “�”-direction is summarized in
Table 1.
A cell K(x; L) is called “percolating in the x-direction” if there exists a path inside

the set P∩K(x; L) connecting those two faces of S that are vertical to the x-axis.
Similarly for the other directions. Thus, �3 = 1 indicates that the cell can be traversed
along all three directions, while �c=1 indicates that there exists at least one direction
along which the block is percolating. �0 = 1 indicates a blocking cell.
The local percolation probability in the “�”-direction is now de�ned through

��(�; L)=
∑

x ��(x; L)���(x; L)∑
x ���(x; L)

: (2.9)

The local percolation probability ��(�; L) gives the fraction of measurement cells of
sidelength L with local porosity � that are percolating in the “�”-direction.

2.3. Total fraction of percolating cells

The total fraction of all cells percolating along the “�”-direction is given by inte-
gration over all local porosities as

p�(L)=

1∫
0

�(�; L)��(�; L)d� : (2.10)

This quantitiy provides an important characteristic for network models. For a network
model it gives the fraction of network elements (bond, sites, etc.) which have to be
permeable.

3. Samples and algorithms

The data sets of three di�erent sandstones are used in the analysis below. Each
data set consists of a three-dimensional array of 0’s and 1’s indicating pore space P
or matrix M. The array dimensions are M1, M2 and M3. The pore space P of the
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Fig. 1. Three-dimensional pore space of Berea sandstone (sample A). The resolution is a=10 �m, the sample
dimensions are M1 = 128, M2 = 128, M3 = 128. The bulk porosity is ��=0:1775. The pore space is indicated
in grey, the matrix space is transparent.

Table 2
Overview over properties of the data sets for three reservoir sandstones

Sample Description a (�m) M1 ×M2 ×M3 L∗ (�m) �� �k (mD)

A Berea 10 128× 128× 128 260 0.1775 1100
B Brent 2.7 180× 217× 217 108 0.1602 470
C Sst20d 30 73× 128× 128 540 0.2470 20 000

three samples are displayed in Figs. 1, 2 and 3. Note that the representations are not
to scale because the resolution of each image is di�erent. The data were obtained by
computerized microtomography [32].
Table 2 gives a synopsis of the characteristics of the three samples which have been

analysed. Here a is the resolution, and Mi are the dimensionless sidelengths of the
sample in units of a. The bulk porosity was de�ned in Eq. (2.5) and the length L∗

in Eq. (2.7). The permeability �k, given in millidarcy, is the experimentally determined
permeability of the sample from which the data sets were obtained.
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Fig. 2. Three-dimensional pore space reconstruction of Brent sandstone (sample B). The resolution is
a=2:7 �m, the sample dimensions are M1 = 180, M2 = 217, M3 = 217. The bulk porosity is ��=0:1602.
The pore space is indicated in grey, the matrix space is transparent.

The calculation of �(�; L) is straightforward, and proceeds exactly according to
Eq. (2.2). Several possibilities exist for the choice of x in K(x; L). Originally [25],
it was proposed to choose for x a cubic lattice with lattice constant L such that⋃
xK(x; L)=S and such that the resulting set of K(x; L) are nonoverlapping, i.e.

K(x; L)∩K(x′; L)= ∅ for x 6= x′. For the small data sets available this leads to poor
statistics with strong 
uctuations in all results. Therefore, we use here a cubic lattice
with smaller lattice constants giving rise to overlapping cells. The results below were
obtained by using unit lattice constant. In other words, we used for x all lattice sites
except those whose distance from the sample boundary is less than L=2. It must be
noted, however, that this method of positioning the cells gives progressively higher
weight to the central region of the sample. This can, for large L, lead to small di�er-
ences (roughly 0.005 in the present case) between the bulk porosity �� as de�ned in
Eq. (2.5) and expected local porosity de�ned as

∫
��(�)d�.

The determination of ��(x; L), i.e. of whether or not a cell is percolating in a given
direction, was carried out according to the well-known Hoshen–Kopelman algorithm
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Fig. 3. Three-dimensional pore space reconstruction of a weakly consolidated sandstone (sample C). The
resolution is a=30 �m, the sample dimensions are M1 = 73, M2 = 128, M3 = 128. The bulk porosity is
��=0:2450. The pore space is indicated in grey, the matrix space is transparent.

