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Abstract

We analyze a three-dimensional pore space reconstruction of Fontainebleau sandstone and
calculate from it the e�ective conductivity using local porosity theory. We compare this result
with an exact calculation of the e�ective conductivity that solves directly the disordered Laplace
equation. The prediction of local porosity theory is in good quantitative agreement with the exact
result. c© 1999 Elsevier Science B.V. All rights reserved.
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1. Introduction

A quantitative prediction of the e�ective conductivity for heterogeneous disordered
media from incomplete knowledge of the microstructure is a di�cult and unsolved
problem dating back to early work by Maxwell and others [1–3]. Advances in this
direction would be of great importance for many applications ranging from destruction
free testing to tomographic imaging methods. The primary obstacle is the fact that
the complexity of the microstructure cannot be captured by one or two macroscopic
geometric observables such as volume fraction or speci�c internal surface area (see
Ref. [4] for a discussion of these matters). In recent years a novel characterization
for the microgeometry of arbitrary porous media, called Local Porosity Theory (LPT),
was proposed [4–7]. The key quantities in LPT are local porosity distributions and
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local percolation probabilities. Local porosity distributions provide information about
porosity 
uctuations, and local percolation probabilities describe connectivity 
uctua-
tions.
LPT can be conveniently used to obtain transport properties. To test this method

of the calculation of transport parameters we have carried out a detailed analysis on
Fontainebleau sandstone.

2. Geometrical characterization

In this section we brie
y introduce the functions needed for calculating the e�ective
conductivity, namely, the local porosity distribution �(�; L) and the local percolation
probability �(�; L). For a more detailed discussion the reader is referred to [4].
The local porosity �(r; L) of a two phase porous medium is de�ned as the volume

fraction of pore space in a cubic subsample K of sidelength L of the total sample. The
subsample K is called a measurement cell. In a discretized sample with dimensions
M1×M2×M3 there are m=

∏
i Mi−L+1 possibilities of placing this measurement cell

within the sample. Ideally the measurement cells should be nonoverlapping [5,7] but
here we use overlapping cells to improve the statistics. Evaluating the local porosity
for each possible placement, we can de�ne an approximate local porosity distribution
�(�; L) in the following way

�(�; L) =
1
m

∑
r

�(�− �(r; L)) : (1)

The second important quantity characterizing the geometry of porous media is the
connectivity. We introduce �(r; L) as an indicator for percolation, i.e. its value is 1 if
all sides of the cubic measurement cell at point r are connected by a closed path inside
the pore space with their opposite side, and it is 0 otherwise. From this we de�ne the
approximate local percolation probability as

�(�; L) =
∑

r �(r; L)���(r; L)∑
r ���(r; L)

: (2)

3. E�ective conductivity

In an heterogeneous medium, the electrical conductivity problem is described by the
disordered Laplace equation

∇ · �(r)∇U (r) = 0; r ∈ G (G= P; M) ; (3)

where �(r) = �P�P(r) + �M�M(r). Here �P and �M indicate the conductivity of pore
space and matrix space, respectively. U (r) is the electrical potential at position r.
The isotropic e�ective conductivity �e� of an inhomogeneous medium is de�ned

through an averaged constitutive relation

〈J(r)〉= �e� 〈E(r)〉 ; (4)
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where J(r) denotes the current density, and E(r) =−∇U (r) is the electric �eld. The
angular brackets indicate an ensemble average over the microstructure.
We have determined e�ective electrical conductivities �e� in two ways. First, we

solve Eq. (3) numerically [8], and calculate E(r)=−∇U (r). On the stochastic internal
boundary @P we impose continuity for normal components of the current density J(r)
and also for tangential components of the electric �eld E(r). We apply a potential
gradient across the sample and apply no-
ow boundary conditions on the faces parallel
to the applied gradient. Then, �e� is obtained from Eq. (4) (see also [9,10]).
Second, we determine the e�ective conductivities of heterogeneous media applying

LPT [4–6]. For a cubic lattice with unit length L the LPT result for the e�ective
conductivity �e� reads [9,10]∫ 1

0
�(�; L)�(�; L)

�CS(�P; �M; 1− �)− �e�
�CS(�P; �M; 1− �) + 2�e� d�

+
∫ 1

0
�(�; L)[1− �(�; L)] �CS(�M; �P;�)− �e�

�CS(�M; �P;�) + 2�e�
d�= 0 ; (5)

where

�CS(�M; �P;�) = �M

[
�P + 2�M + 2�(�P − �M)
�P + 2�M − �(�P − �M)

]
(6)

denotes the conductivity of the rock-coated spherical water pore grain, and �CS(�P; �M;
1− �) is the conductivity of the water-coated spherical rock grain.