[33]. The choice of x was the same as in the measurement of �. ��(�; L) was then
calculated from Eq. (2.9).

4. Results

The �rst sample is Berea sandstone whose pore space is displayed in Fig. 1. In this
case the resolution is a=10 �m, and the sidelengths of the sample are M1 =M2 =M3 =
128. Fig. 4 shows the local porosity distributions �(�; L) with L=40; 80; 120; 300 �m
exhibiting the typical crossover between the limits L=0 and ∞. The curves are shown
as dotted lines and marked by four di�erent symbols corresponding to the four values of
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Fig. 4. Local porosity distributions �(�; L) (dotted lines) and local percolation probabilities �3(�; L) (solid
lines) for Berea sandstone (sample A, cf. Fig. 1). Four di�erent values for L are indicated by di�erent
symbols de�ned in the legend. The ordinate for the graphs of �(�; L) is on the left, the ordinate for �3(�; L)
is on the right as indicated by the axis labels.

L as indicated in the legend. Next, in the same Fig. 4, the local percolation probabilities
�3(�; L) are displayed for the same four values of L that were used for �. The curves
for �3(�; L) are distinguished from those for �(�; L) by a solid line style. The symbols
used to indicate L are the same in both cases. The ordinate for the �3-graphs is the
right axis, those for �-graphs is the left axis. The local percolation probabilities �3 are
increasing from zero to one. This expresses the fact that the full sample is connected.
For L=40 �m=4a the sidelength of the measurement cell corresponds to four voxels.
To have a conducting path in all three directions one needs at least 10 voxels of pore
space. This amounts to a porosity of roughly 0.16, and hence all curves �3(�; 4a) must
vanish below � ≈ 0:16. Similarly, to disconnect at least one of the three directions one
needs at least 16 voxels �lling a plane. Hence, the curves �3(�; 4a) must equal unity
above � ≈ 1 − 0:25=0:75. This can be observed in Fig. 4 for Berea and in Figs. 8
and 11 for the other samples. For general L and dimension d the same consideration
gives that �3 vanishes below (dL− d+ 1)=Ld and equals unity above 1− 1=L.
It is instructive to compare � with � at a �xed L by superposing them in the same

plot. Such a plot is shown in Fig. 5 for L= L∗. The characteristic length L∗ was
de�ned in Eq. (2.7). For sample A (Berea) its value is found to be L∗=260 �m. To
facilitate comparison the local porosity distribution �(�; L∗) has been rescaled such
that its maximum equals unity. All six local percolation functions �� are displayed in
Fig. 5. The sample appears to be isotropic because the three functions �x; �y; �z all fall
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Fig. 5. Local percolation probabilities ��(�; L∗) with �=0; 3; c; x; y; z and L∗ =260 �m for Berea sandstone
(sample A) shown in Fig. 1. The dotted curve with circular symbols is the local porosity distribution at
L= L∗ =260 �m rescaled to have maximum 1.

on top of each other. The curves �c and �3 are upper and lower bounds for the region
inside which the connectivity increases from “blocking” to “fully connecting”. Note
also that this band is shifted to the left of the maximum of � indicating that Berea
sandstone is well connected. In fact, the �gure shows that an average cell (i.e. a cell
with local porosity around 0.18) is percolating with probability larger than 0.75. Only
cells with local porosity much below average are blocking.
To investigate how heterogeneities in the connectivity are re
ected in the local per-

colation probabilities, we have constructed an arti�cial modi�cation of the Berea sam-
ple. To this end we have blocked roughly 1200 additional voxels out of the total of
1283 ≈ 2×106 voxels by blocking a plane of 1× 100× 100 voxels inside the sample.
The orientation of the blocked plane was chosen perpendicular to the x-direction, and
the plane was centred in the y- and z-directions. It was placed in the middle, i.e. into
the 64th layer along the x-direction. This amounts to a small decrease of porosity by
roughly 0.00058. Note that the plane does not block the x-connectivity completely, but
leaves an open shell at the sample boundary. The resulting modi�ed porous microstruc-
ture was visually indistinguishable from the unmodi�ed one from the perspective of
Fig. 1. Only when viewing the sample at right angles from the y- or z-direction it
was possible to detect a small modi�cation. In Fig. 6 we display the same superpo-
sition of � and � for the partially modi�ed sample that was shown in Fig. 5 for the
unmodi�ed sample. The local porosity distribution of the partially x-blocked sample is
almost identical to that of the unmodi�ed sample. This remains true for all values of L,
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Fig. 6. Same as Fig. 5 but for sample A modi�ed with partially blocking plane in x-direction. See text for
details.

and L∗=260 �m is also unchanged. The functions �0; �c; �y and �z also remain almost
unchanged. �x, however, di�ers from �y and �z as expected. Also, as a consequence,
�3 falls signi�cantly below the result of the unmodi�ed sample. The deviations of
roughly 15% give an order of magnitude for the in
uence of connectivity 
uctuations
on �3. The di�erence between the results grows with increasing L. This allows another
important conclusion. To characterize heterogeneities using local porosity analysis it is
necessary to measure both � and � as functions of L over a su�ciently wide range
of L. Choosing only one �xed L may be misleading.
The dependence of the di�erence between the unmodi�ed Berea and the partially

blocked sample on L has been further quanti�ed in Fig. 7. This �gure shows the
total fraction of percolating cells determined according to Eq. (2.10). The results for
the original unmodi�ed sample are shown with solid lines, those for the sample with
a partially blocking plane are shown as dotted lines. This plot shows again that the
unmodi�ed sample is very isotropic because px; py; pz overlap. In the partially blocked
sample, however, deviations start to appear around L=150 �m in px(L) and p3(L)
becoming more pronounced at higher L. Note that the modi�ed sample shows a decrease
in px(L) at L ≈ 300 �m while all curves for the unmodi�ed sample are monotonously
increasing. Of course, px(L) must start to increase again at L/400 �m because the
sample is still connected on large scales. Therefore, one expects that nonmonotonous
behaviour of p(L) correlates with the length scale of heterogeneities in the connectivity.
The next sample is Brent sandstone, shown in Fig. 2, with a resolution of a=2:7 �m,

and sample dimensions M1 = 180, M2 = 217, M3 = 217. Although the data set for this
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Fig. 7. Total fraction of percolating cells p�(L) with �=0; 3; c; x; y; z for Berea sandstone (sample A, cf.
Fig. 1) shown as solid lines, and for the modi�ed sample A (with partially blocking yz-plane) shown as
dotted lines.

sample is the largest one with respect to the number of voxels, its absolute size is the
smallest of all samples. As a consequence, the statistics of this sample is poor because
it represents little more than a few pores. A larger sample seems necessary to obtain
a representative sampling of the pore space.
The local porosity distribution and local percolation probabilities for this sample are

shown in Fig. 8 using the same method of plotting as in Fig. 4 (see above). The
superposition of �(�; L∗) and �(�; L∗) is displayed in Fig. 9. Finally, the total fraction
of percolating cells is shown in Fig. 10. This curve seems to indicate that, while the
sample is isotropic for small L, it shows increasing anisotropy at larger L. This e�ect
may, however, also be due to the poor statistics as a result of the small absolute size
of the system.
Sample C is a clean weakly consolidated sandstone of unkown origin denoted below

as Sst20d because its permeability is 20D. The sample has resolution a=30 �m and
sample dimensions M1 = 73, M2 = 128, M3 = 128, and its pore space is displayed in
Fig. 3. The local porosity distribution for this sample is shown in Fig. 11 together with
local percolation probabilities. Their superposition for L= L∗ is displayed in Fig. 12.
Finally, the total fraction of percolating cells is shown in Fig. 13.
Figs. 12 and 13 indicate that the sample is anisotropic because �x is signi�cantly

smaller than �y and �z. It has been checked that this is not a �nite size e�ect due to
the sidelength in the x-direction being shorter in this sample than, say, in sample A.
This check was carried out by �rst dividing sample A in half along the x-direction,
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Fig. 8. Local porosity distributions �(�; L) (dotted lines) and local percolation probabilities �3(�; L) (solid
lines) for Brent sandstone (sample B) shown in Fig. 2. Four di�erent values for L are indicated by di�erent
symbols de�ned in the legend. The ordinate for the graphs of �(�; L) is on the left, the ordinate for �3(�; L)
is on the right as indicated by the axis labels.