4. Results

Fig. 1 shows a cross section through the Fontainebleau sandstone. Pore space is
indicated by black, and matrix space by grey. The total sample has dimensions 128×
128× 128 and the resolution is a= 7:5 �m.
The local porosity distributions �(�; L) for three di�erent measurement cells with

sidelength L = 18a; 28a; 40a are plotted in Fig. 2. The curve for L = 18a shows a
large peak at � = 0 whose value is �(0; 18) = 23:24 indicating that there are still
measurement cells lying completely in matrix space. The smallest value of L for which
�(0; L) and �(1; L) both become zero is called L? and it is given by L? = 28a.
L? may be considered as a measure for the size of the largest grain. For values
of L larger than L? the curves become more and more Gaussian with the maximum
at the mean value of the porosity �� = 0:1208. The standard deviation decreases with
increasing L.
In Fig. 3 the local percolation probabilities �(�; L) are plotted for the same values

L as in the above plot of �. With increasing L the curves tend to a step function.
For L = 40a already 50% of the measurement cells with � ≈ 0:1 are percolating. In
comparison with the percolation threshold of �c = 0:31 for a three dimensional cubic
grid this shows the high degree of connectivity in natural sandstones [11].
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Fig. 1. Cross section through a Fontainebleau sandstone. The resolution of the image is a = 7:5 �m. Pore
space is coloured black, matrix space grey.

Fig. 2. Local porosity distribution of a Fontainebleau sandstone for three di�erent values of L. L=L?=28a
is a characteristic length of the local porosity analysis at which the singular component of the local porosity
distribution vanishes. The dotted line at � = 0:121 indicates the mean value of the porosity.

In Fig. 4 we present the e�ective electrical conductivities �e� obtained by LPT
(solid line with circle) and the result of the exact calculation (horizontal dotted line)
for given conductivities �P=1:0 S/m and �M=0. It can be seen in Fig. 4 that the exact
result of �e� intersects the prediction of �e� obtained by Eq. (5) at Le=215 �m. This
length Le = 215 �m was �rst introduced in [12] as the so called experimental length.
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Fig. 3. Local percolation probability for the same values of L as in Fig. 2.

Fig. 4. Comparison between �e� predicted by Eq. (5) and the exact solution. The circle represent the solution
of Eq. (5) for di�erent L, the solid line is a guide to the eye. The solid line approaches �e� (∞) = 0:0839
asymptotically for large L. The horizontal line represents the exact value of �e� obtained by solving
Eq. (3) directly. The vertical line indicates the experimental length Le = 215 �m.

In the present case it is approximately two times the correlation length �≈ 100 �m.
This result ensures that the local geometries are statistically independent as required in
mean �eld approximations. Le may be interpreted as a characteristic length for the so
called representative elementary volume in continuum theories [13]. It is remarkable
that Le≈L? = 210 �m, but we believe this to be a coincidence.
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It should be emphasized that the prediction of the e�ective electrical conductivity
using the conventional Bruggeman’s e�ective medium approximation [14,15] or the
Maxwell–Garnett approximation [15,16] are both zero. This follows from the fact that
the porosity ��=0:1208 is below the mean �eld percolation threshold ��cBr=1=3 for the
Bruggeman’s e�ective medium equation, and the e�ective electrical conductivity �e�
re
ects the property of the matrix phase (as host medium) for the Maxwell-Garnett
theory. (See also [9].)
Bruggeman’s e�ective medium approximation (EMA) is obtained from Eq. (5) in

the limit L → 0. In this limit the cells become strongly correlated and hence the
assumption of statistical independence underlying the EMA becomes invalid. On the
other hand the limit L → ∞ yields �e� (∞) = 2 ���P=(3 − ��) = 0:0839 and this is
expected to be too high. It follows that the exact solution should fall within the bounds
�e� (0) = 06�exact6�e� (∞) = 0:0839. Fig. 4 shows that this expectation is indeed
correct.
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