Fig. 9. Local percolation probabilities ��(�; L∗) with �=0; 3; c; x; y; z and L∗ =108 �m for Brent sandstone
(sample B) shown in Fig. 2. The dotted curve with circular symbols is the local porosity distribution at
L= L∗ =108 �m rescaled to have maximum 1.
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Fig. 10. Total fraction of percolating cells p�(L) with �=0; 3; c; x; y; z for Brent sandstone (sample B) shown
in Fig. 2.

Fig. 11. Local porosity distributions �(�; L) (dotted lines) and local percolation probabilities �3(�; L) (solid
lines) for the sandstone (sample C) shown in Fig. 3. Four di�erent values for L are indicated by di�erent
symbols de�ned in the legend. The ordinate for the graphs of �(�; L) is on the left, the ordinate for �3(�; L)
is on the right as indicated by the axis labels.
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Fig. 12. Local percolation probabilities ��(�; L) superposed on local porosity distribution at L= L∗ =504 �m
for the sandstone shown in Fig. 3.

Fig. 13. Total fraction of percolating cells p�(L) for the sandstone shown in Fig. 3.
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and then carrying out the analysis on the remaining truncated sample. This did not
produce di�erences between �x; �y and �z for sample A.
Hence, it must be concluded that sample C is anisotropic in its connectivity, being

less permeable in the x-direction than in the y- and z-directions. We point out, however,
that to the unaided eye Fig. 3 appears visually isotropic.

5. Comparison of results and discussion

Having presented the results for the various samples we now compare the samples
against each other. Fig. 14 shows the local porosity distribution of all three samples
at the same length L=120 �m. An important reason for the di�erences is di�erent
characteristic length scales for di�erent samples. Sample C has clearly the largest length
scale because its �(�)-curve is closest to the L=0 limit of Eq. (2.4). Next comes
sample A, and sample B has the smallest pores. The di�erence in characteristic length
scales may be eliminated by comparing the samples at some intrinsic length scale such
as the correlation length or the intrinsic length L∗.
Fig. 15 shows the comparison of all three samples at the intrinsic length L= L∗.

Now, the local porosity distributions resemble each other much more closely. Nev-
ertheless, characteristic di�erences remain not only in their peak position but also in
their shape. These may in part, but not entirely, be attributed to the di�erent porosities.
Samples A and B have nearly the same porosities, but the shape of their �(�; L∗)
di�ers signi�cantly. The width of the curves indicates the strength of porosity

Fig. 14. Local porosity distributions �(�; L=120 �m) for all three samples.
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Fig. 15. Local porosity distributions �(�; L= L∗) for all three samples.


uctuations, and hence is a quantitative measure of heterogeneities in the porosity.
Using the width as a criterion we �nd that sample A is most homogeneous while
sample B is most heterogeneous, and sample C is intermediate. This agrees with visual
inspection of Figs. 1–3, and illustrates that �(�) measures porosity heterogeneities.
This fact was �rst demonstrated for two-dimensional images in [13] and suggests the
use of local porosity distributions and percolation probabilities as a quantitative method
to compare microstructures between models and experiment.
In all three samples the behaviour of �(�; L) as function of L seems to approach the

limits given in Eqs. (2.4) and (2.6). This indicates that the samples approach macro-
scopic homogeneity for L→ ∞ [15]. Of course, much larger samples (particularly, for
sample B) are needed to conclude this with certainty.
The behaviour of �(�; L) re
ects the same trend towards macroscopic homogeneity

because these functions approach a unit step at �� with increasing L. The universality
in the limit L→ 0 is re
ected in the fact that the �-curves for small L are very similar
in Figs. 4, 8 and 11. This was already discussed above for L=4a. Of course, for
�xed L, the range of � over which � changes coincides with the range of � where
�(�; L) di�ers from zero. Fig. 16 compares the local percolation probabilities �3 and �0
for all samples at L=120 �m. Not surprisingly the three samples exhibit very di�erent
behaviour analogous to the di�erence in � seen in Fig. 14.
Fig. 17 shows �3 and �0 of all samples at the intrinsic length scale L= L∗. Char-

acteristic di�erences in shape appear which emphasize the di�erent connectivity of
the three samples. These di�erences are not mere 
uctuations because they are of the
same order of magnitude as the di�erences introduced into �3 by the introduction of a
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Fig. 16. Local percolation probabilities �3(�; L=120 �m) and �0(�; L=120 �m) for all three samples.

Fig. 17. Local percolation probabilities �3(�; L= L∗) and �0(�; L= L∗) for all three samples.
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Fig. 18. Total fraction of percolating cells p3(L) for all three samples.

blocking plane into sample A that was discussed above. The curves are statistically
most reliable for � close to unity. This can be seen from Figs. 5, 9 and 12. These plots
show that the maximum of � occurs at �-values for which � is close to unity. They
also show that the �ve functions �� with �= c; x; y; z; 3 fall to the left of the maximum
of � for samples A and C, while for sample B these functions change most rapidly in
the vicinity of the maximum of �. Thus for samples A and C the change from blocking
to percolating occurs well below the average porosity in the low porosity tail of �,
indicating that both samples have a very high degree of connectivity. The modi�ed
sample A (with partially blocking plane) shows a broader overlap between �� and �
indicating lower connectivity (see Fig. 6), and sample B appears to have the lowest
degree of connectivity. In summary Fig. 17 shows that although all the samples are
very well connected the 
uctuations in connectivity are di�erent, and hence one must
also expect permeability 
uctuations.
When comparing �3 for all samples it is seen that this function reaches a plateau at

large �. For sample A there is a region around � ≈ 0:3 where �3 decreases (see Fig. 5).
This shows that local percolation probabilities are not always strictly monotonous (as
might have been expected) but may exhibit minima and maxima indicating a variable
fraction of blocking cells and hence connectivity heterogeneities at intermediate scales.
Finally, it is instructive to compare the total fraction of percolating cells p(L) for

all samples. Figs. 7, 10 and 13 show that samples A and possibly B are essentially
isotropic while sample C has clearly anisotropic connectivity. Fig. 18 shows p3(L)
as calculated from Eq. (2.10) for all samples. This plot can be used for constructing
network models in two ways. Firstly, if each K(x; L) is used to represent a site in
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Fig. 19. Total fraction of percolating cells p3(L) for all three samples rescaled with L∗. The dotted line
with circles is the result for the Berea sandstone (sample A) with a partially blocking yz-plane inside it.

the network model, p3(L) provides an estimate for the fraction of percolating network
units as a function of the networks lattice constant. Secondly, p3(L) exhibits intrinsic
length scales. Extrapolating a tangent at the in
ection point of each curve to p=1
gives a length scale which could be interpreted as the minimum length scale for a
representative elementary volume (REV) needed in homogenization and other averaging
procedures [34,15]. In this way one �nds approximately 350 �m for sample A, 230 �m
for sample B and 700 �m for sample C as the smallest sidelength for an REV.
The results presented here suggest that none of the three samples can be adequately

modelled by a critical site percolation network. The reason is that in such a model the
fraction of percolating sites should equal p3 and hence would be strongly L-dependent,
except for very small or very large L. Hence, plots such as Fig. 18 or Fig. 19 provide
information on how to choose the network elements (site, bonds) of a network model
and how to relate the length scale of the real rock to the networks lattice constant.
Fig. 19 shows p3(L=L∗) for all samples as solid lines. The dotted line corresponds

to the modi�ed sample A with a partially blocking plane. The samples are again
signi�cantly di�erent. The vertical shift is in part due to di�erences in porosity because
generally p3(L=0)= ��. The sample with the blocking plane indicates that it is possible
to have intermediate plateaus and nonmonotonicity, at least if large-scale heterogeneities
are present. The unmodi�ed homogeneous samples exhibit di�erent widths over which
the curves increase from �� to unity. These widths may be used as a quantitative
measure of 
uctuations in connectivity, both in theoretical models and in experiment.
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